Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics
2.2. Microbiological Characteristic
2.3. Genomic Characteristics
3. Discussion
4. Material and Methods
4.1. Definitions
4.2. Identification and Susceptibility Testing
4.3. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef]
- Brink, A.J. Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef]
- Effah, C.Y.; Sun, T.; Liu, S.; Wu, Y. Klebsiella pneumoniae: An increasing threat to public health. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 1. [Google Scholar] [CrossRef]
- Xu, L.; Sun, X.; Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 18. [Google Scholar] [CrossRef]
- Podschun, R.; Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef]
- Wyres, K.L.; Lam, M.M.C.; Holt, K.E. Population genomics of Klebsiella pneumoniae. Nat. Rev. Microbiol. 2020, 18, 344–359. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, e00181-19. [Google Scholar] [CrossRef] [PubMed]
- Ernst, C.M.; Braxton, J.R.; Rodriguez-Osorio, C.A.; Zagieboylo, A.P.; Li, L.; Pironti, A.; Manson, A.L.; Nair, A.V.; Benson, M.; Cummins, K.; et al. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nat. Med. 2020, 26, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.G.A.; de Sousa, V.S.; Kraychete, G.B.; Justo-da-Silva, L.H.; Rocha, J.A.; Superti, S.V.; Bonelli, R.R.; Martins, I.S.; Moreira, B.M. Colistin resistance emerges in pandrug-resistant Klebsiella pneumoniae epidemic clones in Rio de Janeiro, Brazil. Int. J. Antimicrob. Agents 2019, 54, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Sieswerda, E.; van den Brand, M.; van den Berg, R.B.; Sträter, J.; Schouls, L.; van Dijk, K.; Budding, A.E. Successful rescue treatment of sepsis due to a pandrug-resistant, NDM-producing Klebsiella pneumoniae using aztreonam powder for nebulizer solution as intravenous therapy in combination with ceftazidime/avibactam. J. Antimicrob. Chemother. 2020, 75, 773–775. [Google Scholar] [CrossRef] [PubMed]
- Zowawi, H.M.; Forde, B.M.; Alfaresi, M.; Alzarouni, A.; Farahat, Y.; Chong, T.M.; Yin, W.F.; Chan, K.G.; Li, J.; Schembri, M.A.; et al. Stepwise evolution of pandrug-resistance in Klebsiella pneumoniae. Sci. Rep. 2015, 5, 15082. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, Z.; Ge, Y.; He, F. Rapid Emergence of a Pandrug-Resistant Klebsiella pneumoniae ST11 Isolate in an Inpatient in a Teaching Hospital in China After Treatment with Multiple Broad-Spectrum Antibiotics. Infect. Drug Resist. 2020, 13, 799–804. [Google Scholar] [CrossRef]
- Tsui, C.K.; Ben Abid, F.; Al Ismail, K.; McElheny, C.L.; Al Maslamani, M.; Omrani, A.S.; Doi, Y. Genomic Epidemiology of Carbapenem-Resistant Klebsiella in Qatar: Emergence and Dissemination of Hypervirulent Klebsiella pneumoniae Sequence Type 383 Strains. Antimicrob. Agents Chemother. 2023, 67, e0003023. [Google Scholar] [CrossRef]
- Li, L.; Yu, T.; Ma, Y.; Yang, Z.; Wang, W.; Song, X.; Shen, Y.; Guo, T.; Kong, J.; Wang, M.; et al. The Genetic Structures of an Extensively Drug Resistant (XDR) Klebsiella pneumoniae and Its Plasmids. Front. Cell. Infect. Microbiol. 2018, 8, 446. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Andini, R.; Zampino, R. Management of carbapenem-resistant Enterobacteriaceae infections. Clin. Microbiol. Infect. 2019, 25, 943–950. [Google Scholar] [CrossRef] [PubMed]
