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Abstract: In secondary healthcare, carbapenem-resistant Enterobacterales (CREs), such as those
observed in Klebsiella pneumoniae, are a global public health priority with significant clinical out-
comes. In this study, we described the clinical, phenotypic, and genotypic characteristics of three
pan-drug-resistant (PDR) isolates that demonstrated extended resistance to conventional and novel
antimicrobials. All patients had risk factors for the acquisition of multidrug-resistant organisms,
while microbiological susceptibility testing showed resistance to all conventional antimicrobials. Ad-
vanced susceptibility testing demonstrated resistance to broad agents, such as ceftazidime-avibactam,
ceftolozane–tazobactam, and meropenem–vaborbactam. Nevertheless, all isolates were susceptible
to cefiderocol, suggested as one of the novel antimicrobials that demonstrated potent in vitro activity
against resistant Gram-negative bacteria, including CREs, pointing toward its potential therapeutic
role for PDR pathogens. Expanded genomic studies revealed multiple antimicrobial-resistant genes
(ARGs), including blaNMD-5 and blaOXA derivative types, as well as a mutated outer membrane porin
protein (OmpK37).

Keywords: antimicrobial resistance; AMR; Gram-negative bacteria (GNB); Klebsiella pneumoniae;
NDM-5

1. Introduction

Carbapenem-resistant Enterobacterales (CREs) are resistant Gram-negative bacteria,
which are recognized as a public health priority with significant clinical and economic
outcomes [1,2]. Importantly, Klebsiella pneumonia has been associated with a wide spec-
trum of community- and hospital-acquired infections (HAIs), including urinary, intra-
abdominal, and respiratory tract infections, with significant morbidity and mortality [3,4].
The pathogen frequently affects vulnerable patients, such as those with chronic comor-
bidities, the immunocompromised, or those with critical diseases, particularly following
invasive surgery or procedures at critical care units [3,5]. Regionally and globally, recent
decades have witnessed alarming challenges related to K. pneumoniae due to its recognized
capabilities as a prime community and nosocomial infection, as well as its ability to accumu-
late an extensive array of antibiotic resistance genes (ARGs), with special attention directed
toward hypervirulent clones that manifest as multidrug-resistant (MDR) and extensively
drug-resistant (XDR) variants, leading to ominous outcomes [6].

To evade antimicrobials, isolates of K. pneumoniae exhibit various complex resistance
mechanisms that are acquired through random genetic mutations or horizontally acquired
through mobile genetic elements, which can be subsequently amplified through the upreg-
ulation of resistance genes or continuously disseminated [7]. The generated mutations not
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only lead to antimicrobial resistance but also maximize the pathogen virulence through con-
ferring resistance to phagocytosis, increasing capsular attachments and cellular invasion,
resulting in enhanced ability for dissemination and increased mortality [8]. Worryingly, re-
cent reports highlighted the emergence of extensive and pan-drug-resistant (PDR) strains of
K. pneumoniae from different countries, limiting further treatment options [9–12]. Previous
genomic studies of K. pneumoniae in Qatar established the clonality of ST383, ST196, and
ST146 in healthcare settings, where they predominately carried the carbapenem-resistant
genes (CRGs) blaNDM and blaOXA 48 [13]. Furthermore, studies conducted in this field
describe a large group of ARGs that impede the therapeutic function of broad-spectrum
antimicrobials, such as carbapenems, as well as novel β-lactam–β-lactamase inhibitors
(BLBLIs), which are considered the ultimate management agents for serious infections
secondary to Gram-negative bacteria (GNB) [14,15].

Due to regional variations, in the Gulf countries, there is a lack of data linking
pathogens’ phenotypic and genotypic characteristics to obtain a reliable molecular epidemi-
ology of AMR in the region. In the current focused study, we outlined clinical, phenotypic,
and genotypic characteristics of three PDR K. pneumoniae isolates, aiming to describe
the underlying resistance mechanisms using observations obtained from antimicrobial
susceptibility tests (ASTs), as well as whole-genome sequencing (WGS).

