Epidemiology, Clinical, and Microbiological Characteristics of Multidrug-Resistant Gram-Negative Bacteremia in Qatar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Settings
2.2. Epidemiology and Clinical Demographics
2.3. Bacterial Identification and Antimicrobial Susceptibility Testing (ASTs)
2.4. Molecular and Genomic Evaluation through WGS Methods
2.5. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, M.; Khan, A.U. Global economic impact of antibiotic resistance: A review. J. Glob. Antimicrob. Resist. 2019, 19, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef] [PubMed]
- Bassetti, M.; Poulakou, G.; Ruppe, E.; Bouza, E.; Van Hal, S.J.; Brink, A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med. 2017, 43, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- Price, R. O’Neill report on antimicrobial resistance: Funding for antimicrobial specialists should be improved. Eur. J. Hosp. Pharmacy. Sci. Pract. 2016, 23, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Gil-Gil, T.; Laborda, P.; Sanz-García, F.; Hernando-Amado, S.; Blanco, P.; Martínez, J.L. Antimicrobial resistance: A multifaceted problem with multipronged solutions. Microbiologyopen 2019, 8, e945. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef]
- Di Franco, S.; Alfieri, A.; Pace, M.C.; Sansone, P.; Pota, V.; Fittipaldi, C.; Fiore, M.; Passavanti, M.B. Blood Stream Infections from MDR Bacteria. Life 2021, 11, 575. [Google Scholar] [CrossRef]
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Tiseo, G.; Carbonara, S.; Marino, A.; Di Caprio, G.; Carretta, A.; Mularoni, A.; Mariani, M.F.; Maraolo, A.E.; Scotto, R.; et al. Mortality Attributable to Bloodstream Infections Caused by Different Carbapenem-Resistant Gram-Negative Bacilli: Results from a Nationwide Study in Italy (ALARICO Network). Clin. Infect. Dis. 2023, 76, 2059–2069. [Google Scholar] [CrossRef] [PubMed]
- Holmes, C.L.; Anderson, M.T.; Mobley, H.L.T.; Bachman, M.A. Pathogenesis of Gram-Negative Bacteremia. Clin. Microbiol. Rev. 2021, 34, e00234-20. [Google Scholar] [CrossRef] [PubMed]
- Babady, N.E. Hospital-Associated Infections. Microbiol. Spectr. 2016, 4, 735–758. [Google Scholar] [CrossRef] [PubMed]
- Deelen, J.W.T.; Rottier, W.C.; van Werkhoven, C.H.; Woudt, S.H.S.; Buiting, A.G.M.; Dorigo-Zetsma, J.W.; Kluytmans, J.; van der Linden, P.D.; Thijsen, S.F.T.; Vlaminckx, B.J.M.; et al. The burden of bacteremic and non-bacteremic Gram-negative infections: A prospective multicenter cohort study in a low-resistance country. J. Infect. 2020, 81, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Morris, S.; Cerceo, E. Trends, Epidemiology, and Management of Multi-Drug Resistant Gram-Negative Bacterial Infections in the Hospitalized Setting. Antibiotics 2020, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Shorr, A.F.; Micek, S.T.; Vazquez-Guillamet, C.; Kollef, M.H. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study. Crit. Care 2014, 18, 596. [Google Scholar] [CrossRef]
- Bassetti, M.; Vena, A.; Giacobbe, D.R.; Castaldo, N. Management of Infections Caused by Multidrug-resistant Gram-negative Pathogens: Recent Advances and Future Directions. Arch. Med. Res. 2021, 52, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2022 Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2022, 75, 187–212. [Google Scholar] [CrossRef]
- Al Salman, J.; Al Dabal, L.; Bassetti, M.; Alfouzan, W.A.; Al Maslamani, M.; Alraddadi, B.; Elhoufi, A.; Enani, M.; Khamis, F.A.; Mokkadas, E.; et al. Management of infections caused by WHO critical priority Gram-negative pathogens in Arab countries of the Middle East: A consensus paper. Int. J. Antimicrob. Agents 2020, 56, 106104. [Google Scholar] [CrossRef] [PubMed]
- Kern, W.V.; Rieg, S. Burden of bacterial bloodstream infection-a brief update on epidemiology and significance of multidrug-resistant pathogens. Clin. Microbiol. Infect. 2020, 26, 151–157. [Google Scholar] [CrossRef] [PubMed]
- HMC. Available online: https://www.hamad.qa/EN/Hospitals-and-services/Pages/default.aspx (accessed on 1 March 2024).
- College of American Pathologits. Available online: https://www.cap.org/laboratory-improvement/accreditation (accessed on 1 March 2024).