- Marchaim, D.; Pogue, J.M.; Tzuman, O.; Hayakawa, K.; Lephart, P.R.; Salimnia, H.; Painter, T.; Zervos, M.J.; Johnson, L.E.; Perri, M.B.; et al. Major variation in MICs of tigecycline in Gram-negative bacilli as a function of testing method. J. Clin. Microbiol. 2014, 52, 1617–1621. [Google Scholar] [CrossRef] [PubMed]
- Taggar, G.; Attiq Rheman, M.; Boerlin, P.; Diarra, M.S. Molecular Epidemiology of Carbapenemases in Enterobacteriales from Humans, Animals, Food and the Environment. Antibiotics 2020, 9, 693. [Google Scholar] [CrossRef]
- Bassetti, M.; Poulakou, G.; Ruppe, E.; Bouza, E.; Van Hal, S.J.; Brink, A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: A visionary approach. Intensive Care Med. 2017, 43, 1464–1475. [Google Scholar] [CrossRef]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Jeon, J.H.; Kim, Y.B.; Cha, C.J.; Jeong, B.C.; Lee, S.H. Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front. Cell. Infect. Microbiol. 2017, 7, 483. [Google Scholar] [CrossRef]
- Safdar, N.; Maki, D.G. The commonality of risk factors for nosocomial colonization and infection with antimicrobial-resistant Staphylococcus aureus, enterococcus, gram-negative bacilli, Clostridium difficile, and Candida. Ann. Intern. Med. 2002, 136, 834–844. [Google Scholar] [CrossRef]
- Kollef, M.H.; Torres, A.; Shorr, A.F.; Martin-Loeches, I.; Micek, S.T. Nosocomial Infection. Crit. Care Med. 2021, 49, 169–187. [Google Scholar] [CrossRef] [PubMed]
- Boonyasiri, A.; Jauneikaite, E.; Brinkac, L.M.; Greco, C.; Lerdlamyong, K.; Tangkoskul, T.; Nguyen, K.; Thamlikitkul, V.; Fouts, D.E. Genomic and clinical characterisation of multidrug-resistant carbapenemase-producing ST231 and ST16 Klebsiella pneumoniae isolates colonising patients at Siriraj hospital, Bangkok, Thailand from 2015 to 2017. BMC Infect. Dis. 2021, 21, 142. [Google Scholar] [CrossRef] [PubMed]
- Abid, F.B.; Tsui, C.K.M.; Doi, Y.; Deshmukh, A.; McElheny, C.L.; Bachman, W.C.; Fowler, E.L.; Albishawi, A.; Mushtaq, K.; Ibrahim, E.B.; et al. Molecular characterization of clinical carbapenem-resistant Enterobacterales from Qatar. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1779–1785. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, e00047-19. [Google Scholar] [CrossRef] [PubMed]
- Zowawi, H.M.; Balkhy, H.H.; Walsh, T.R.; Paterson, D.L. β-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin. Microbiol. Rev. 2013, 26, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Sid Ahmed, M.A.; Bansal, D.; Acharya, A.; Elmi, A.A.; Hamid, J.M.; Sid Ahmed, A.M.; Chandra, P.; Ibrahim, E.; Sultan, A.A.; Doiphode, S.; et al. Antimicrobial susceptibility and molecular epidemiology of extended-spectrum beta-lactamase-producing Enterobacteriaceae from intensive care units at Hamad Medical Corporation, Qatar. Antimicrob. Resist. Infect. Control. 2016, 5, 4. [Google Scholar] [CrossRef] [PubMed]