2. Results
2.1. Clinical Characteristics

All three cases were hospital-acquired and isolated from patients who were admitted
to critical care units; aged above 50; and had multiple risk factors for MDR infections,
including recent systemic antimicrobial therapy (three out of three), hospitalization or
outpatient hospital attendance within the previous 90 days (two out of three), invasive
medical devices (two out of three), and history of MDR infection or colonization within the
90 days prior to hospitalization (two out of three), as outlined in Supplementary Table S1.
The most frequent underlying comorbidities were diabetes mellitus (two out of three)
and immune suppression following a lung transplant (one out of three). Meropenem,
tigecycline, and colistin were used to treat the patient with the KP1 isolate with new signs
of infection, while the two colonized patients (isolates KP2 and KP3) did not receive specific
therapy, since evaluated as colonization.

2.2. Microbiological Characteristic

The ASTs for the three isolates (KP1, KP2, and KP3) are outlined in Table 1; they
demonstrated resistance to all conventional anti-GNB agents from different antimicrobial
classes. Additional ASTs for novel antimicrobials revealed susceptibility to cefiderocol
(three out of three), while two out of three isolates were susceptible to eravacycline, omada-
cycline, and ceftazidime/avibactam, and none to plazomicin, ceftolozane/tazobactam,
imipenem/relebactam, and meropenem/vaborbactam.

2.3. Genomic Characteristics

The genomic size of the three PDR K. pneumoniae isolates KP1, KP2, and KP3 were
5,617,763 base pairs (bp), 5,617,835 bp, and 5,677,828 bp, respectively. Two of the three
PDR K. pneumoniae isolates belonged to sequence type ST231, while the last one belonged
to ST383. The genomic data of the three PDR K. pneumoniae isolates revealed that they
possessed seven different β-lactamase genes from all classes; class A ESBL (CTX-M-15
and TEM-1) in all isolates (three out of three), while class A β-lactamase (CTX-M-14 and
SHV-1), class B β-lactamase (NDM-5), and class D β-lactamase (OXA-232) were present
in two out of three (Table 2). Different enzyme-encoding genes highlighting antibiotic
target alteration, such as mutant gyrA, penicillin-binding protein (PBP3), and 16S rRNA
methyltransferase (rmtF) (G1405), and K. pneumoniae mutated outer membrane porin with
reduced permeability (OmpK37) were detected in all isolates, in addition to active efflux
pump complexes, such as emrB and baeR, as depicted in Tables 3 and 4.
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Table 1. Antimicrobial susceptibility profile of three pan-drug-resistant K. pneumonia isolates against
conventional and novel antimicrobials.

