Identification and Clinical Characteristics of Community-Acquired Acinetobacter baumannii in Patients Hospitalized for Moderate or Severe COVID-19 in Peru
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Informed Consent Was Obtained at Hospital Admission
4.3. Definitions
4.4. Obtaining the Samples and Extraction of Nucleic Acids
4.5. Data Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antunes, L.C.; Visca, P.; Towner, K.J. Acinetobacter baumannii: Evolution of a global pathogen. Pathog. Dis. 2014, 71, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Dexter, C.; Murray, G.L.; Paulsen, I.T.; Peleg, A.Y. Community-acquired Acinetobacter baumannii: Clinical characteristics, epidemiology and pathogenesis. Expert Rev. Anti-Infect. Ther. 2015, 13, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Amati, F.; Restrepo, M.I. Emerging Resistance of Gram Negative Pathogens in Community-Acquired Pneumonia. Semin. Respir. Crit. Care Med. 2020, 41, 480–495. [Google Scholar] [CrossRef] [PubMed]
- Brigo, I.R.; Yamamoto, L.R.; Molina, R.J. Community-acquired Acinetobacter baumannii pneumonia: A rare case in Brazil. Rev. Soc. Bras. Med. Trop. 2022, 55, e03012022. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.W.; Lye, D.C.; Khoo, K.L.; Chua, G.S.; Yeoh, S.F.; Leo, Y.S.; Tambyah, P.A.; Chua, A.C. Severe community-acquired Acinetobacter baumannii pneumonia: An emerging highly lethal infectious disease in the Asia-Pacific. Respirology 2009, 14, 1200–1205. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- de Mangou, A.; Combe, A.; Coolen-Allou, N.; Miltgen, G.; Traversier, N.; Belmonte, O.; Vandroux, D.; Bohrer, M.; Cousty, J.; Caron, M.; et al. Severe community-acquired pneumonia in Reunion Island: Epidemiological, clinical, and microbiological characteristics, 2016–2018. PLoS ONE 2022, 17, e0267184. [Google Scholar] [CrossRef]
- Rothberg, M.B. Community-Acquired Pneumonia. Ann. Intern. Med. 2022, 175, ITC49–ITC64. [Google Scholar] [CrossRef]
- Chemisova, O.; Noskov, A.; Pavlovich, N.; Aronova, N.; Vodopianov, S.; Gayevskaya, N.; Kovalev, E.; Gudueva, E.; Pshenichnaya, N. Etiology of community-acquired and hospital-acquired pneumonia associated with COVID-19. Int. J. Infect. Dis. 2022, 116, S39. [Google Scholar] [CrossRef]
- Menchén, D.A.; Vázquez, J.B.; Allende, J.M.B.; García, G.H. Neumonía vírica. Neumonía en la COVID-19 [Viral pneumonia. COVID-19 pneumonia]. Medicine 2022, 13, 3224–3234. (In Spanish) [Google Scholar] [PubMed]
- Baloch, S.; Baloch, M.A.; Zheng, T.; Pei, X. The Coronavirus Disease 2019 (COVID-19) Pandemic. Tohoku J. Exp. Med. 2020, 250, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Filip, R.; Gheorghita Puscaselu, R.; Anchidin-Norocel, L.; Dimian, M.; Savage, W.K. Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. J. Pers. Med. 2022, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, M.; Blasi, F.; Ewig, S.; Garau, J.; Huchon, G.; Ieven, M.; Ortqvist, A.; Schaberg, T.; Torres, A.; van der Heijden, G.; et al. Guidelines for the management of adult lower respiratory tract infections—Full version. Clin. Microbiol. Infect. 2011, 17 (Suppl. S6), E1–E59. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson, E.J.; Courtney, D.M.; et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Deen, J.; Von Seidlein, L.; Clemens, J.D. Issues and Challenges of Public-Health Research in Developing Countries. Manson’s Trop. Infect. Dis. 2014, 40–48.e1. [Google Scholar]
- Cilloniz, C.; Liapikou, A.; Torres, A. Advances in molecular diagnostic tests for pneumonia. Curr. Opin. Pulm. Med. 2020, 26, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Sun, Q.; Ruan, Z.; Xie, X. Characterization of a small plasmid carrying the carbapenem resistance gene blaOXA-72 from community-acquired Acinetobacter baumannii sequence type 880 in China. Infect. Drug Resist. 2019, 12, 1545–1553. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef]
- Kubin, C.J.; McConville, T.H.; Dietz, D.; Zucker, J.; May, M.; Nelson, B.; Istorico, E.; Bartram, L.; Small-Saunders, J.; Sobieszczyk, M.E.; et al. Characterization of Bacterial and Fungal Infections in Hospitalized Patients With Coronavirus Disease 2019 and Factors Associated With Health Care-Associated Infections. Open Forum Infect. Dis. 2021, 8, ofab201. [Google Scholar] [CrossRef]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of Co-infection Between SARS-CoV-2 and Other Respiratory Pathogens. JAMA 2020, 323, 2085–2086. [Google Scholar] [CrossRef]
- National Institutes of Health. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. Available online: https://www.covid19treatmentguidelines.nih.gov/ (accessed on 24 April 2023).
- Pérez-Lazo, G.; Silva-Caso, W.; Del Valle-Mendoza, J.; Morales-Moreno, A.; Ballena-López, J.; Soto-Febres, F.; Martins-Luna, J.; Carrillo-Ng, H.; Del Valle, L.J.; Kym, S.; et al. Identification of Coinfections by Viral and Bacterial Pathogens in COVID-19 Hospitalized Patients in Peru: Molecular Diagnosis and Clinical Characteristics. Antibiotics 2021, 10, 1358. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Xu, A.; Zhu, H.; Gao, B.; Weng, H.; Ding, Z.; Li, M.; Weng, X.; He, G. Diagnosis of severe community-acquired pneumonia caused by Acinetobacter baumannii through next-generation sequencing: A case report. BMC Infect. Dis. 2020, 20, 45. [Google Scholar] [CrossRef]
- Iwasawa, Y.; Hosokawa, N.; Harada, M.; Hayano, S.; Shimizu, A.; Suzuki, D.; Nakashima, K.; Yaegashi, M. Severe Community-acquired Pneumonia Caused by Acinetobacter baumannii Successfully Treated with the Initial Administration of Meropenem Based on the Sputum Gram Staining Findings. Intern. Med. 2019, 58, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Lee, H. Clinical anSed Economic Evaluation of Multidrug-Resistant Acinetobacter baumannii Colonization in the Intensive Care Unit. Infect. Chemother. 2016, 48, 174–180. [Google Scholar] [CrossRef]