- CLSI M100. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 1 March 2024).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Abid, F.B.; Tsui, C.K.M.; Doi, Y.; Deshmukh, A.; McElheny, C.L.; Bachman, W.C.; Fowler, E.L.; Albishawi, A.; Mushtaq, K.; Ibrahim, E.B.; et al. Molecular characterization of clinical carbapenem-resistant Enterobacterales from Qatar. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Giannella, M.; Bartoletti, M.; Gatti, M.; Viale, P. Advances in the therapy of bacterial bloodstream infections. Clin. Microbiol. Infect. 2020, 26, 158–167. [Google Scholar] [CrossRef] [PubMed]
- Diekema, D.J.; Hsueh, P.R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef]
- Di Carlo, P.; Serra, N.; Lo Sauro, S.; Carelli, V.M.; Giarratana, M.; Signorello, J.C.; Lucchesi, A.; Manta, G.; Napolitano, M.S.; Rea, T.; et al. Epidemiology and Pattern of Resistance of Gram-Negative Bacteria Isolated from Blood Samples in Hospitalized Patients: A Single Center Retrospective Analysis from Southern Italy. Antibiotics 2021, 10, 1402. [Google Scholar] [CrossRef]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 28, 901–937. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Bassetti, M.; Ceccarelli, G.; Carannante, N.; Losito, A.R.; Bartoletti, M.; Corcione, S.; Granata, G.; Santoro, A.; Giacobbe, D.R.; et al. Bloodstream infections caused by carbapenem-resistant Acinetobacter baumannii: Clinical features, therapy and outcome from a multicenter study. J. Infect. 2019, 79, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Quillici, M.C.B.; Resende, D.S.; Gonçalves, I.R.; Royer, S.; Sabino, S.S.; Almeida, V.F.; Ribas, R.M.; Gontijo Filho, P.P. Gram-negative bacilli bacteremia: A 7 year retrospective study in a referral Brazilian tertiary-care teaching hospital. J. Med. Microbiol. 2021, 70, 001277. [Google Scholar] [CrossRef] [PubMed]
- Rolain, J.M.; Loucif, L.; Al-Maslamani, M.; Elmagboul, E.; Al-Ansari, N.; Taj-Aldeen, S.; Shaukat, A.; Ahmedullah, H.; Hamed, M. Emergence of multidrug-resistant Acinetobacter baumannii producing OXA-23 Carbapenemase in Qatar. New Microbes New Infect. 2016, 11, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Kiyasu, Y.; Hitomi, S.; Funayama, Y.; Saito, K.; Ishikawa, H. Characteristics of invasive Acinetobacter infection: A multicenter investigation with molecular identification of causative organisms. J. Infect. Chemother. 2020, 26, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Leal, H.F.; Azevedo, J.; Silva, G.E.O.; Amorim, A.M.L.; de Roma, L.R.C.; Arraes, A.C.P.; Gouveia, E.L.; Reis, M.G.; Mendes, A.V.; de Oliveira Silva, M.; et al. Bloodstream infections caused by multidrug-resistant gram-negative bacteria: Epidemiological, clinical and microbiological features. BMC Infect. Dis. 2019, 19, 609. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.; Vandewoude, K.; De Bacquer, D.; Colardyn, F. Nosocomial bacteremia caused by antibiotic-resistant gram-negative bacteria in critically ill patients: Clinical outcome and length of hospitalization. Clin. Infect. Dis. 2002, 34, 1600–1606. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.M.; Biswas, J.S.; Edgeworth, J.D.; Islam, J.; Jenkins, N.; Judge, R.; Lavery, A.J.; Melzer, M.; Morris-Jones, S.; Nsutebu, E.F.; et al. Gram-negative bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in English acute hospitals. Clin. Microbiol. Infect. 2016, 22, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Pop-Vicas, A.; Tacconelli, E.; Gravenstein, S.; Lu, B.; D’Agata, E.M. Influx of multidrug-resistant, gram-negative bacteria in the hospital setting and the role of elderly patients with bacterial bloodstream infection. Infect. Control Hosp. Epidemiol. 2009, 30, 325–331. [Google Scholar] [CrossRef]