Antimicrobial Class Antimicrobial Drug
Isolate Number

KP1 KP2 KP3

Tested by BD Phoenix

Penicillins Ampicillin >16 R >16 R >16 R

Cephalosporins

Cefazolin − R − R − R

Cefepime >16 R >16 R >16 R

Cefoxitin >16 R >16 R >16 R

Ceftazidime >16 R >16 R >16 R

Ceftriaxone >32 R >32 R >32 R

Cefuroxime >16 R >16 R >16 R

Cephalothin >16 R >16 R >16 R

Monobactam Aztreonam >16 R >16 R >16 R

Carbapenems

Ertapenem >4 R >4 R >4 R

Imipenem >8 R >8 R >8 R

Meropenem >8 R >8 R >8 R

β-lactam–β-lactamase
inhibitors Amoxicillin/clavulanate >16/8 R >16/8 R >16/8 R

Piperacillin/tazobactam >64/4 R >64/4 R >64/4 R

Aminoglycosides Amikacin >32 R >32 R >32 R

Gentamicin >8 R >8 R >8 R

Fluoroquinolones Ciprofloxacin >2 R >2 R >2 R

Levofloxacin >4 R >4 R >4 R

Nitrofurantoin >64 R >64 R >64 R

Folate pathway inhibitors Trimethoprim/sulfamethoxazole >4/76 R >4/76 R >4/76 R

Glycylcyclines ** Tigecycline 4 R 2 I 2 I

Additional Tested Antimicrobials Using MIC Test Strip

Fosfomycin *** Fosfomycin 48 R 48 R 256 R

Cephalosporins Cefiderocol 0.38 S 0.38 S 0.094 S

Aminoglycosides Plazomicin 256 R 256 R 256 R

Tetracycline

Omadacycline 32 R 3 S 3 S

Eravacycline 32 R 0.75 S 1.5 S

Doxycycline 32 R 2 S 32 R

New β-lactam–β-lactamase
inhibitors

Ceftazidime/avibactam 256 R 0.75 S 1 S

Imipenem/relebactam 32 R 2 I 2 I

Ceftolozane/tazobactam 256 R 256 R 16 R

Meropenem/vaborbactam 32 R 12 I 8 I

Tested Using Broth Microdilution Method

Polymyxin Colistin * 16 R 16 R 8 R

Novel antimicrobial agents included cefiderocol, plazomycin, omadacyline, eravacycline, ceftazidime–avibactam,
ceftolozane–tazobactam imipenem/relebactam, and meropenem/vaborbactam. * Colistin: antimicrobial suscepti-
bility tested through broth microdilution methods. ** There are no CLSI break points for tigecycline, and thus,
FDA-approved ones were used: Resistance (R) > 8, susceptible (S) < 2, and in-between are intermediate (I) [16].
*** There is no agreed consensus on fosfomycin breakpoints for GNB; the results were interpreted according to
local experience.
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Table 2. Sequence types and enzymatic genotypic profiles of PDR K. pneumoniae isolates.

Isolate Number (Sequence Type) KP1 (ST383) KP2 (ST231) KP3 (ST231)

Resistance genes Gene Family Gene Presence (% Identity)

AAC(6′)-Ib AAC(3), AAC(6′) Yes (100) Yes (100) Yes (100)

aadA
Amimonglycoside 3′′-

nucleotidyltransferases;
ANT(3′′)

VIM, Deletion b of E231
(99.23) − −

aadA2 ANT(3′′) − Yes (100) Yes (100)

APH(3′)-Ia
Aminoglycoside 3′-

phosphotransferases;
APH(3′)

L19M, R27K, N48D,
A77E (98.52) − −

APH (3′′)-Ib APH(3′′) L116S (99.63) − −
APH (3′)-VI APH (3′) Yes (100) − −
APH (6)-Id APH (6) Q259E (99.64) − −
CTX-M-14 Class A β-lactamase Yes (100) − −
CTX-M-15 Class A β-lactamase Yes (100) Yes (100) Yes (100)

SHV-1 Class A β-lactamase Yes (100) − Yes (100)

TEM-1 Class A β-lactamase Yes (100) Yes (100) Yes (100)

NDM-5 Class B β-lactamase Yes (100) − −
OXA-232 Class D β-lactamase − Yes (100) Yes (100)

OXA-48 Class D β-lactamase Yes (100) − −

arr-2 Rifampin ADP-ribosyl
transferase (Arr) Yes (100) Yes (100) Yes (100)

BRP (MBL) Bleomycin resistant
protein − − −

catI Acetyltransferase
(CAT) − Yes (100) Yes (100)

FosA6 Fosfomycin thiol
transferase Q130P, Q139E (98.56) A86V, I91V, Q130P

(97.84)
A86V, I91V, Q130P

(97.84)

mphA
Macrolide

phosphotransferase
(MPH)

Yes (100) Yes (100) Yes (100)

mphE
Macrolide

phosphotransferase
(MPH)

Yes (100) − −

Disc diffusion
methods ESBL Detected Detected Detected

Disk-diffusion-based screening methods for extended-spectrum β-lactamases.
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Table 3. Sequence types and genotypic profiles of encoding enzymes of PDR Klebsiella pneumoniae isolates.

Isolate Number (Sequence Type) KP1 (ST383) KP2 (ST231) KP3 (ST231)

Resistance Gene Drug Class Gene Presence (% Identity)

Antibiotic Target Alteration

16S rRNA methyltransferase
(armA), (G1405) Aminoglycoside Yes (92.74) − −

Erm 23S ribosomal RNA
methyltransferase (ErmB)

Lincosamide, macrolide,
streptogramin Yes (97.96) Yes (97.96) Yes (97.96)

EF-Tu mutants Pulvomycin Yes (97.97) Yes (98.06) Yes (98.06)

gyrA Nybomycin, fluoroquinolone Yes (95.67) Yes (95.67) Yes (92.23)

marR mutant
Cephalosporin, fluoroquinolone,
penam, phenicol, glycylcycline,
tetracycline, rifamycin, triclosan

Yes (84.03) Yes (84.03) Yes (84.03)

parC Fluoroquinolone Yes (94.41) Yes (94.41) Yes (94.41)

UhpT with mutation Fosfomycin Yes (95.03) Yes (95.25) Yes (95.25)

PBP3 β-lactam Yes (52.37) Yes (52.37) Yes (52.37)

16S rRNA methyltransferase
(rmtF), (G1405) Aminoglycoside Yes (98.36) Yes (100) Yes (100)