- Ceparano, M.; Baccolini, V.; Migliara, G.; Isonne, C.; Renzi, E.; Tufi, D.; De Vito, C.; De Giusti, M.; Trancassini, M.; Alessandri, F.; et al. Acinetobacter baumannii Isolates from COVID-19 Patients in a Hospital Intensive Care Unit: Molecular Typing and Risk Factors. Microorganisms 2022, 10, 722. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Cataldo, M.A.; Dancer, S.J.; De Angelis, G.; Falcone, M.; Frank, U.; Kahlmeter, G.; Pan, A.; Petrosillo, N.; Rodríguez-Baño, J.; et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 2014, 20 (Suppl. S1), 1–55. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.; Sellitto, A.; Ferravante, C.; Rocco, T.; D’Agostino, Y.; Alexandrova, E.; Lamberti, J.; Palumbo, D.; Galdiero, M.; Vaccaro, E.; et al. NGS analysis of nasopharyngeal microbiota in SARS-CoV-2 positive patients during the first year of the pandemic in the Campania Region of Italy. Microb. Pathog. 2022, 165, 105506. [Google Scholar] [CrossRef] [PubMed]
- Nakagawara, K.; Kamata, H.; Chubachi, S.; Namkoong, H.; Tanaka, H.; Lee, H.; Otake, S.; Fukushima, T.; Kusumoto, T.; Morita, A.; et al. Impact of respiratory bacterial infections on mortality in Japanese patients with COVID-19: A retrospective cohort study. BMC Pulm. Med. 2023, 23, 146. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Goodarzi, P.; Asadi, M.; Soltani, A.; Aljanabi, H.A.A.; Jeda, A.S.; Dashtbin, S.; Jalalifar, S.; Mohammadzadeh, R.; Teimoori, A.; et al. Bacterial co-infections with SARS-CoV-2. IUBMB Life 2020, 72, 2097–2111. [Google Scholar] [CrossRef] [PubMed]
- Eickelberg, G.; Sanchez-Pinto, L.N.; Luo, Y. Predictive modeling of bacterial infections and antibiotic therapy needs in critically ill adults. J. Biomed. Inform. 2020, 109, 103540. [Google Scholar] [CrossRef] [PubMed]
- Riddles, T.; Judge, D. Community-Acquired, Bacteraemic Acinetobacter Baumannii Pneumonia: A Retrospective Review of Cases in Tropical Queensland, Australia. Trop. Med. Infect. Dis. 2023, 8, 419. [Google Scholar] [CrossRef]
- Krishna, A.; Chopra, T. Active Surveillance Cultures for MRSA, VRE, Multidrug-Resistant Gram-Negatives. In Infection Prevention; Bearman, G., Munoz-Price, S., Morgan, D., Murthy, R., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Adler, A.; Friedman, N.D.; Marchaim, D. Multidrug-Resistant Gram-Negative Bacilli: Infection Control Implications. Infect. Dis. Clin. N. Am. 2016, 30, 967–997. [Google Scholar] [CrossRef] [PubMed]
- IMAI District Clinician Manual. Hospital Care for Adolescents and Adults; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Force, A.D.T.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.; Ferguson, N.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
- Kwon, W.J.; Li, G.; Zheng, M.; Kaur, H.; Magbual, N.; Dalai, S. Superinfections and Coinfections in COVID-19—Separating the Signal from the Noise. Medpage Today, 28 April 2020. Available online: https://www.medpagetoday.com/infectiousdisease/covid19/86192 (accessed on 30 June 2023).