- Aliyu, S.; McGowan, K.; Hussain, D.; Kanawati, L.; Ruiz, M.; Yohannes, S. Prevalence and Outcomes of Multi-Drug Resistant Blood Stream Infections among Nursing Home Residents Admitted to an Acute Care Hospital. J. Intensive Care Med. 2022, 37, 565–571. [Google Scholar] [CrossRef]
- Amanati, A.; Sajedianfard, S.; Khajeh, S.; Ghasempour, S.; Mehrangiz, S.; Nematolahi, S.; Shahhosein, Z. Bloodstream infections in adult patients with malignancy, epidemiology, microbiology, and risk factors associated with mortality and multi-drug resistance. BMC Infect. Dis. 2021, 21, 636. [Google Scholar] [CrossRef] [PubMed]
- Ting, S.W.; Lee, C.H.; Liu, J.W. Risk factors and outcomes for the acquisition of carbapenem-resistant Gram-negative bacillus bacteremia: A retrospective propensity-matched case control study. J. Microbiol. Immunol. Infect. 2018, 51, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Santoro, A.; Franceschini, E.; Meschiari, M.; Menozzi, M.; Zona, S.; Venturelli, C.; Digaetano, M.; Rogati, C.; Guaraldi, G.; Paul, M.; et al. Epidemiology and Risk Factors Associated with Mortality in Consecutive Patients with Bacterial Bloodstream Infection: Impact of MDR and XDR Bacteria. Open Forum Infect. Dis. 2020, 7, ofaa461. [Google Scholar] [CrossRef] [PubMed]
- Tsachouridou, O.; Pilalas, D.; Nanoudis, S.; Antoniou, A.; Bakaimi, I.; Chrysanthidis, T.; Markakis, K.; Kassomenaki, A.; Mantzana, P.; Protonotariou, E.; et al. Mortality due to Multidrug-Resistant Gram-Negative Bacteremia in an Endemic Region: No Better than a Toss of a Coin. Microorganisms 2023, 11, 1711. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Jiang, T.; Zhang, W.; Li, C.; Chen, J.; Xiang, D.; Cao, K.; Qi, L.W.; Li, P.; Zhu, W.; et al. Predictors of mortality in bloodstream infections caused by multidrug-resistant gram-negative bacteria: 4 years of collection. Am. J. Infect. Control 2017, 45, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr. Opin. Microbiol. 2010, 13, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, e01076-18. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef]
- Ma, J.; Song, X.; Li, M.; Yu, Z.; Cheng, W.; Yu, Z.; Zhang, W.; Zhang, Y.; Shen, A.; Sun, H.; et al. Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy. Microbiol. Res. 2023, 266, 127249. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bragginton, E.C.; Colenso, C.K.; Hirvonen, V.H.A.; Takebayashi, Y.; Spencer, J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J. Mol. Biol. 2019, 431, 3472–3500. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhu, M.; Li, C.; Li, L.; Guo, M.; Yang, Z.; Zhang, Z.; Liang, Z. Epidemiology and microbiology of Gram-negative bloodstream infections in a tertiary-care hospital in Beijing, China: A 9-year retrospective study. Expert Rev. Anti Infect. Ther. 2021, 19, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.N.A.; Tambyah, P.A.; Lye, D.C.; Mo, Y.; Lee, T.H.; Yilmaz, M.; Alenazi, T.H.; Arabi, Y.; Falcone, M.; Bassetti, M.; et al. Effect of Piperacillin-Tazobactam vs Meropenem on 30-Day Mortality for Patients with E coli or Klebsiella pneumoniae Bloodstream Infection and Ceftriaxone Resistance: A Randomized Clinical Trial. JAMA 2018, 320, 984–994. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, J.; Xiao, Q.; Wang, Y.; Wang, J.; Zhu, M.; Cai, Y. Carbapenem-sparing beta-lactam/beta-lactamase inhibitors versus carbapenems for bloodstream infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: A systematic review and meta-analysis. Int. J. Infect. Dis. 2023, 128, 194–204. [Google Scholar] [CrossRef]