Antibiotic Target Protection

ABC-F ATP-binding cassette
ribosomal protection protein

(msrE)

Macrolide antibiotic,
streptogramin Yes (100) − −

QqnrS2 Fluoroquinolone Yes (100) − Yes (100)

ABC-F ATP-binding cassette
ribosomal protection protein

(vgaC)
Streptogramin, pleuromutilin Yes (100) Yes (91.89) Yes (91.78, 83.78) *

Antibiotic Target
Replacement

Trimethoprim-resistant
dihydrofolate reductase (dfr);

dfrA12
Diaminopyrimidine Yes (100) Yes (100) Yes (100)

dfrA5 Diaminopyrimidine Yes (100) − −
Sulfonamide resistant (sul1) Sulfonamide, sulfone Yes (100) Yes (100) Yes (100)

Sulfonamide resistant (sul2) Sulfonamide, sulfone Yes (100) − −
Reduced Permeability to

Antibiotic

Klebsiella pneumoniae porin
with reduced permeability

(OmpK37)
β-lactams Yes (99.47) Yes (94.01) Yes (94.01)

General bacterial porin with
reduced permeability (marA)

β-lactam, fluoroquinolone,
glycylcycline, triclosan, phenicol,

tetracycline, rifamycin
Yes (92.74) Yes (92.74) Yes (92.74)

* Two different vgaC genes were detected.
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Table 4. Occurrence of genotypic profile of efflux pump complexes and their regulators for Klebsiella
pneumoniae.

Isolate Number (Sequence Type) KP1
(ST383) KP2 (ST231) KP3

(ST231)

Gene Family Drug Class Present or Absent

Efflux Pump
Complexes

msbA ABC a Nitroimidazole + + +

emrB MFS b Fluoroquinolone + + +

QepA4 MFS Quinolone and fluoroquinolone
antibiotics + + −

tet(A) MFS Tetracycline, glycylcycline + + −
tet(C) MFS Tetracycline + − −
tetR MFS Tetracycline + + −
adeF RND c Fluoroquinolone, tetracycline + + +

baeR RND Aminoglycoside + + +

oqxA RND Fluoroquinolone, nitrofuran,
tetracycline, glycylcycline + + +

Efflux Pump
Regulators

CRP RND Macrolide, fluoroquinolone, penam + + +

emrR MFS Fluoroquinolone + + +

H-NS MFS, RND Cephamycin, cephalosporin,
fluoroquinolone, tetracycline, penam + + +

a ATP-binding cassette (ABC) antibiotic efflux pump. b Major facilitator superfamily (MFS) antibiotic efflux pump.
c Resistance-nodulation-cell division (RND) antibiotic efflux pump.

3. Discussion

In order to understand the underlying mechanisms that lead to antimicrobial resis-
tance (AMR), detailed evaluations of extensive-drug-resistant (XDR) and pan-drug-resistant
(PDR) organisms are of paramount importance [17]. The problem of AMR is more evi-
dent in Gram-negative bacteria (GNB) because of the accumulated and diverse resistance
mechanism that peaks in carbapenem resistance (CR) pathogens [18]. The subset of CREs
represented by K. pneumoniae is one of the leading challenges implicated in healthcare-
associated infections (HAIs), with significant ominous clinical and economic outcomes [3].
Resistance in K. pneumoniae is increasingly reported, particularly in patients with chronic
comorbidities, immune-suppressions, previous antimicrobial exposure, and prolonged
hospital or critical care length of stay [19]. The described cases were from patients with
all risk factors for AMR and HAIs, namely, prolonged hospital stay; prior antimicrobial
therapy; invasive devices; and chronic comorbidities, including immune suppression, as
highlighted in S1 [20]. In addition to the outlined risk factors, it must be highlighted that
all of the isolated cases were from patients admitted to critical care units where multidrug-
resistant organisms peak in healthcare settings. The most vulnerable are elderly patients, as
in our reported cases, with multiple comorbidities who undergo invasive procedures, such
as central lines and intubation, and are usually treated with broad-spectrum antimicrobials,
which propagates continuous resistance that flourishes in the surrounding environment,
constituting an additional risk factor that is not easily controlled through the established
concepts of infection control and prevention [21].

