Multiple Drug Resistant Streptococcus Strains—An Actual Problem in Pig Farms in Western Romania
Abstract
:1. Introduction
2. Results
Antimicrobial Resistance Patterns
3. Discussion
4. Materials and Methods
4.1. Clinical Samples
4.2. Bacterial Isolation and Identification
MALDI-TOF MS Bacterial Identification
4.3. Antimicrobial Susceptibility Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fulde, M.; Valentin-Weigand, P. Epidemiology and pathogenicity of zoonotic streptococci. Curr. Top. Microbiol. Immunol. 2013, 368, 49–81. [Google Scholar]
- Dutkiewicz, J.; Zając, V.; Sroka, J.; Wasiński, B.; Cisak, E.; Sawczyn, A.; Kloc, A.; Wójcik-Fatla, A. Streptococcus suis: A re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II—Pathogenesis. Ann. Agric. Environ. Med. 2018, 25, 186–203. [Google Scholar] [CrossRef]
- Itzek, A.; Weißbach, V.; Meintrup, D.; Rieß, B.; van der Linden, M.; Borgmann, S. Epidemiological and Clinical Features of Streptococcus dysgalactiae ssp. equisimilis stG62647 and Other emm Types in Germany. Pathogens 2023, 12, 589. [Google Scholar]
- Oh, S.I.; Kim, J.W.; Jung, J.Y.; Chae, M.; Lee, Y.R.; Kim, J.H.; So, B.; Kim, H.Y. Pathologic and molecular characterization of Streptococcus dysgalactiae subsp. equisimilis infection in neonatal piglets. J. Vet. Sci. 2018, 19, 313–317. [Google Scholar]
- Rantala, S. Streptococcus dysgalactiae subsp. equisimilis bacteremia: An emerging infection. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1303–1310. [Google Scholar] [CrossRef]
- Duarte, R.S.; Barros, R.R.; Facklam, R.R.; Teixeira, L.M. Phenotypic and genotypic characteristics of Streptococcus porcinus isolated from human sources. J. Clin. Microbiol. 2005, 43, 4592–4601. [Google Scholar] [CrossRef]
- Martínez-Bustamante, D.; Pérez-Cárdenas, S.; Arteaga-Treviño, M.; Martínez-Ponce de León, Á.R. Emerging pathogens in the central nervous system: A cerebral abscess by Streptococcus porcinus. Med. Univ. 2014, 16, 177–180. [Google Scholar]
- Facklam, R.; Elliott, J.; Pigott, N.; Franklin, A.R. Identification of Streptococcus porcinus from human sources. J. Clin. Microbiol. 1995, 33, 385–388. [Google Scholar] [CrossRef]
- Twomey, D.F.; Carson, T.; Foster, G.; Koylass, M.S.; Whatmore, A.M. Phenotypic characterisation and 16S rRNA sequence analysis of veterinary isolates of Streptococcus pluranimalium. Vet. J. 2012, 192, 236–238. [Google Scholar] [CrossRef]
- Aryasinghe, L.; Sabbar, S.; Kazim, Y.; Awan, L.M.; Khan, H.K. Streptococcus pluranimalium: A novel human pathogen? Int. J. Surg. Case Rep. 2014, 5, 1242–1246. [Google Scholar] [CrossRef]
- Devriese, L.A.; Hommez, J.; Kilpper-Bälz, R.; Schleifer, K.H. Streptococcus canis sp. nov.: A Species of Group G Streptococci from Animals. Int. J. Syst. Evol. Microbiol. 1986, 36, 422–425. [Google Scholar] [CrossRef]
- Timoney, J.; Velineni, S.; Ulrich, B.; Blanchard, P. Biotypes and scm types of isolates of Streptococcus canis from diseased and healthy cats. Vet. Rec. 2017, 180, 358. [Google Scholar] [CrossRef] [PubMed]
- Amsallem, M.; Iung, B.; Bouleti, C.; Armand-Lefevre, L.; Eme, A.L.; Touati, A.; Kirsch, M.; Duval, X.; Vahanian, A. First reported human case of native mitral infective endocarditis caused by Streptococcus canis. Can. J. Cardiol. 2014, 30, 1462.e1–1462.e2. [Google Scholar] [CrossRef] [PubMed]