- Zowawi, H.M.; Sartor, A.L.; Balkhy, H.H.; Walsh, T.R.; Al Johani, S.M.; AlJindan, R.Y.; Alfaresi, M.; Ibrahim, E.; Al-Jardani, A.; Al-Abri, S.; et al. Molecular characterization of carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the countries of the Gulf cooperation council: Dominance of OXA-48 and NDM producers. Antimicrob. Agents Chemother. 2014, 58, 3085–3090. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, M.; Tickler, I.A.; Al Deesi, Z.; AlFouzan, W.; Al Jabri, A.; Al Jindan, R.; Al Johani, S.; Alkahtani, S.A.; Al Kharusi, A.; Mokaddas, E.; et al. Molecular detection of carbapenem resistance genes in rectal swabs from patients in Gulf Cooperation Council hospitals. J. Hosp. Infect. 2021, 112, 96–103. [Google Scholar] [CrossRef]
- Harada, S.; Suzuki, M.; Sasaki, T.; Sakurai, A.; Inaba, M.; Takuya, H.; Wakuda, M.; Doi, Y. Transmission of NDM-5-Producing and OXA-48-Producing Escherichia coli Sequence Type 648 by International Visitors without Previous Medical Exposure. Microbiol. Spectr. 2021, 9, e0182721. [Google Scholar] [CrossRef]
- Zou, H.; Jia, X.; Liu, H.; Li, S.; Wu, X.; Huang, S. Emergence of NDM-5-Producing Escherichia coli in a Teaching Hospital in Chongqing, China: IncF-Type Plasmids May Contribute to the Prevalence of blaNDM–5. Front. Microbiol. 2020, 11, 334. [Google Scholar] [CrossRef]
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, 1–11. [Google Scholar] [CrossRef]
- Hu, X.; Yang, L.; Dong, N.; Lin, Y.; Zhang, L.; Wang, X.; Guo, X.; Xiang, Y.; Jin, L.; Zhang, C.; et al. Dissemination of bla(NDM-5) in Escherichia coli through the IncX3 Plasmid from Different Regions in China. Microb. Drug Resist. 2022, 28, 453–460. [Google Scholar] [CrossRef]
- Ma, T.; Fu, J.; Xie, N.; Ma, S.; Lei, L.; Zhai, W.; Shen, Y.; Sun, C.; Wang, S.; Shen, Z.; et al. Fitness Cost of bla(NDM-5)-Carrying p3R-IncX3 Plasmids in Wild-Type NDM-Free Enterobacteriaceae. Microorganisms 2020, 8, 377. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.D.; Menezes, J.; Marques, C.; Pomba, C.F. Companion Animals-An Overlooked and Misdiagnosed Reservoir of Carbapenem Resistance. Antibiotics 2022, 11, 533. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Gottlieb, T.; Coombs, G.W.; Woo, P.C.Y.; Korman, T.M.; Garcia-Castillo, M.; Daley, D.; Bauer, K.A.; Wong, M.; Wolf, D.J.; et al. Antimicrobial surveillance: A 20-year history of the SMART approach to addressing global antimicrobial resistance into the future. Int. J. Antimicrob. Agents 2023, 62, 107014. [Google Scholar] [CrossRef] [PubMed]
- van Duin, D.; Bonomo, R.A. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: Second-generation β-Lactam/β-Lactamase Inhibitor Combinations. Clin. Infect. Dis. 2016, 63, 234–241. [Google Scholar] [CrossRef]
- Guo, Y.; Han, R.; Jiang, B.; Ding, L.; Yang, F.; Zheng, B.; Yang, Y.; Wu, S.; Yin, D.; Zhu, D.; et al. In Vitro Activity of New β-Lactam-β-Lactamase Inhibitor Combinations and Comparators against Clinical Isolates of Gram-Negative Bacilli: Results from the China Antimicrobial Surveillance Network (CHINET) in 2019. Microbiol. Spectr. 2022, 10, e0185422. [Google Scholar] [CrossRef]
- Smith, J.R.; Rybak, J.M.; Claeys, K.C. Imipenem-Cilastatin-Relebactam: A Novel β-Lactam–β-Lactamase Inhibitor Combination for the Treatment of Multidrug-Resistant Gram-Negative Infections. Pharmacotherapy 2020, 40, 343–356. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, 1109–1116. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-resistant Gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69, S565–S575. [Google Scholar] [CrossRef]