The outlined microbiological and genomic studies of the reported cases of PDR
K. pneumoniae demonstrated extensive resistance to conventional antimicrobials, such as
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all third- and fourth-generation cephalosporins, monobactams, carbapenems, aminogly-
cosides, and quinolones, as well as polymyxins, represented by colistin (Table 1). Upon
genomic characterization, two of the three isolates belonged to the notorious epidemic
clones: K. pneumoniae ST231, which was first described in Southeast Asia and has been
associated with healthcare outbreaks, as well as demonstrated diverse ARGs spanning
major classes, particularly blaOXA-48 [22]. In a previous surveillance study from Qatar of
149 CREs, 8.6% of isolates were of the same epidemic clone, explaining its endemicity;
which was affirmed in a recently updated and detailed study [13,23]. Additionally, class
A extended-spectrum β-lactamases (ESBLs) were represented by blaCXM-14 and blaCXM-15,
blaSHV-1, and blaTEM-1. Globally, blaCXM-15 is the most widely distributed ARG in GNB,
including reports from the Gulf countries [24–26]. Furthermore, the worrying carbapene-
mase blaNDM-5 of class B metallo-beta-lactamase (MBL) was present in the KP1 isolate. This
notorious ARG is an offspring of blaNDM, which was first described in 2012 and is carried
horizontally through mobile genetic elements (MGEs); widely known as being capable
of producing carbapenamases that can inactivate all basic and advanced β-lactamases,
including cephalosporins and carbapenems but remain susceptible to monobactams, which
is one of the few therapeutic agents that are capable of overcoming MBLs, though it is
critically vulnerable to other ESBLs. The notorious blaNDM-1 ARG is endemic in the region,
where it is one of the most prevalent genes amongst CREs [27,28] Nevertheless, blaNDM-5
has been reported mainly in CR E. coli from Greece, Japan, China, and Latin America, and is
usually associated with highly virulent strains [29–31]. From a large collection of CR E. coli,
the increasingly reported blaNDM-5 has been linked to plasmid-mediated resistance genes,
which can be assumed to be horizontally acquired by MDR strains of K. pneumoniae [32].
Reported studies demonstrated the IncX3-type blaNDM-5 carrying a plasmid that can easily
transfer resistance to susceptible strains [33]. The ARGs were also isolated from companion
animals, which emphasizes the concept of one health approach to integrate the impact
of interactions between humans, animals, and the environment [34]. In the Gulf region,
the commonest reported carbapenem-resistance genes are blaOXA48 and blaNDM, with a
historic preponderance of the former [27,28]. With the gradual introduction of novel an-
timicrobials, namely, β-lactam–β-lactamase inhibitor (BLBLI) agents, in the region such
as ceftazidime-avibactam and ceftolozane-tazobactam, which have activity against blaOXA
type CREs but remain vulnerable to MBLs coupled with the absence of effective therapeutic
agents for MBLs, this might result in shifting regional epidemiology, which will need
further supporting surveillance in the coming years [35].