- Hariharan, H.; Matthew, V.; Fountain, J.; Snell, A.; Doherty, D.; King, B.; Shemer, E.; Oliveira, S.; Sharma, R.N. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Whatmore, A.M.; Efstratiou, A.; Pickerill, A.P.; Broughton, K.; Woodard, G.; Sturgeon, D.; George, R.; Dowson, C.G. Genetic relationships between clinical isolates of Streptococcus pneumoniae, Streptococcus oralis, and Streptococcus mitis: Characterization of “Atypical” pneumococci and organisms allied to S. mitis harboring S. pneumoniae virulence factor-encoding genes. Infect. Immun. 2000, 68, 1374–1382. [Google Scholar] [CrossRef]
- Bert, F.; Lambert-Zechovsky, N. Septicemia caused by Streptococcus canis in a human. J. Clin. Microbiol. 1997, 35, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Lederman, Z.; Leskes, H.; Brosh-Nissimov, T. One Health and Streptococcus canis in the Emergency Department: A Case of Cellulitis and Bacteremia in an Immunocompromised Patient Treated with Etanercept. J. Emerg. Med. 2020, 58, e129–e132. [Google Scholar] [CrossRef]
- Kasuya, K.; Yoshida, E.; Harada, R.; Hasegawa, M.; Osaka, H.; Kato, M.; Shibahara, T. Systemic Streptococcus dysgalactiae subspecies equisimilis infection in a Yorkshire pig with severe disseminated suppurative meningoencephalomyelitis. J. Vet. Med. Sci. 2014, 76, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Zhang, Q.; Song, Y.; Zhang, Z.; Zhang, A.; Xiao, J.; Jin, M. Characterization of Spectinomycin Resistance in Streptococcus suis Leads to Two Novel Insights into Drug Resistance Formation and Dissemination Mechanism. Antimicrob. Agents Chemother. 2016, 60, 6390–6392. [Google Scholar] [CrossRef]
- Devriese, L.A. Streptococcal ecovars associated with different animal species: Epidemiological significance of serogroups and biotypes. J. Appl. Bacteriol. 1991, 71, 478–483. [Google Scholar] [CrossRef]
- Segura, M.; Aragon, V.; Brockmeier, S.L.; Gebhart, C.; Greeff, A.; Kerdsin, A.; O’Dea, M.A.; Okura, M.; Saléry, M.; Schultsz, C.; et al. Update on Streptococcus suis Research and Prevention in the Era of Antimicrobial Restriction: 4th International Workshop on S. suis. Pathogens 2020, 9, 374. [Google Scholar] [CrossRef]
- Marois, C.; Le Devendec, L.; Gottschalk, M.; Kobisch, M. Detection and molecular typing of Streptococcus suis in tonsils from live pigs in France. Can. J. Vet. Res. 2007, 71, 14–22. [Google Scholar]
- Doma, A.O.; Moruzi, R.F.; Muselin, F.; Dumitrescu, E.; Herman, V.; Oprescu, I.; Cristina, R.T. A Screening of mortality evolution in 49 pig farms in Western Romania. Rev. Rom. Med. Vet. 2021, 31, 57–62. [Google Scholar]
- Gottschalk, M. Streptococci. In Diseases of Swine, 10th ed.; Zimmerman, J., Karriker, L., Ramirez, A., Schwartz, K., Stevenson, G., Eds.; Wiley-Blackwell Publishing: Hoboken, NJ, USA, 2012; pp. 841–855. [Google Scholar]
- Devriese, L.A.; Hommez, J.; Pot, B.; Haesebrouck, F. Identification and composition of the streptococcal and enterococcal flora of tonsils, intestines and faeces of pigs. J. Appl. Bacteriol. 1994, 77, 31–36. [Google Scholar] [CrossRef]
- Kawata, K.; Minakami, T.; Mori, Y.; Katsumi, M.; Kataoka, Y.; Ezawa, A.; Kikuchi, N.; Takahashi, T. rDNA sequence analyses of Streptococcus dysgalactiae subsp. equisimilis isolates from pigs. Int J Syst Evol Microbiol 2003, 53, 1941–1946. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Pitoiu, E.; Iancu, I.; Degi, J.; Hulea, A.; Pascu, C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals 2022, 12, 43. [Google Scholar] [CrossRef]