- Bitterman, R.; Koppel, F.; Mussini, C.; Geffen, Y.; Chowers, M.; Rahav, G.; Nesher, L.; Ben-Ami, R.; Turjeman, A.; Huberman Samuel, M.; et al. Piperacillin-tazobactam versus meropenem for treatment of bloodstream infections caused by third-generation cephalosporin-resistant Enterobacteriaceae: A study protocol for a non-inferiority open-label randomised controlled trial (PeterPen). BMJ Open 2021, 11, e040210. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.; Cooper, M.A. Aminoglycoside antibiotics in the 21st century. ACS Chem Biol 2013, 8, 105–115. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Amikacin: Uses, Resistance, and Prospects for Inhibition. Molecules 2017, 22, 2267. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Grammatikos, A.; Utili, R.; Falagas, M.E. Do we still need the aminoglycosides? Int. J. Antimicrob. Agents 2009, 33, 201–205. [Google Scholar] [CrossRef]
- Thy, M.; Timsit, J.F.; de Montmollin, E. Aminoglycosides for the Treatment of Severe Infection Due to Resistant Gram-Negative Pathogens. Antibiotics 2023, 12, 860. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, W.A.; Greenwood-Quaintance, K.E.; Patel, R. In Vitro Activity of Plazomicin Compared to Amikacin, Gentamicin, and Tobramycin against Multidrug-Resistant Aerobic Gram-Negative Bacilli. Antimicrob. Agents Chemother. 2020, 64, e01711-19. [Google Scholar] [CrossRef]
- Haidar, G.; Alkroud, A.; Cheng, S.; Churilla, T.M.; Churilla, B.M.; Shields, R.K.; Doi, Y.; Clancy, C.J.; Nguyen, M.H. Association between the Presence of Aminoglycoside-Modifying Enzymes and In Vitro Activity of Gentamicin, Tobramycin, Amikacin, and Plazomicin against Klebsiella pneumoniae Carbapenemase- and Extended-Spectrum-β-Lactamase-Producing Enterobacter Species. Antimicrob. Agents Chemother. 2016, 60, 5208–5214. [Google Scholar] [CrossRef]
- Lo, J.H.; Kulp, S.K.; Chen, C.S.; Chiu, H.C. Sensitization of intracellular Salmonella enterica serovar Typhimurium to aminoglycosides in vitro and in vivo by a host-targeted antimicrobial agent. Antimicrob. Agents Chemother. 2014, 58, 7375–7382. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Nichols, T.; Lamagni, T.L.; Potz, N.; Reynolds, R.; Duckworth, G. Ciprofloxacin-resistant Escherichia coli from bacteraemias in England; increasingly prevalent and mostly from men. J. Antimicrob. Chemother. 2003, 52, 1040–1042. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Hou, H.; Gao, F. Current scenario of quinolone hybrids with potential antibacterial activity against ESKAPE pathogens. Eur. J. Med. Chem. 2023, 247, 115026. [Google Scholar] [CrossRef] [PubMed]