- McCreary, E.K.; Heil, E.L.; Tamma, P.D. New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrob. Agents Chemother. 2021, 65, e0217120. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Walkty, A.; Gin, A.S.; et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef]
- Gallagher, J.C. Omadacycline: A Modernized Tetracycline. Clin. Infect. Dis. 2019, 69, S1–S5. [Google Scholar] [CrossRef]
- Kunz Coyne, A.J.; Alosaimy, S.; Lucas, K.; Lagnf, A.M.; Morrisette, T.; Molina, K.C.; DeKerlegand, A.; Schrack, M.R.; Kang-Birken, S.L.; Hobbs, A.L.; et al. Eravacycline, the first four years: Health outcomes and tolerability data for 19 hospitals in 5 U.S. regions from 2018 to 2022. Microbiol. Spectr. 2024, 12, e0235123. [Google Scholar] [CrossRef]
- Jackson, M.N.W.; Wei, W.; Mang, N.S.; Prokesch, B.C.; Ortwine, J.K. Combination eravacycline therapy for ventilator-associated pneumonia due to carbapenem-resistant Acinetobacter baumannii in patients with COVID-19: A case series. Pharmacotherapy 2024, 1–7. [Google Scholar] [CrossRef]
- Nang, S.C.; Li, J.; Velkov, T. The rise and spread of mcr plasmid-mediated polymyxin resistance. Crit. Rev. Microbiol. 2019, 45, 131–161. [Google Scholar] [CrossRef]
- Nirwan, P.K.; Chatterjee, N.; Panwar, R.; Dudeja, M.; Jaggi, N. Mutations in two component system (PhoPQ and PmrAB) in colistin resistant Klebsiella pneumoniae from North Indian tertiary care hospital. J. Antibiot. 2021, 74, 450–457. [Google Scholar] [CrossRef]
- Teo, J.W.; Kurup, A.; Lin, R.T.; Hsien, K.T. Emergence of clinical Klebsiella pneumoniae producing OXA-232 carbapenemase in Singapore. New Microbes New Infect. 2013, 1, 13–15. [Google Scholar] [CrossRef]
- Tsai, Y.-K.; Fung, C.-P.; Lin, J.-C.; Chen, J.-H.; Chang, F.-Y.; Chen, T.-L.; Siu, L.K. Klebsiella pneumoniae outer membrane porins OmpK35 and OmpK36 play roles in both antimicrobial resistance and virulence. Antimicrob. Agents Chemother. 2011, 55, 1485–1493. [Google Scholar] [CrossRef]
- Blair, J.M.A.; Webber, M.A.; Baylay, A.J.; Ogbolu, D.O.; Piddock, L.J.V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51. [Google Scholar] [CrossRef]
- Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
Antimicrobial Class | Antimicrobial Drug | Isolate Number | |||||
---|---|---|---|---|---|---|---|
KP1 | KP2 | KP3 | |||||
Tested by BD Phoenix | |||||||
Penicillins | Ampicillin | >16 | R | >16 | R | >16 | R |
Cephalosporins | Cefazolin | − | R | − | R | − | R |
Cefepime | >16 | R | >16 | R | >16 | R | |
Cefoxitin | >16 | R | >16 | R | >16 | R | |
Ceftazidime | >16 | R | >16 | R | >16 | R | |
Ceftriaxone | >32 | R | >32 | R | >32 | R | |
Cefuroxime | >16 | R | >16 | R | >16 | R | |
Cephalothin | >16 | R | >16 | R | >16 | R | |
Monobactam | Aztreonam | >16 | R | >16 | R | >16 | R |
Carbapenems | Ertapenem | >4 | R | >4 | R | >4 | R |
Imipenem | >8 | R | >8 | R | >8 | R | |
Meropenem | >8 | R | >8 | R | >8 | R | |
β-lactam–β-lactamase inhibitors | Amoxicillin/clavulanate | >16/8 | R | >16/8 | R | >16/8 | R |
Piperacillin/tazobactam | >64/4 | R | >64/4 | R | >64/4 | R | |
Aminoglycosides | Amikacin | >32 | R | >32 | R | >32 | R |
Gentamicin | >8 | R | >8 | R | >8 | R | |
Fluoroquinolones | Ciprofloxacin | >2 | R | >2 | R | >2 | R |
Levofloxacin | >4 | R | >4 | R | >4 | R | |