- Hughes, J.M.; Wilson, M.E.; Brandt, C.M.; Spellerberg, B. Human Infections Due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 2009, 49, 766–772. [Google Scholar]
- Herman, V.; Faur, B.; Pascu, C.; Costinar, L.; Văduva, I. Characterisation of some Streptococcus suis strains isolated from pigs. Lucr. Şt. Med. Vet. Timiş. 2011, XL, 115–121. [Google Scholar]
- Renzhammer, R.; Loncaric, I.; Ladstätter, M.; Pinior, B.; Roch, F.-F.; Spergser, J.; Ladinig, A.; Unterweger, C. Detection of Various Streptococcus spp. and Their Antimicrobial Resistance Patterns in Clinical Specimens from Austrian Swine Stocks. Antibiotics 2020, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Pascu, C.; Costinar, L.; Herman, V.; Şerbescu, M. Investigation concerning proliferative enteropathies in swine. Lucr. Şt. Med. Vet. Timiş. 2011, XL, 157–161. [Google Scholar]
- Gottschalk, M.; Segura, M. Streptococcosis. In Diseases of Swine, 11th ed.; Zimmerman, J.J., Karriker, L.A., Ramirez, A., Schwartz, K.J., Stevenson, G.W., Zhang, J., Eds.; Wiley-Blackwell Publishing: Hoboken, NJ, USA, 2019; pp. 934–950. [Google Scholar]
- Staton, G.J.; Scott, C.; Blowey, R. Aggressive skin lesions in pigs. Vet. Rec. 2019, 184, 529–530. [Google Scholar] [CrossRef]
- Numberger, D.; Siebert, U.; Fulde, M.; Valentin-Weigand, P. Streptococcal Infections in Marine Mammals. Microorganisms 2021, 9, 350. [Google Scholar] [CrossRef] [PubMed]
- Khantasup, K.; Tungwongjulaniam, C.; Theerawat, R.; Lamaisri, T.; Piyalikit, K.; Nuengjamnong, C.; Nuanualsuwan, S. Cross-sectional risk assessment of zoonotic Streptococcus suis in pork and swine blood in Nakhon Sawan Province in northern Thailand. Zoonoses Public Health. 2022, 69, 625–634. [Google Scholar] [CrossRef]
- Fotoglidis, A.; Pagourelias, E.; Kyriakou, P.; Vassilikos, V. Endocarditis caused by unusual Streptococcus species (Streptococcus pluranimalium). Hippokratia. 2015, 182. [Google Scholar]
- Wang, Y.; Guo, H.; Bai, Y.; Li, T.; Xu, R.; Sun, T.; Lu, J.; Song, Q. Isolation and characteristics of multi-drug resistant Streptococcus porcinus from the vaginal secretions of sow with endometritis. BMC Vet. Res. 2020, 16, 146. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Iancu, I.; Pascu, C. Phenotypic characterizations and antimicrobials resistance of Salmonella strains isolated from pigs from fattening farms. Rev. Rom. Med. Vet. 2021, 31, 31–34. [Google Scholar]
- Turner, G.V.S. A Microbiological study of polyarthritis in slaughter pigs. J. S. Afr. Vet. Assoc. 1982, 53, 99–101. [Google Scholar] [PubMed]
- Pan, Y.; An, H.; Fu, T.; Zhao, S.; Zhang, C.; Xiao, G.; Zhang, J.; Zhao, X.; Hu, G. Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation. BMC Microbiol. 2018, 12, 182. [Google Scholar] [CrossRef]
- Pongratz, P.; Ebbers, M.; Geerdes-Fenge, H.; Reisinger, E.C. RE: ‘Streptococcus pluranimalium: A novel human pathogen?’. Int. J. Surg. Case Rep. 2017, 41, 493–494. [Google Scholar] [CrossRef]
- Ghazvini, K.; Karbalaei, M.; Kianifar, H.; Keikha, M. The first report of Streptococcus pluranimalium infection from Iran: A case report and literature review. Clin. Case Rep. 2019, 7, 1858–1862. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Matajira, C.E.C.; Gomes, V.T.M.; Silva, A.P.S.; Mesquita, R.E.; Christ, A.P.G.; Sato, M.I.Z.; Moreno, A.M. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens. Infect. Genet. Evol. 2016, 44, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Richards, V.P.; Zadoks, R.N.; Pavinski Bitar, P.D.; Lefébure, T.; Lang, P.; Werner, B.; Tikofsky, L.; Moroni, P.; Stanhope, M.J. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis. BMC Microbiol. 2012, 12, 293. [Google Scholar] [CrossRef]