- Brigmon, M.M.; Bookstaver, P.B.; Kohn, J.; Albrecht, H.; Al-Hasan, M.N. Impact of fluoroquinolone resistance in Gram-negative bloodstream infections on healthcare utilization. Clin. Microbiol. Infect. 2015, 21, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Nicolas-Chanoine, M.H.; Bertrand, X.; Madec, J.Y. Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 2014, 27, 543–574. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014, 20, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Liu, L.; Lin, J.; Ma, K.; Long, H.; Wei, L.; Xie, Y.; McNally, A.; Zong, Z. Key evolutionary events in the emergence of a globally disseminated, carbapenem resistant clone in the Escherichia coli ST410 lineage. Commun. Biol. 2019, 2, 322. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Sands, K.; Mitra, S.; Basu, R.; Saha, B.; Clermont, O.; Dutta, S.; Basu, S. A Decade-Long Evaluation of Neonatal Septicaemic Escherichia coli: Clonal Lineages, Genomes, and New Delhi Metallo-Beta-Lactamase Variants. Microbiol. Spectr. 2023, 11, e0521522. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; DeVinney, R. Escherichia coli ST131: A multidrug-resistant clone primed for global domination. F1000Res 2017, 6. [Google Scholar] [CrossRef]
- Dahiya, S.; Kapil, A.; Kumar, R.; Das, B.K.; Sood, S.; Chaudhry, R.; Kabra, S.K.; Lodha, R.K. Multiple locus sequence typing of Salmonella Typhi, isolated in north India—A preliminary study. Indian J. Med. Res. 2013, 137, 957–962. [Google Scholar]
- Quaresma, A.; Rodrigues, Y.C.; Aboim, J.B.; Bezerra, M.M.; Gouveia, M.I.M.; Da Costa, A.R.F.; de Oliveira Souza, C.; Bastos, F.C.; Lima, L.; de Paula Ramos, F.L.; et al. Molecular Epidemiology of Sporadic and Outbreak-Related Salmonella Typhi Isolates in the Brazilian North Region: A Retrospective Analysis from 1995 to 2013. Infect. Dis. Rep. 2022, 14, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Yap, K.P.; Ho, W.S.; Gan, H.M.; Chai, L.C.; Thong, K.L. Global MLST of Salmonella Typhi Revisited in Post-genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types. Front. Microbiol. 2016, 7, 270. [Google Scholar] [CrossRef] [PubMed]
- Tsui, C.K.; Ben Abid, F.; Al Ismail, K.; McElheny, C.L.; Al Maslamani, M.; Omrani, A.S.; Doi, Y. Genomic Epidemiology of Carbapenem-Resistant Klebsiella in Qatar: Emergence and Dissemination of Hypervirulent Klebsiella pneumoniae Sequence Type 383 Strains. Antimicrob. Agents Chemother. 2023, 67, e0003023. [Google Scholar] [CrossRef] [PubMed]
Organism | N | % |
---|---|---|
Escherichia coli | 249 | 62.7 |
Klebsiella pneumoniae | 81 | 20.4 |
Salmonella Typhi | 26 | 6.6 |
Pseudomonas aeruginosa | 21 | 5.3 |
* Others | 20 | 5 |
Total | 100 |
Demographics | Total | Duration of Hospital Stay | p-Value | |||
---|---|---|---|---|---|---|
Short Stay | Medium Stay | Long Stay | ||||
N (%) | (<30 Days) N (%) | (30–90 Days) N (%) | (90+ Days) N (%) | |||
Age | Pediatric (<14 years) | 4 (1.7) | 3 (1.9) | 0 (0.0) | 1 (2.4) | 0.121 a |
Adult (14–65 years) | 147 (61.8) | 99 (64.3) | 29 (69.0) | 19 (45.2) | ||
Geriatric (>65 years) | 87 (36.6) | 52 (33.8) | 13 (31.0) | 22 (52.4) | ||
Gender | Male | 151 (61.6) | 93 (58.1) | 33 (78.6) | 25 (58.1) | 0.047 b |
Female | 94 (38.4) | 67 (41.9) | 9 (21.4) | 18 (41.9) | ||
ICU stay | Present | 180 (73.8) | 131 (81.9) | 21 (50.0) | 28 (66.7) | <0.001 b |
Source | HAP c | 6 (2.4) | 4 (2.5) | 0 (0.0) | 2 (4.7) | <0.001 a |
VAP d | 8 (3.3) | 1 (0.6) | 4 (9.5) | 3 (7.0) | ||
CAUTI e | 11 (4.5) | 4 (2.5) | 4 (9.5) | 3 (7.0) | ||
CLABSI f | 21 (8.6) | 3 (1.9) | 10 (23.8) | 8 (18.6) | ||
Other | 199 (81.2) | 148 (92.5) | 24 (57.1) | 27 (62.8) | ||
Acquisition | HCAI | 89 (37.9) | 29 (18.8) | 28 (70.0) | 32 (78.0) | <0.001 b |
Extensive health care contact | Present | 166 (67.8) | 86 (53.8) | 39 (92.9) | 41 (95.3) | <0.001 b |