While examining the phenotypic patterns, characteristically, the first (KP1) showed ut-
most resistance to novel combinations, including β-lactam–β-lactamase inhibitors (BLBLIs),
such as ceftazidime–avibactam, ceftolozane–tazobactam, and meropenem–vaborbactam,
while the other two were susceptible to ceftazidime–avibactam but resistant to ceftolozane–
tazobactam. Avibactam is a potent BLBLI that inhibits classes A, C, and D, including
OXA types, but is incapable of inactivating enzymes encoded by class B β-lactamases,
such blaNDM and blaVIM, as in KP1, while ceftolozane is an advanced cephalosporin that
overcomes many enzymes encoded by ARGs but remains susceptible to broad-spectrum
ones, including OXA-types ARGs [36]. The fact that the two other isolates KP2 and
KP3 lacked blaNDM but harbored blaOXA 232 demonstrated broad BLBLI discordance (KP2
and KP3 were sensitive to ceftazidime-avibactam but both were resistant to ceftolozane–
tazobactam), indicating that the ARG blaOXA 232 can be suppressed by avibactam but not
tazobactam, as previously observed [37]. Similarly, both meropenem/vaborbactam and
imipenem/relebactam were inferior, supporting the observation that the novel agent does
not cover blaNDM and blaOXA type isolates, as previously described [38].The recommended
management of CREs harboring class B MBLs, such as blaNDM, is usually complex and
involves combination therapy with agents that are capable of overcoming the genotypic
resistance, such as aztreonam–avibactam or cefiderocol, with or without the addition of
additional antimicrobials, such as polymyxins, tigecycline, or eravacycline [39].
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Distinctively, two of our PDR isolates were sensitive to the drugs that are promising
alternative options. It is also intriguing to notice that all PDR isolates were susceptible to
cefiderocol, which is one of the promising novel antimicrobials that demonstrated potent
in vitro activity against XDR and PDR Gram-negative strains spanning all β-lactamase
classes but needs supporting data toward clinical efficacy [40,41]. Cefiderocol is a novel
synthetic siderophore antimicrobial that hijacks bacterial iron-transporting mechanisms
to traverse the microbial cell wall and eventually leads to cell lysis through interference
with cell wall synthesis. Its distinct ability to resist cell-wall-based β-lactamases, including
classes A, B, C, and D, in addition to its unique ability to overcome bacterial efflux pumps
and porin channels, make it a promising Trojan horse that is capable of overcoming different
mechanisms of bacterial AMR. This antimicrobial is of significant potential interest since it
has remarkable in vitro antimicrobial activity, particularly for notorious organisms, such
as MDR Pseudomonas aeruginosa and carbapenem-resistant Acinetobacter baumannii, as well
as Stenotrophomonas maltophila. Nevertheless, translation of the ASTs needs supporting
clinical data since, in some observational studies, cefiderocol was linked to increased mor-
tality, such as the one observed with carbapenem-resistant Acinetobacter baumannii [42,43].
Similarly, both eravacycline and omadacycline showed activity against two of the three
PDR strains (KP2 and KP3 in Table 2). These advanced and novel derivative agents of the
tetracycline group are of focused interest, particularly for the coverage of resistant strains
from intrabdominal infections, though they are limited for serious invasive diseases, such
as bloodstream infections based on observed pharmaco-kinetic (PK) and pharmacodynamic
(PD) characteristics [41,44,45]. As highlighted, one of the reported cases was treated with
high-dose tigecycline, which is currently one of the limited options to treat CREs, including
PDR. Since there were many limitations for the PK and PD for tigecycline, the newer
same-class eravacyline demonstrated multiple promising in vitro and some clinical results
against CREs, including MBLs with promising results [46]. Currently, the novel drug is
mainly licensed to treat complicated intrabdominal infections and awaits additional clinical
results, particularly for complicated hospital-acquired pneumonia [47].

While polymyxin resistance is extremely rare in CREs (less than 5% in most regions),
intriguingly, the three isolates showed colistin resistance [15]. Polymyxins are not natural
targets for ARGs since they act primarily and independently at the cell wall levels of GNB
by destroying structural lipopolysaccharides. The reported resistance is mainly driven
by the plasmid-mediated mobile colistin resistance (mcr-resistant gene) first described in
China in 2015 in E. coli and then described in most Enterobacterales [48]. The fact that
no mcr-related genes were identified in the isolates points toward other outer-membrane
resistance mechanisms, which merit further pursuit. Previous studies of colistin-resistant
K. pneumoniae lacking the mcr resistance gene explored the role of mutations in the two-
component membrane system of the phoPQ and pmrAB [49]. Additionally, all isolates
harbored Rifampin ADP-ribosyl transferase (Arr), which confers rifamycin resistance when
used as an adjuvant therapy, though this was not tested in the study. Furthermore, all the
isolates harbored OXA-type carbapenemases, such as blaOXA 48, which is closely related to
the resistance gene blaOXA 232, which has five-point mutations from blaOXA 48 and both are
similarly capable of inactivating carbapenems [50]. It is worth pointing out that the OXA
type, together with class B NDM carbapenemases, are the most frequent carbapenemases
in the Middle East and Gulf regions [23,25].

Characteristically, genomic characterization revealed mutations at the outer mem-
brane porin (OMP) permeability channels with the expressions of K. pneumoniae-associated
OmpK35 mutation that usually lead to a decrease in permeability for several hydrophilic
antimicrobials, such as β-lactams, including carbapenems; fluoroquinolone; tetracycline
and its derivatives glycylcycline, represented by tigecycline; as well as rifamycin. Further-
more, it has been reported that mutated bacteria expressing OmpK35 is associated with
increased virulence. Additionally, previous studies demonstrated that alternation of the
OMP cellular mutations leads to the restoration of lost antimicrobial activities [51].
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In addition to the common ARGs, genotypic characterization revealed the occurrence
of other mechanisms, such as aminoglycosides modifying enzymes (AMEs), macrolide
phosphotransferase (MPT), and fosfomycin thiol transferase resistance genes, that might be
linked to reported phenotypic patterns. For PDR GNB, the co-occurrence and transmission
of multiple resistance mechanisms is a well-recognized phenomenon that frequently leads
to the propagation of AMR [52].