- Galpérine, T.; Cazorla, C.; Blanchard, E.; Boineau, F.; Ragnaud, J.M.; Neau, D. Streptococcus canis infections in humans: Retrospective study of 54 patients. J. Infect. 2007, 55, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Malisova, B.; Santavy, P.; Loveckova, Y.; Hladky, B.; Kotaskova, I.; Pol, J.; Lonsky, V.; Nemec, P.; Freiberger, T. Human native endocarditis caused by Streptococcus canis—A case report. APMIS 2019, 127, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Pagnossin, D.; Smith, A.; Oravcová, K.; Weir, W. Streptococcus canis, the underdog of the genus. Vet. Microbiol. 2022, 273, 109524. [Google Scholar] [CrossRef]
- Tikofsky, L.; Zadoks, R. Cross-infection between cats and cows: Origin and control of Streptococcus canis mastitis in a dairy herd, J. Dairy Sci. 2005, 88, 2707–2713. [Google Scholar] [CrossRef]
- Eibl, C.; Baumgartner, M.; Urbantke, V.; Sigmund, M.; Lichtmannsperger, K.; Wittek, T.; Spergser, J. An outbreak of subclinical mastitis in a dairy herd caused by a novel Streptococcus canis sequence type (st55). Animals 2021, 11, 550. [Google Scholar] [CrossRef]
- Meekhanon, N.; Kaewmongkol, S.; Phimpraphai, W.; Okura, M.; Osaki, M.; Sekizaki, T.; Takamatsu, D. Potentially hazardous Streptococcus suis strains latent in asymptomatic pigs in a major swine production area of Thailand. J. Med. Microbiol. 2017, 66, 662–669. [Google Scholar] [CrossRef]
- Soares, T.C.S.; Paes, A.C.; Megid, J.; Ribolla, P.E.M. Antimicrobial susceptibility of Streptococcus suis isolated from clinically healthy swine in Brazil. Can. J. Vet. Res. 2015, 74, 279–284. [Google Scholar]
- Surveillance Atlas of Infectious Diseases (europa.eu). Available online: https://atlas.ecdc.europa.eu/public/index.aspx?Dataset=27&HealthTopic=4 (accessed on 20 November 2023).
- Palmieri, C.; Varaldo, P.E.; Facinelli, B. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen. Front. Microbiol. 2011, 2, 235. [Google Scholar] [CrossRef]
- Reams, R.Y.; Glickman, L.T.; Harrington, D.D.; Thacker, H.L.; Bowersock, T.L. Streptococcus suis infection in swine: A retrospective study of 256 cases. Part II. Clinical signs, gross and microscopic lesions, and coexisting microorganisms. J. Vet. Diagn. Investig. 1994, 6, 26–34. [Google Scholar] [CrossRef]
- Kerdsin, A.; Hatrongjit, R.; Gottschalk, M.; Takeuchi, D.; Hamada, S.; Akeda, Y.; Oishi, K. Emergence of Streptococcus suis serotype 9 infection in humans. J. Microbiol. Immunol. Infect. 2017, 50, 545–546. [Google Scholar] [CrossRef]
- O’Sullivan, T.; Friendship, R.; Blackwell, T.; Pearl, D.; McEwen, B.; Carman, S. Microbiological identification and analysis of swine tonsils collected from carcasses at slaughter. Can. J. Vet. Res. 2011, 75, 106–111. [Google Scholar]
- Yongkiettrakul, S.; Maneerat, K.; Arechanajan, B.; Malila, Y.; Srimanote, P.; Gottschalk, M.; Visessanguan, W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet. Res. 2019, 15, 5. [Google Scholar] [CrossRef]
- Tramontana, A.R.; Graham, M.; Sinickas, V.; Bak, N. An Australian case of Streptococcus suis toxic shock syndrome associated with occupational exposure to animal carcasses. Med. J. Aust. 2008, 188, 538–539. [Google Scholar] [CrossRef]