- Feldman, C.; Anderson, R. The role of co-infections and secondary infections in patients with COVID-19. Pneumonia 2021, 13, 5. [Google Scholar] [CrossRef]
- Center for Disease Control and Prevention (CDC). National Healthcare Safety Network (NHSN) Patient Safety Component Manual. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf (accessed on 16 November 2023).
- Chuang, Y.C.; Chang, S.C.; Wang, W.K. High and increasing Oxa-51 DNA load predict mortality in Acinetobacter baumannii bacteremia: Implication for pathogenesis and evaluation of therapy. PLoS ONE 2010, 5, e14133. [Google Scholar] [CrossRef]
- Chen, T.L.; Lee, Y.T.; Kuo, S.C.; Hsueh, P.R.; Chang, F.Y.; Siu, L.K.; Ko, W.C.; Fung, C.P. Emergence and Distribution of Plasmids Bearing the blaOXA-51-like gene with an upstream ISAba1 in carbapenem-resistant Acinetobacter baumannii isolates in Taiwan. Antimicrob. Agents Chemother. 2010, 54, 4575–4581. [Google Scholar] [CrossRef]
- Peña-Tuesta, I.; Del Valle-Vargas, C.; Petrozzi-Helasvuo, V.; Aguilar-Luis, M.A.; Carrillo-Ng, H.; Silva-Caso, W.; Del Valle-Mendoza, J. Community acquired Acinetobacter baumannii in pediatric patients under 1 year old with a clinical diagnosis of whooping cough in Lima, Peru. BMC Res. Notes 2021, 14, 412. [Google Scholar] [CrossRef]
Total (n = 295) | COVID-19/Acinetobacter baumannii (−) (n = 255) | COVID-19/Acinetobacter baumannii (+) (n = 40) | p Value | |
---|---|---|---|---|
Gender | ||||
Male | 209 (70.8) | 181 (71.0) | 28 (70.0) | 0.899 |
Female | 86 (29.2) | 74 (29.0) | 12 (30.0) | |
Age | ||||
Media/SD | 58.0 ± 14.0 | 58.0 ± 13.9 | 57.9 ± 14.5 | 0.967 |
Comorbidities | ||||
Hypertension | 79 (26.8) | 68 (26.7) | 11(27.5) | 0.912 |
Diabetes | 66 (22.4) | 61 (23.9) | 5 (12.5) | 0.107 |
Obesity | 55 (18.6) | 47 (18.4) | 8 (20.0) | 0.813 |
Asthma | 12 (4.1) | 12 (4.7) | 0 (0.0) | 0.381 |
Chronic coronary heart disease | 12 (4.1) | 10 (3.9) | 2 (5.0) | 0.670 |
Cancer | 7 (2.4) | 6 (2.4) | 1 (2.5) | 1.000 |
CKD * | 4 (1.4) | 4 (1.6) | 0 (0.0) | 1.000 |
Others | 56 (18.9) | 50 (19.6) | 6 (15.0) | 0.490 |
Symptoms | ||||
Cough | 215 (72.9) | 184 (72.2) | 31 (77.5) | 0.480 |
Dyspnea | 220 (74.6) | 193 (75.7) | 27 (67.5) | 0.269 |
Fever | 180 (61.0) | 156 (61.2) | 24 (60.0) | 0.887 |
Fatigue | 148 (50.2) | 122 (47.8) | 26 (65.0) | 0.044 |
Odynophagia | 39 (13.2) | 32 (12.5) | 7 (17.5) | 0.390 |
Headache | 35 (11.9) | 30 (11.8) | 5 (12.5) | 0.894 |
Nausea/vomiting | 18 (6.1) | 16 (6.3) | 2 (5.0) | 1.000 |
Diarrhea | 20 (6.8) | 16 (6.3) | 4 (10.0) | 0.328 |
Expectoration | 27 (9.2) | 24 (9.4) | 3 (7.5) | 1.000 |
Anosmia | 11 (3.7) | 11 (4.3) | 0 (0.0) | 0.371 |
Days since symptom onset * | 7 (5–10) | 7 (5–10) | 7 (5–8.5) | 0.613 |
CURB 65 * | 1 (0–2) | 1 (0–2) | 1 (0–2) | 0.162 |