Nitrofurantoin | >64 | R | >64 | R | >64 | R | |
Folate pathway inhibitors | Trimethoprim/sulfamethoxazole | >4/76 | R | >4/76 | R | >4/76 | R |
Glycylcyclines | ** Tigecycline | 4 | R | 2 | I | 2 | I |
Additional Tested Antimicrobials Using MIC Test Strip | |||||||
Fosfomycin | *** Fosfomycin | 48 | R | 48 | R | 256 | R |
Cephalosporins | Cefiderocol | 0.38 | S | 0.38 | S | 0.094 | S |
Aminoglycosides | Plazomicin | 256 | R | 256 | R | 256 | R |
Tetracycline | Omadacycline | 32 | R | 3 | S | 3 | S |
Eravacycline | 32 | R | 0.75 | S | 1.5 | S | |
Doxycycline | 32 | R | 2 | S | 32 | R | |
New β-lactam–β-lactamase inhibitors | Ceftazidime/avibactam | 256 | R | 0.75 | S | 1 | S |
Imipenem/relebactam | 32 | R | 2 | I | 2 | I | |
Ceftolozane/tazobactam | 256 | R | 256 | R | 16 | R | |
Meropenem/vaborbactam | 32 | R | 12 | I | 8 | I | |
Tested Using Broth Microdilution Method | |||||||
Polymyxin | Colistin * | 16 | R | 16 | R | 8 | R |
Isolate Number (Sequence Type) | KP1 (ST383) | KP2 (ST231) | KP3 (ST231) | |
---|---|---|---|---|
Resistance genes | Gene Family | Gene Presence (% Identity) | ||
AAC(6′)-Ib | AAC(3), AAC(6′) | Yes (100) | Yes (100) | Yes (100) |
aadA | Amimonglycoside 3″-nucleotidyltransferases; ANT(3″) | VIM, Deletion b of E231 (99.23) | − | − |
aadA2 | ANT(3″) | − | Yes (100) | Yes (100) |
APH(3′)-Ia | Aminoglycoside 3′-phosphotransferases; APH(3′) | L19M, R27K, N48D, A77E (98.52) | − | − |
APH (3″)-Ib | APH(3″) | L116S (99.63) | − | − |
APH (3′)-VI | APH (3′) | Yes (100) | − | − |
APH (6)-Id | APH (6) | Q259E (99.64) | − | − |
CTX-M-14 | Class A β-lactamase | Yes (100) | − | − |
CTX-M-15 | Class A β-lactamase | Yes (100) | Yes (100) | Yes (100) |
SHV-1 | Class A β-lactamase | Yes (100) | − | Yes (100) |
TEM-1 | Class A β-lactamase | Yes (100) | Yes (100) | Yes (100) |
NDM-5 | Class B β-lactamase | Yes (100) | − | − |
OXA-232 | Class D β-lactamase | − | Yes (100) | Yes (100) |
OXA-48 | Class D β-lactamase | Yes (100) | − | − |
arr-2 | Rifampin ADP-ribosyl transferase (Arr) | Yes (100) | Yes (100) | Yes (100) |
BRP (MBL) | Bleomycin resistant protein | − | − | − |
catI | Acetyltransferase (CAT) | − | Yes (100) | Yes (100) |
FosA6 | Fosfomycin thiol transferase | Q130P, Q139E (98.56) | A86V, I91V, Q130P (97.84) | A86V, I91V, Q130P (97.84) |
mphA | Macrolide phosphotransferase (MPH) | Yes (100) | Yes (100) | Yes (100) |
mphE | Macrolide phosphotransferase (MPH) | Yes (100) | − | − |
Disc diffusion methods | ESBL | Detected | Detected | Detected |
Isolate Number (Sequence Type) | KP1 (ST383) | KP2 (ST231) | KP3 (ST231) | |
---|---|---|---|---|
Resistance Gene | Drug Class | Gene Presence (% Identity) | ||
Antibiotic Target Alteration | ||||
16S rRNA methyltransferase (armA), (G1405) | Aminoglycoside | Yes (92.74) | − | − |
Erm 23S ribosomal RNA methyltransferase (ErmB) | Lincosamide, macrolide, streptogramin | Yes (97.96) | Yes (97.96) | Yes (97.96) |
EF-Tu mutants | Pulvomycin | Yes (97.97) | Yes (98.06) | Yes (98.06) |
gyrA | Nybomycin, fluoroquinolone | Yes (95.67) | Yes (95.67) | Yes (92.23) |
marR mutant | Cephalosporin, fluoroquinolone, penam, phenicol, glycylcycline, tetracycline, rifamycin, triclosan | Yes (84.03) | Yes (84.03) | Yes (84.03) |
parC | Fluoroquinolone | Yes (94.41) | Yes (94.41) | Yes (94.41) |