- Boonyong, N.; Kaewmongkol, S.; Khunbutsri, D.; Satchasataporn, K.; Meekhanon, N. Contamination of Streptococcus suis in pork and edible pig organs in central Thailand. Vet. World 2019, 12, 165–169. [Google Scholar] [CrossRef]
- Pui-Yi, C.; Kin, L.L.; To To, C.; Wai, H.Y.; Pui Ha, L.; Kai, M.K. Streptococcus suis in retail markets: How prevalent is it in raw pork? Int. J. Food Microbiol. 2008, 127, 316–320. [Google Scholar]
- Kerdsin, A.; Takeuchi, D.; Nuangmek, A.; Akeda, Y.; Gottschalk, M.; Oishi, K. Genotypic Comparison between Streptococcus suis Isolated from Pigs and Humans in Thailand. Pathogens 2020, 9, 50. [Google Scholar] [CrossRef]
- O’Dea, M.A.; Laird, T.; Abraham, R.; Jordan, D.; Lugsomya, K.; Fitt, L.; Gottschalk, M.; Truswell, A.; Abraham, S. Examination of Australian Streptococcus suis isolates from clinically affected pigs in a global context and the genomic characterization of ST1 as a predictor of virulence. Vet. Microbiol. 2018, 226, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Wertheim, H.F.; Nghia, H.D.; Taylor, W.; Schultsz, C. Streptococcus suis: An emerging human pathogen. Clin. Infect. Dis. 2009, 48, 617–625. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Z.; Song, L.; Fan, X.; Wen, F.; Xu, S.; Ning, Y. Antimicrobial Resistance Profile and Genotypic Characteristics of Streptococcus suis Capsular Type 2 Isolated from Clinical Carrier Sows and Diseased Pigs in China. Biomed. Res. Int. 2015, 2015, 284303. [Google Scholar]
- Tanaka, D.; Isobe, J.; Watahiki, M.; Nagai, Y.; Katsukawa, C.; Kawahara, R. Genetic features of clinical isolates of Streptococcus dysgalactiae subsp. equisimilis possessing Lancefield’s group A antigen. J. Clin. Microbiol. 2008, 46, 1526–1529. [Google Scholar] [CrossRef]
- Arai, S.; Tohya, M.; Yamada, R.; Osawa, R.; Nomoto, R.; Kawamura, Y.; Sekizaki, T. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan. Int. J. Food Microbiol. 2015, 208, 35–42. [Google Scholar] [CrossRef]
- Callens, B.F.; Haesebrouck, F.; Maes, D.; Butaye, P.; Dewulf, J.; Boyen, F. Clinical resistance and decreased susceptibility in Streptococcus suis isolates from clinically healthy fattening pigs. Microb. Drug. Resist. 2013, 19, 146–151. [Google Scholar] [CrossRef]
- Hernandez-Garcia, J.; Wang, J.; Restif, O.; Holmes, M.A.; Mather, A.E.; Weinert, L.A.; Wileman, T.M.; Thomson, J.R.; Langford, P.R.; Wren, B.W. Patterns of antimicrobial resistance in Streptococcus suis isolates from pigs with or without streptococcal disease in England between 2009 and 2014. Vet. Microbiol. 2017, 207, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Imre, K.; Ban-Cucerzan, A.; Herman, V.; Sallam, K.I.; Cristina, R.T.; Abd-Elghany, S.M.; Morar, D.; Popa, S.A.; Imre, M.; Morar, A. Occurrence, Pathogenic Potential and Antimicrobial Resistance of Escherichia coli Isolated from Raw Milk Cheese Commercialized in Banat Region, Romania. Antibiotics 2022, 11, 721. [Google Scholar] [CrossRef] [PubMed]
- Dewulf, J.; Joosten, P.; Chatziaras, I.; Bernaerdt, E.; Vanderhaeghen, W.; Postma, M.; Maes, D. Antibiotic use in European pig production: Less is more. Antibiotics 2022, 11, 1493. [Google Scholar] [CrossRef] [PubMed]
- Performance Standards for Antimicrobial Susceptibility Testing, M100Ed33 33rd Edition. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 14 April 2022).