Total (n = 295) | COVID-19/Acinetobacter baumannii (−) (n = 255) | COVID-19/Acinetobacter baumannii (+) (n = 40) | p Value | |
---|---|---|---|---|
Laboratory parameters * | ||||
Hemoglobin (g/dL) | 14.2 (13.1–15.4) | 14.2 (13.0–15.4) | 14.7 (13.1–15.3) | 0.717 |
Leukocytes (×109 mL) | 9.1 (7.9–12.3) | 8.9 (6.8–11.8) | 10.5 (7.7–14.4) | 0.055 |
Lymphocytes (absolute count) | 820 (504–1290) | 806 (502.0–1247.0) | 926.5 (526–1633.5) | 0.312 |
Platelets (×109 mL) | 270 (202–350) | 270 (202–349) | 262.5 (181–353.5) | 0.547 |
ALT (U/L) | 49 (26.5–88) | 47 (26–88) | 50.5 (29. 5–88.5) | 0.702 |
Creatinine (mg/dL) | 0.7 (0.6–0.9) | 0.7 (0.6–0.9) | 0.7 (0.6–0.9) | 0.791 |
C-reactive protein (mg/L) | 90 (56–210) | 107 (57.6–219) | 71.65 (34.3–154) | 0.072 |
LDH (U/L) | 298 (242.5–378.5) | 298.0 (244–368) | 307 (249.5–382) | 0.652 |
Procalcitonin (ng/mL) | 0.1 (0.1–0.3) | 0.1 (0.1–0.2) | 0.1 (0.1–0.3) | 0.721 |
D-Dimer (µg/mL) | 0.6 (0.4–1.2) | 0.6 (0.4–1.2) | 0.8 (0.7–0.9) | 0.555 |
Troponin (ng/mL) | 0.006 (0.001–0.10) | 0.006 (0.001–0.01) | 0.085 (0.006–0.012) | 0.267 |
Ferritin (ng/mL) | 664.5 (346–1220) | 659.5 (359.5–1219) | 669 (315–1249) | 0.970 |
CPK (U/L) | 55 (33–88) | 42 (31–92) | 42 (33–62) | 0.694 |
PT (s) | 10.9 (10.4–11.5) | 10.9 (10.4–11.5) | 10.9 (10.5–11.4) | 0.726 |
Score-radiological | ||||
Media/SD | 5.92 ± 1.55 | 5.92 ± 1.81 | 5.9 ± 2.2 | 0.946 |
Treatment | ||||
Antibiotics prior to admission | 205 (69.5) | 172 (67.5) | 33 (82.5) | 0.055 |
Azithromicin | 95 (46.3) | 84 (48.8) | 11 (33.3) | 0.128 |
Ceftriaxone | 141 (68.8) | 117 (68.0) | 24 (72.7) | 0.685 |
Imipenem | 36 (17.6) | 29 (16.8) | 7 (21.2) | 0.617 |
Meropenem | 20 (9.8) | 15 (8.7) | 5 (15.2) | 0.331 |
Piperacilin/tazobactam | 29 (14.1) | 21 (12.2) | 8 (24.2) | 0.098 |
Vancomycin | 28 (13.7) | 22 (12.8) | 6 (18.2) | 0.411 |
Doxycycline | 6 (2.9) | 4 (2.3) | 2 (6.0) | 0.248 |
Ciprofloxacin | 5 (2.4) | 4 (2.3) | 1 (3.0) | 0.588 |
Levofloxacin | 1 (0.5) | 1 (0.6) | 0 (0.0) | 1.000 |
Amoxicillin | 1 (0.5) | 1 (0.6) | 0 (0.0) | 1.000 |
Amikacin | 1(0.5) | 1 (0.6) | 0 (0.0) | 1.000 |
Linezolid | 1 (0.5) | 1 (0.6) | 0 (0.0) | 1.000 |
Trimethoprim/sulfamethoxazole | 1 (0.5) | 0 (0.0) | 1 (3.0) | 0.161 |
Clindamycin | 2 (0.9) | 2 (1.16) | 0 (0.0) | 1.000 |
Cefepime | 2 (0.9) | 2 (1.16) | 0 (0.0) | 1.000 |
Ceftazidime | 1 (0.5) | 1 (0.6) | 0 (0.0) | 1.000 |
Tigecycline | 3 (1.5) | 3 (1.7) | 0 (0.0) | 1.000 |
Colistin | 3 (1.5) | 3 (1.7) | 0 (0.0) | 1.000 |
Dexamethasone | 250 (84.7) | 216 (84.7) | 34 (85.0) | 0.962 |
Hydroxychloroquine | 3 (1.0) | 3 (1.2) | 0 (0.0) | 1.000 |
Ivermectin | 24 (8.1) | 20 (7.8) | 4 (10.0) | 0.548 |
Binasal cannula | 161 (54.6) | 143 (56.1) | 18 (45.0) | 0.191 |
Reservoir mask | 111 (37.6) | 95 (37.3) | 16 (40.0) | 0.739 |
High flow nasal cannula | 20 (6.8) | 14 (5.5) | 6 (15.0) | 0.038 |
Mechanic ventilation | 20 (6.8) | 17 (6.7) | 3 (7.50) | 0.845 |
Norepinephrine | 21 (7.1) | 17 (6.7) | 4 (10.0) | 0.504 |