Although this study tried to elucidate the underlying mechanism of resistance while
focusing on Klebsiella pneumoniae, it is restricted by some limitations that should be taken
into consideration for the validity of scientific evaluation. It must be highlighted that two
of the Klebsiella pneumoniae isolates were evaluated as colonizers rather than a true infection,
which limits its clinical evaluation, particularly regarding options for therapeutic interven-
tions. Additionally, the genomic study focused on ARGs rather than combining them with
virulence factors, which was not possible to explore because of the small collection and
paucity of invasive diseases. Nevertheless, the relationship between bacterial AMR and
virulence was found to be elusive, even for comprehensive studies. Despite these limita-
tions, this study expanded our knowledge for the fascinating study of the mechanisms of
resistance, particularly for GNB, which should pave the way to overcome its challenges.

4. Material and Methods
4.1. Definitions

A hospital-acquired infection (HAI) is defined as an infection acquired following
48 h of hospital admission, while colonization is defined as isolation of an organism from
non-sterile sites and is not evaluated as an infection requiring no antimicrobial therapy.

4.2. Identification and Susceptibility Testing

Phenotypic characterizations were performed using a BD PhoenixTM automated sys-
tem (BD diagnostics, Durham, NC, USA), while bacterial identification and confirmation
were performed using matrix-assisted laser desorption ionization time of flight mass spec-
trometry (MALDI-TOF MS) of Bruker Daltonics MALDI Biotyper (Billerica, MA, USA)
according to the manufacturer’s recommendations. The standards for the identification
of ESBL include resistance to third-generation cephalosporins, such as ceftriaxone or cef-
tazidime, with MIC > 2 µg/mL confirmed through double disc diffusion methods that
include inhibition by a co-amoxiclav disc, as widely described in laboratory guidelines [53].
Additional ASTs for fosfomycin, cefiderocol, plazomicin, omadacycline, eravacycline, doxy-
cycline, meropenem/vaborbactam, ceftazidime/avibactamimipenem/relebactam, and
ceftolozane/tazobactam were performed using MIC Test Strips (Liofilchem®, Diagnostics,
Roseto degli Abruzzi, Italy), while broth microdilution was used for the colistin suscepti-
bility testing (ComASP Colistin, Liofilchem, Roseto degli Abruzzi, Italy). Escherichia coli
ATCC 25922, E. coli ATCC 35218, and Pseudomonas aeruginosa ATCC 27853 were used as
the controls. Susceptibility reporting was based on the recommendations of the CLSI at
the time [53] PDR K. pneumoniae isolates were defined as having in vitro non-susceptibility
to all routinely and conventionally tested anti-Gram-negative antimicrobial agents, ex-
cluding additional advanced susceptibility tests [54]. WGS was performed by Eurofins
GATC Biotech GmbH, Konstanz, Germany, using the Illumina HiSeq 2000 system (Illumina,
San Diego, CA, USA). Annotations were performed using the PATRIC RASTtk-enabled
Genome Annotation Service [55]. ARGs were predicted using the Comprehensive An-
tibiotic Resistance Database (CARD) version 1.2.0 (McMaster University, Hamilton, ON,
Canada) [56].

4.3. Ethical Approval

The study was approved by the Medical Research Centre (MRC) and Research and
Ethics Committee (protocol: MRC-04-22-522) at Hamad Medical Corporation, Doha, Qatar,
which abides by the local and international standards of ethics in medical research, includ-
ing patient consent, data anonymity and management.
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5. Conclusions

The clinical, phenotypic, and genotypic characterization of three PDR K. pneumoniae
revealed multiple risk factors for the acquisition of healthcare-associated MDR pathogens,
resulting in extensive resistance profiles, while examining the genomic studies revealed
multiple underlying ARGs associated with phenotypic patterns. For PDR K. pnuemoniae,
novel antimicrobial agents, such as cefiderocol, omadacycline, and eravacycline, are poten-
tial therapeutic agents that need further clinical evaluation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/antibiotics13030275/s1, Table S1: Demographic, clinical charac-
teristics and outcomes of three patients colonized or infected with PDR K. pneumoniae.
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