Readmission within 28 days | Present | 36 (14.8) | 25 (15.8) | 8 (19.0) | 3 (7.0) | 0.259 b |
Comorbidities | DM | 118 (48.6) | 72 (45.6) | 21 (50.0) | 25 (58.1) | 0.343 b |
Heart disease/heart failure/CHD | 72 (29.4) | 38 (23.8) | 21 (50.0) | 13 (30.2) | 0.004 b | |
Chronic liver disease/biliary disease | 27 (11.0) | 18 (11.3) | 3 (7.1) | 6 (14.0) | 0.572 a | |
CKD/ESRD | 65 (26.6) | 36 (22.6) | 11 (26.2) | 18 (41.9) | 0.040 b | |
Malignancy | 68 (27.8) | 34 (21.3) | 19 (45.2) | 15 (34.9) | 0.004 b | |
Post-transplantation | 9 (3.7) | 4 (2.5) | 1 (2.4) | 4 (9.3) | 0.115 a | |
Neutropenic | 25 (10.2) | 10 (6.3) | 9 (21.4) | 6 (14.0) | 0.009 a | |
Cystic fibrosis | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | N/A | |
Renal stones/urinary tract abnormality | 23 (9.4) | 19 (11.9) | 2 (4.8) | 2 (4.7) | 0.270 a | |
Chronic lung disease | 24 (9.8) | 15 (9.4) | 5 (11.9) | 4 (9.3) | 0.818 a | |
Invasive devices | Central line | 83 (34.0) | 27 (17.0) | 31 (73.8) | 25 (58.1) | <0.001 b |
Foly’s d | 64 (26.3) | 25 (15.7) | 17 (41.5) | 22 (51.2) | <0.001 a | |
NGT d | 46 (18.9) | 9 (5.7) | 16 (38.1) | 21 (48.8) | <0.001 a | |
DJ stent/PCN | 5 (2.0) | 4 (2.5) | 1 (2.4) | 0 (0.0) | 0.829 a | |
Mechanical ventilator (intubated) | 38 (15.5) | 8 (5.0) | 12 (28.6) | 18 (41.9) | <0.001 a | |
Tracheostomy tube | 18 (7.3) | 1 (0.6) | 6 (14.3) | 11 (25.6) | <0.001 a | |
PEG tube | 5 (2.0) | 1 (0.6) | 0 (0.0) | 4 (9.3) | 0.007 a | |
Other invasive device | 28 (11.5) | 17 (10.7) | 6 (14.3) | 5 (11.6) | 0.385 a | |
Number of antibiotics | 0 | 8 (3.3) | 8 (5.0) | 0 (0.0) | 0 (0.0) | 0.023 a |
1 | 11 (45.3) | 79 (49.4) | 16 (38.1) | 16 (37.2) | ||
2+ | 126 (51.4) | 73 (45.6) | 26 (61.9) | 27 (62.8) | ||
Source of bacteremia | Present | 206 (84.1) | 131 (81.9) | 37 (88.1) | 38 (88.4) | 0.444 b |
Intraabdominal | 48 (19.6) | 36 (22.5) | 8 (19) | 4 (9.3) | 0.154 b | |
Urinary system | 111 (45.5) | 89 (56) | 12 (28.6) | 10 (23.3) | <0.001 b | |
Skin and soft tissue | 22 (9.0) | 5 (3.1) | 6 (14.3) | 11 (25.6) | <0.001 a | |
Line related | 25 (10.2) | 3 (1.9) | 10 (24.4) | 12 (27.9) | <0.001 a | |
CNS | 2 (0.8) | 0 (0) | 0 (0) | 2 (4.7) | 0.060 a | |
Other sites | 7 (2.9) | 3 (1.9) | 2 (4.8) | 2 (4.7) | 0.305 a |
Antibiotic | Interpretation of Resistance | Escherichia coli | Klebsiella pneumoniae/spp. | Pseudomonas aeruginosa | Salmonella enterica ssp./Salmonella sp. | Enterobacter cloacae | Serratia marcescens |
---|---|---|---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | ||
Amikacin | S | 159 (100) | 54 (91.5) | 11 (91.7) | 0 (0) | 3 (100) | 2 (100) |
R | 0 (0) | 5 (8.5) | 1 (8.3) | 10 (100) | 0 (0) | 0 (0) | |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Cefoxitin | S | 125 (78.5) | 35 (59.3) | 0 (0) | |||
R | 23 (14.5) | 21 (35.6) | * NA | 10 (100) | * NA | * NA | |
I | 11 (7) | 3 (5.1) | 0 (0) | ||||
Ertapenem | S | 148 (93.1) | 43 (72.9) | 10 (100) | 3 (100) | 0 (0) | |
R | 7 (4.4) | 15 (25.4) | * NA | 0 (0) | 0 (0) | 2 (100) | |
I | 4 (2.5) | 1 (1.7) | 0 (0) | 0 (0) | 0 (0) | ||
Imipenem | S | 152 (95.6) | 43 (72.9) | 0 (0) | 10 (100) | 3 (100) | 0 (0) |
R | 1 (0.6) | 15 (25.4) | 12 (100) | 0 (0) | 0 (0) | 2 (100) | |
I | 6 (3.8) | 1 (1.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Meropenem | S | 158 (99.4) | 45 (76.3) | 0 (0) | 10 (100) | 3 (100) | 0 (0) |
R | 1 (0.6) | 14 (23.7) | 11 (91.7) | 0 (0) | 0 (0) | 2 (100) | |