Hemodialysis | 3 (1.0) | 3 (1.2) | 0 (0.0) | 1.000 |
Hospital Outcomes | Total (n = 295) | COVID-19/Acinetobacter baumannii (−) (n = 255) | COVID-19/Acinetobacter baumannii (+) (n = 40) | p Value |
---|---|---|---|---|
Sepsis | 80 (27.1) | 65 (25.5) | 15 (37.5) | 0.112 |
ARDS * | 60 (20.3) | 48 (18.8) | 12 (30.0) | 0.103 |
Heart failure | 25 (8.5) | 22 (8.6) | 3 (7.5) | 1.000 |
Septic shock | 24 (8.1) | 18 (7.1) | 6 (15.0) | 0.113 |
Coagulopathy | 17 (5.8) | 15 (5.9) | 2 (5.0) | 1.000 |
Acute myocardial injury | 12 (4.1) | 12 (4.7) | 0 (0.00) | 0.381 |
Acute kidney injury | 30 (10.2) | 26 (10.2) | 4 (10.0) | 1.000 |
Respiratory acidosis | 28 (9.5) | 21 (8.2) | 7 (17.5) | 0.079 |
Admission to ICU U | 29 (9.8) | 24 (9.4) | 5 (12.5) | 0.567 |
Days in ICU (median/IQR) | 11 (6–21) | 9.5 (4–19) | 17 (9–29) | 0.153 |
Days on mechanical ventilation (median/IQR) | 11 (1–19) | 11 (1–19) | 17 (1–45) | 0.641 |
Days of hospitalization (median/IQR) | 10 (7–15) | 10 (7–15) | 12 (7.8–22.5) | 0.080 |
Death | 59 (20.0) | 49 (19.2) | 10 (25) | 0.395 |
Superinfection with Acinetobacter baumannii during hospitalization | 8 (2.7) | 4 (1.6) | 4 (10) | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Caso, W.; Pérez-Lazo, G.; Aguilar-Luis, M.A.; Morales-Moreno, A.; Ballena-López, J.; Soto-Febres, F.; Martins-Luna, J.; Del Valle, L.J.; Kym, S.; Aguilar-Luis, D.; et al. Identification and Clinical Characteristics of Community-Acquired Acinetobacter baumannii in Patients Hospitalized for Moderate or Severe COVID-19 in Peru. Antibiotics 2024, 13, 266. https://doi.org/10.3390/antibiotics13030266
Silva-Caso W, Pérez-Lazo G, Aguilar-Luis MA, Morales-Moreno A, Ballena-López J, Soto-Febres F, Martins-Luna J, Del Valle LJ, Kym S, Aguilar-Luis D, et al. Identification and Clinical Characteristics of Community-Acquired Acinetobacter baumannii in Patients Hospitalized for Moderate or Severe COVID-19 in Peru. Antibiotics. 2024; 13(3):266. https://doi.org/10.3390/antibiotics13030266
Chicago/Turabian StyleSilva-Caso, Wilmer, Giancarlo Pérez-Lazo, Miguel Angel Aguilar-Luis, Adriana Morales-Moreno, José Ballena-López, Fernando Soto-Febres, Johanna Martins-Luna, Luis J. Del Valle, Sungmin Kym, Deysi Aguilar-Luis, and et al. 2024. "Identification and Clinical Characteristics of Community-Acquired Acinetobacter baumannii in Patients Hospitalized for Moderate or Severe COVID-19 in Peru" Antibiotics 13, no. 3: 266. https://doi.org/10.3390/antibiotics13030266
APA StyleSilva-Caso, W., Pérez-Lazo, G., Aguilar-Luis, M. A., Morales-Moreno, A., Ballena-López, J., Soto-Febres, F., Martins-Luna, J., Del Valle, L. J., Kym, S., Aguilar-Luis, D., Denegri-Hinostroza, D., & del Valle-Mendoza, J. (2024). Identification and Clinical Characteristics of Community-Acquired Acinetobacter baumannii in Patients Hospitalized for Moderate or Severe COVID-19 in Peru. Antibiotics, 13(3), 266. https://doi.org/10.3390/antibiotics13030266