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
No. crt. | Type of Sample/Source | Isolates No (%) | Streptococcus Species | |||||
---|---|---|---|---|---|---|---|---|
S. suis | S. dysgalactiae subsp. equisimillis | S. porcinus | S. hyovaginalis | S. pluranimalium | S. canis | |||
1. | Brain (CNS) | 58 (21.72%) | 40 (22.09%) | 11 (27.50%) | 0.00 | 7 (53.84%) | 0.00 | 0.00 |
2. | Lung | 84 (31.46%) | 67 (37.01%) | 6 (15.00%) | 8 (33.33%) | 3 (23.07%) | 0.00 | 0.00 |
3. | Genitourinary tract | 29 (10.86%) | 11 (6.07%) | 13 (32.50%) | 5 (20.83%) | 0.00 | 0.00 | 0.00 |
4. | Serosal surfaces | 20 (7.49%) | 17 (9.39%) | 0.00 | 3 (12.50%) | 0.00 | 0.00 | 0.00 |
5. | Noses | 17 (6.36%) | 9 (4.97%) | 0.00 | 4 (16.66%) | 2 (15.38%) | 0.00 | 2 (50.00%) |
6. | Skin | 8 (2.99%) | 2 (1.10%) | 3 (7.50%) | 0.00 | 0.00 | 1 (20.00%) | 2 (50.00%) |
7. | Joint | 13 (4.86%) | 11 (6.07%) | 2 (5.00%) | 0.00 | 0.00 | 0.00 | 0.00 |
8. | Liver, spleen | 22 (8.23%) | 15 (8.28%) | 5 (12.50%) | 0.00 | 0.00 | 2 (40.00%) | 0.00 |
9. | Raw semen | 9 (3.37%) | 5 (2.76%) | 0.00 | 2 (8.33%) | 0.00 | 2 (40.00%) | 0.00 |
10. | Other (heart, kidney) | 7 (2.62%) | 4 (2.20%) | 0.00 | 2 (8.33%) | 1 (7.69%) | 0.00 | 0.00 |
Total | 267 (100.00%) | 181 (67.79%) | 40 (14.98%) | 24 (8.98%) | 13 (4.86%) | 5 (1.87%) | 4 (1.49%) |
Type of ATB | Disk Content | Tested Strains | Susceptible | Resistant | Intermediate |
---|---|---|---|---|---|
% (No.) | % (No.) | % (No.) | |||
Amoxicillin | AML (10 µg) | 88 | 55.68 (49) | 20.45 (18) | 23.86 (21) |
Amoxiclav | AMC (30 µg) | 21 | 80.95 (17) | 0.00 | 19.04 (4) |
Ampicillin | AMP (10 µg) | 22 | 72.72 (16) | 13.63 (3) | 13.63 (3) |
Apramycin | APR (10 µg) | 21 | 9.52 (2) | 66.66 (14) | 23.80 (5) |
Ceftiofur | EFT (30 µg) | 91 | 87.91(80) | 3.29 (3) | 8.79 (8) |
Cefquinome | CEQ (30 µg) | 28 | 82.14 (23) | 7.14 (2) | 13.04 (3) |
Colistine | CT (10 µg) | 77 | 2.59 (2) | 53.24 (41) | 44.15 (34) |
Chlortetracycline | CTC (10 µg) | 49 | 2.04 (1) | 83.67 (41) | 8.51 (7) |
Doxycycline | DO (30 µg) | 47 | 4.25 (2) | 87.23 (41) | 8.51 (4) |
Enrofloxacin | ENR (5 µg) | 95 | 47.36 (45) | 21.05 (20) | 31.57 (30) |
Erythromycin | ERY (30 µg) | 36 | 16.66 (6) | 72.22 (26) | 11.11 (4) |
Florfenicol | FFC (30 µg) | 86 | 53.48 (46) | 31.39 (27) | 15.11 (13) |
Flumequine | UBN (30 µg) | 12 | 0.00 | 50.00 (6) | 50.00 (6) |
Gentamycin | CN (10 µg) | 49 | 26.53 (13) | 26.53 (13) | 46.93 (23) |
Kanamycin | K (10 µg) | 13 | 15.38 (2) | 84.61 (11) | 0.00 |
Lincomycin | LCN (15 µg) | 20 | 0.00 | 95.00 (19) | 5.00 (1) |
Lincospectin | LS (10 µg) | 10 | 80.00 (8) | 0.00 | 20.00 (2) |
Neomycin | N (10 µg) | 86 | 10.46 (9) | 48.83 (42) | 40.69 (35) |
Penicillin | P (10 UNITS) | 68 | 66.17 (45) | 16.17 (11) | 17.64 (12) |
Spectinomycin | SPT (100 µg) | 18 | 0.00 | 94.44 (17) | 5.55 (1) |
Streptomycin | STRP (30 µg) | 19 | 0.00 | 84.21 (16) | 15.78 (3) |
Tiamulin | TIAMU (30 µg) | 11 | 36.36 (4) | 45.45 (5) | 18.18 (2) |
Tilmicosin | TIL (15 µg) | 7 | 0.00 | 85.71 (6) | 14.28 (1) |
Trimethoprim sulfamethoxazole | SXT (10 µg) | 43 | 25.58 (11) | 65.11 (28) | 9.30 (4) |