UhpT with mutation | Fosfomycin | Yes (95.03) | Yes (95.25) | Yes (95.25) |
PBP3 | β-lactam | Yes (52.37) | Yes (52.37) | Yes (52.37) |
16S rRNA methyltransferase (rmtF), (G1405) | Aminoglycoside | Yes (98.36) | Yes (100) | Yes (100) |
Antibiotic Target Protection | ||||
ABC-F ATP-binding cassette ribosomal protection protein (msrE) | Macrolide antibiotic, streptogramin | Yes (100) | − | − |
QqnrS2 | Fluoroquinolone | Yes (100) | − | Yes (100) |
ABC-F ATP-binding cassette ribosomal protection protein (vgaC) | Streptogramin, pleuromutilin | Yes (100) | Yes (91.89) | Yes (91.78, 83.78) * |
Antibiotic Target Replacement | ||||
Trimethoprim-resistant dihydrofolate reductase (dfr); dfrA12 | Diaminopyrimidine | Yes (100) | Yes (100) | Yes (100) |
dfrA5 | Diaminopyrimidine | Yes (100) | − | − |
Sulfonamide resistant (sul1) | Sulfonamide, sulfone | Yes (100) | Yes (100) | Yes (100) |
Sulfonamide resistant (sul2) | Sulfonamide, sulfone | Yes (100) | − | − |
Reduced Permeability to Antibiotic | ||||
Klebsiella pneumoniae porin with reduced permeability (OmpK37) | β-lactams | Yes (99.47) | Yes (94.01) | Yes (94.01) |
General bacterial porin with reduced permeability (marA) | β-lactam, fluoroquinolone, glycylcycline, triclosan, phenicol, tetracycline, rifamycin | Yes (92.74) | Yes (92.74) | Yes (92.74) |
Isolate Number (Sequence Type) | KP1 (ST383) | KP2 (ST231) | KP3 (ST231) | ||
---|---|---|---|---|---|
Gene Family | Drug Class | Present or Absent | |||
Efflux Pump Complexes | |||||
msbA | ABC a | Nitroimidazole | + | + | + |
emrB | MFS b | Fluoroquinolone | + | + | + |
QepA4 | MFS | Quinolone and fluoroquinolone antibiotics | + | + | − |
tet(A) | MFS | Tetracycline, glycylcycline | + | + | − |
tet(C) | MFS | Tetracycline | + | − | − |
tetR | MFS | Tetracycline | + | + | − |
adeF | RND c | Fluoroquinolone, tetracycline | + | + | + |
baeR | RND | Aminoglycoside | + | + | + |
oqxA | RND | Fluoroquinolone, nitrofuran, tetracycline, glycylcycline | + | + | + |
Efflux Pump Regulators | |||||
CRP | RND | Macrolide, fluoroquinolone, penam | + | + | + |
emrR | MFS | Fluoroquinolone | + | + | + |
H-NS | MFS, RND | Cephamycin, cephalosporin, fluoroquinolone, tetracycline, penam | + | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sid Ahmed, M.A.; Hamid, J.M.; Hassan, A.M.M.; Abu Jarir, S.; Bashir Ibrahim, E.; Abdel Hadi, H. Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. Antibiotics 2024, 13, 275. https://doi.org/10.3390/antibiotics13030275
Sid Ahmed MA, Hamid JM, Hassan AMM, Abu Jarir S, Bashir Ibrahim E, Abdel Hadi H. Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. Antibiotics. 2024; 13(3):275. https://doi.org/10.3390/antibiotics13030275
Chicago/Turabian StyleSid Ahmed, Mazen A., Jemal M. Hamid, Ahmed M. M. Hassan, Sulieman Abu Jarir, Emad Bashir Ibrahim, and Hamad Abdel Hadi. 2024. "Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar" Antibiotics 13, no. 3: 275. https://doi.org/10.3390/antibiotics13030275
APA StyleSid Ahmed, M. A., Hamid, J. M., Hassan, A. M. M., Abu Jarir, S., Bashir Ibrahim, E., & Abdel Hadi, H. (2024). Phenotypic and Genotypic Characterization of Pan-Drug-Resistant Klebsiella pneumoniae Isolated in Qatar. Antibiotics, 13(3), 275. https://doi.org/10.3390/antibiotics13030275