I | 0 (0) | 0 (0) | 1 (8.3) | 0 (0) | 0 (0) | 0 (0) | |
Nitrofurantoin | S | 149 (93.7) | 17 (28.8) | 10 (100) | 0 (0) | ||
R | 5 (3.1) | 27 (45.8) | * NA | 0 (0) | 3 (100) | * NA | |
I | 5 (3.1) | 15 (25.4) | 0 (0) | 0 (0) | |||
Tigecycline | S | 158 (99.4) | 22 (37.3) | 10 (100) | 3 (100) | 0 (0) | |
R | 1 (0.6) | 15 (25.4) | * NA | 0 (0) | 0 (0) | 0 (0) | |
I | 0 (0) | 22 (37.3) | 0 (0) | 0 (0) | 2 (100) | ||
Amoxicillin clavulanate | S | 88 (55.3) | 19 (32.2) | 10 (100) | |||
R | 25 (15.7) | 23 (39) | * NA | 0 (0) | * NA | * NA | |
I | 46 (28.9) | 17 (28.8) | 0 (0) | ||||
Ampicillin | S | 0 (0) | 0 (0) | ||||
R | 159 (100) | * NA | * NA | 10 (100) | * NA | * NA | |
I | 0 (0) | 0 (0) | |||||
Aztreonam | S | 3 (1.9) | 3 (5.1) | 0 (0) | 0 (0) | 0 (0) | 2 (100) |
R | 156 (98.1) | 56 (94.9) | 12 (100) | 10 (100) | 3 (100) | 0 (0) | |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Cefazolin | S | 0 (0) | 0 (0) | 0 (0) | |||
R | 159 (100) | 59 (100) | * NA | 10 (100) | * NA | * NA | |
I | 0 (0) | 0 (0) | 0 (0) | ||||
Cefepime | S | 2 (1.3) | 0 (0) | 0 (0) | 0 (0) | 1 (33.3) | 1 (50) |
R | 157 (98.7) | 58 (98.3) | 12 (100) | 10 (100) | 2 (66.7) | 1 (50) | |
I | 0 (0) | 1 (1.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Ceftazidime | S | 3 (1.9) | 2 (3.4) | 1 (8.3) | 0 (0) | 0 (0) | 2 (100) |
R | 156 (98.1) | 57 (96.6) | 9 (75) | 10 (100) | 3 (100) | 0 (0) | |
I | 0 (0) | 0 (0) | 2 (16.7) | 0 (0) | 0 (0) | 0 (0) | |
Ceftriaxone | S | 3 (1.9) | 1 (1.7) | 0 (0) | 0 (0) | 0 (0) | |
R | 156 (98.1) | 57 (96.6) | * NA | 10 (100) | 3 (100) | 2 (100) | |
I | 0 (0) | 1 (1.7) | 0 (0) | 0 (0) | 0 (0) | ||
Cefuroxime | S | 2 (1.3) | 0 (0) | 0 (0) | 0 (0) | ||
R | 157 (98.7) | 59 (100) | * NA | 10 (100) | * NA | * NA | |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |||
Cephalothin | S | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
R | 158 (99.4) | 59 (100) | * NA) | 10 (100) | * NA | * NA | |
I | 1 (0.6) | 0 (0) | 0 (0) | 0 (0) | |||
Ciprofloxacin | S | 48 (30.2) | 8 (15.4) | 7 (58.3) | 0 (0) | 1 (50) | 2 (100) |
R | 109 (68.6) | 42 (80.8) | 4 (33.3) | 9 (100) | 1 (50) | 0 (0) | |
I | 2 (1.2) | 2 (3.8) | 1 (8.3) | 0 (0) | 0 (0) | 0 (0) | |
Gentamicin | S | 118 (74.2) | 41 (69.5) | 9 (75) | 0 (0) | 2 (66.7) | 2 (100) |
R | 40 (25.2) | 18 (30.5) | 1 (8.3) | 10 (100) | 1 (33.3) | 0 (0) | |
I | 1 (0.6) | 0 (0) | 2 (16.7) | 0 (0) | 0 (0) | 0 (0) | |
Levofloxacin | S | 49 (30.8) | 12 (30.8) | 4 (33.3) | 0 (0) | 1 (100) | 2 (100) |
R | 109 (68.6) | 25 (64.1) | 5 (41.7) | 7 (100) | 0 (0) | 0 (0) | |
I | 1 (0.6) | 2 (5.1) | 3 (25) | 0 (0) | 0 (0) | 0 (0) | |
Piperacillin–tazobactam | S | 136 (85.5) | 26 (44.1) | 1 (8.3) | 0 (0) | 3 (100) | 0 (0) |
R | 18 (11.3) | 28 (47.5) | 9 (75) | 10 (100) | 0 (0) | 2 (100) | |
I | 5 (3.1) | 5 (8.5) | 2 (16.7) | 0 (0) | 0 (0) | 0 (0) | |
Trimethoprim sulfamethoxazole | S | 53 (33.3) | 11 (18.6) | 0 (0) | 3 (100) | 2 (100) | |
R | 106 (66.7) | 48 (81.4) | * NA | 10 (100) | 0 (0) | 0 (0) | |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Colistin | S | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
R | 0 (0) | 2 (100) | 0 (0) | 0 (0) | 1 (100) | * NA | |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | ||
Polymyxin | S | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
R | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | * NA | |
I | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Death | |||
---|---|---|---|
OR (95% CI) | p-Value | ||