Tulathromycin | TUL (30 µg) | 11 | 36.36 (4) | 45.45 (5) | 18.18 (2) |
Tylosin | TYL (30 µg) | 16 | 0.00 | 87.5 (14) | 12.50 (2) |
Profiles | Antimicrobial Group with Resistance | No of Strains |
---|---|---|
1. | ß—lactams, Macrolides | 18 |
2. | ß-lactams, Tetracyclines | 9 |
3. | Tetracycline, Lincosamides | 13 |
4. | ß-lactams, Tetracyclines, Fluoroquinolones | 7 |
5. | Aminoglycosides, Macrolides, Sulphonamides | 15 |
6. | ß-lactams, Tetracyclines, Fluoroquinolones, Macrolides | 15 |
7. | Aminoglycosides, Macrolides, Tetracyclines, Lincosamides | 9 |
8. | Aminoglycosides, Macrolides, Amphenicols, Sulphonamides | 5 |
9. | Macrolides, Tetracyclines, Lincosamides, Sulphonamides | 18 |
10. | Macrolides, Tetracyclines, Lincosamides, Aminoglycosides | 6 |
11. | Macrolides, Tetracyclines, ß-lactams, Fluoroquinolones | 21 |
12. | Aminoglycosides, Macrolides, Tetracyclines, Lincosamides, Aminocyclitol | 8 |
13. | Macrolides, Aminoglycosides, Tetracyclines, ß-lactams with inhibitors, Pleuromutilins | 42 |
14. | Macrolides, Aminoglycosides, Tetracyclines, Fluoroquinolones, Cephalosporins | 33 |
15. | Macrolides, Aminoglycosides, Tetracyclines, Fluoroquinolones, Sulphonamides | 8 |
16. | Macrolides, Aminoglycosides, Tetracyclines, Amphenicols, Sulphonamides, Pleuromutilins | 22 |
17. | Macrolides, Aminoglycosides, Amphenicols, Sulphonamides, Fluoroquinolones, Lincosamides | 18 |
Age Group | Suckling Piglets | Weaned Piglets | Fattening Piglets | Gilts/Sows | Boars | Total | |
---|---|---|---|---|---|---|---|
Sources | |||||||
Lung | 15 | 49 | 16 | 2 | 2 | 84 | |
CNS | 11 | 39 | 4 | 3 | 1 | 58 | |
Genitourinary tract | 0 | 0 | 0 | 29 | 0 | 29 | |
Liver, spleen | 1 | 10 | 9 | 2 | 0 | 22 | |
Serosal surfaces | 0 | 12 | 5 | 3 | 0 | 20 | |
Noses | 0 | 11 | 5 | 1 | 0 | 17 | |
Joints | 2 | 9 | 2 | 0 | 0 | 13 | |
Raw semen | 0 | 0 | 0 | 0 | 9 | 9 | |
Skin | 0 | 4 | 3 | 1 | 0 | 8 | |
Other (heart, kidney) | 0 | 4 | 3 | 0 | 0 | 7 | |
Total | 29 | 138 | 47 | 41 | 12 | 267 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costinar, L.; Badea, C.; Marcu, A.; Pascu, C.; Herman, V. Multiple Drug Resistant Streptococcus Strains—An Actual Problem in Pig Farms in Western Romania. Antibiotics 2024, 13, 277. https://doi.org/10.3390/antibiotics13030277
Costinar L, Badea C, Marcu A, Pascu C, Herman V. Multiple Drug Resistant Streptococcus Strains—An Actual Problem in Pig Farms in Western Romania. Antibiotics. 2024; 13(3):277. https://doi.org/10.3390/antibiotics13030277
Chicago/Turabian StyleCostinar, Luminita, Corina Badea, Adela Marcu, Corina Pascu, and Viorel Herman. 2024. "Multiple Drug Resistant Streptococcus Strains—An Actual Problem in Pig Farms in Western Romania" Antibiotics 13, no. 3: 277. https://doi.org/10.3390/antibiotics13030277
APA StyleCostinar, L., Badea, C., Marcu, A., Pascu, C., & Herman, V. (2024). Multiple Drug Resistant Streptococcus Strains—An Actual Problem in Pig Farms in Western Romania. Antibiotics, 13(3), 277. https://doi.org/10.3390/antibiotics13030277