Age | Adult (14–65 years) | Ref. | |
Geriatric (>65 years) | 2.01 (0.94–4.3) | 0.073 | |
Sex | Male | Ref. | |
Female | 1.23 (0.56–2.66) | 0.606 | |
ICU stay | No | Ref. | |
Yes | 6.67 (3.03–16.67) | <0.001 | |
Duration of stay | Short stay (<30 days) | Ref. | |
Medium stay (30–90 days) | 0.51 (0.18–1.49) | 0.221 | |
Long stay (90+ days) | 1.29 (0.48–3.52) | 0.613 | |
Comorbidity score | 0 | Ref. | |
1 | 4.76 (0.69–32.59) | 0.112 | |
2 | 9.62 (1.52–60.69) | 0.016 | |
3 | 9.53 (1.37–66.56) | 0.023 | |
4+ | 17.38 (2.44–123.79) | 0.004 | |
Organism | Escherichia coli | Ref. | |
Klebsiella | 2.54 (1.1–5.88) | 0.029 | |
Pseudomonas aeruginosa | 13.94 (2.35–82.81) | 0.004 |
Organism | ST | N | (%) | Organism | ST | N | (%) |
---|---|---|---|---|---|---|---|
Escherichia coli | 10 | 1 | 1 | Klebsiella aerogenes | ND | 1 | 1 |
38 | 1 | 1 | Klebsiella oxytoca | 86 | 1 | 1 | |
131 | 13 | 13 | 194 | 1 | 1 | ||
167 | 4 | 4 | |||||
224 | 1 | 1 | Pseudomonas aeruginosa | 16 | 1 | 1 | |
361 | 2 | 2 | 132 | 1 | 1 | ||
405 | 1 | 1 | 234 | 1 | 1 | ||
410 | 4 | 4 | 235 | 1 | 1 | ||
450 | 1 | 1 | 244 | 1 | 1 | ||
617 | 2 | 2 | 260 | 1 | 1 | ||
648 | 2 | 2 | 500 | 1 | 1 | ||
1193 | 2 | 2 | 1417 | 1 | 1 | ||
2083 | 1 | 1 | 1992 | 1 | 1 | ||
2279 | 1 | 1 | 3045 | 1 | 1 | ||
2345 | 1 | 1 | 4117 | 1 | 1 | ||
167-1LV | 1 | 1 | ND | 1 | 1 | ||
Klebsiella | 13 | 1 | 1 | ||||
16 | 3 | 3 | Salmonella enterica | 1 | 10 | 10 | |
17 | 1 | 1 | |||||
29 | 2 | 2 | Serratia marcescens | ND | 2 | 2 | |
37 | 2 | 2 | |||||
39 | 1 | 1 | Enterobacter cloacae | 513 | 1 | 1 | |
45 | 2 | 2 | |||||
54 | 1 | 1 | |||||
101 | 1 | 1 | |||||
147 | 1 | 1 | |||||
218 | 1 | 1 | |||||
231 | 1 | 1 | |||||
268 | 1 | 1 | |||||
307 | 2 | 2 | |||||
485 | 1 | 1 | |||||
690 | 1 | 1 | |||||
716 | 1 | 1 | |||||
870 | 1 | 1 | |||||
882 | 1 | 1 | |||||
987 | 1 | 1 | |||||
2096 | 2 | 2 | |||||
2944 | 1 | 1 | |||||
3647 | 1 | 1 | |||||
3702 | 2 | 2 | |||||
4023 | 1 | 1 | |||||
37-1LV | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdel Hadi, H.; Dargham, S.R.; Eltayeb, F.; Ali, M.O.K.; Suliman, J.; Ahmed, S.A.M.; Omrani, A.S.; Ibrahim, E.B.; Chen, Y.; Tsui, C.K.M.; et al. Epidemiology, Clinical, and Microbiological Characteristics of Multidrug-Resistant Gram-Negative Bacteremia in Qatar. Antibiotics 2024, 13, 320. https://doi.org/10.3390/antibiotics13040320
Abdel Hadi H, Dargham SR, Eltayeb F, Ali MOK, Suliman J, Ahmed SAM, Omrani AS, Ibrahim EB, Chen Y, Tsui CKM, et al. Epidemiology, Clinical, and Microbiological Characteristics of Multidrug-Resistant Gram-Negative Bacteremia in Qatar. Antibiotics. 2024; 13(4):320. https://doi.org/10.3390/antibiotics13040320
Chicago/Turabian StyleAbdel Hadi, Hamad, Soha R. Dargham, Faiha Eltayeb, Mohamed O. K. Ali, Jinan Suliman, Shiema Abdalla M. Ahmed, Ali S. Omrani, Emad Bashir Ibrahim, Yuzhou Chen, Clement K. M. Tsui, and et al. 2024. "Epidemiology, Clinical, and Microbiological Characteristics of Multidrug-Resistant Gram-Negative Bacteremia in Qatar" Antibiotics 13, no. 4: 320. https://doi.org/10.3390/antibiotics13040320
APA StyleAbdel Hadi, H., Dargham, S. R., Eltayeb, F., Ali, M. O. K., Suliman, J., Ahmed, S. A. M., Omrani, A. S., Ibrahim, E. B., Chen, Y., Tsui, C. K. M., Skariah, S., & Sultan, A. (2024). Epidemiology, Clinical, and Microbiological Characteristics of Multidrug-Resistant Gram-Negative Bacteremia in Qatar. Antibiotics, 13(4), 320. https://doi.org/10.3390/antibiotics13040320