Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits
Abstract
:1. Introduction
1.1. Streptococcal Pathophysiology
1.2. Streptococcal Pathophysiology Related to Septic Shock Management
1.3. Objectives of This Study
2. Results
2.1. General Management and Conventional Organ Support
2.2. Personalized Treatment
2.2.1. Hyperinflammatory Phenotype
2.2.2. Low Perfusion Phenotype
2.2.3. Low Immunoglobulin Phenotype
3. Discussion
3.1. Hyperinflammation with High Cytokine Phenotype
3.2. Hyperinflammatory with High Endotoxemic Phenotype
3.3. Sequential Approach
3.4. Low Perfusion Phenotype
3.5. Low Immunoglobulin Phenotype
3.6. STSS and Its Relation to Precision Medicine Guided by Phenotypes
3.7. Limitations
4. Materials and Methods
4.1. Study Design and Setting, Inclusion Criteria and Analyzed Data and Scores
4.2. Statistical Analysis
4.3. Ethics Statement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holdstock, V.; Twynam-Perkins, J.; Bradnock, T.; Dickson, E.M.; Harvey-Wood, K.; Kalima, P.; King, J.; Olver, W.J.; Osman, M.; Sabharwal, A.; et al. National case series of group A streptococcus pleural empyema in children: Clinical and microbiological features. Lancet Infect. Dis. 2023, 23, 154–156. [Google Scholar] [CrossRef] [PubMed]
- van Kempen, E.B.; Bruijning-Verhagen, P.C.J.; Borensztajn, D.; Vermont, C.L.; Quaak, M.S.W.; Janson, J.A.; Maat, I.; Stol, K.; Vlaminckx, B.J.M.; Wieringa, J.W.; et al. Increase in Invasive Group a Streptococcal Infections in Children in the Netherlands, A Survey Among 7 Hospitals in 2022. Pediatr. Infect. Dis. J. 2023, 42, e122–e124. [Google Scholar] [CrossRef] [PubMed]
- Talavera, M.; Martínez, A.; Vicent, C.; Frasquet, J.; Orera, Á.; Ramírez, P. Four cases of unexpected severe community-acquired pneumonia aetiology: Group A Streptococcus pyogenes disruption. Med. Intensiv. 2023, 47, 475–477. [Google Scholar] [CrossRef]
- Stevens, D. Reappearance of scarlet fever toxin A among streptococci in the Rocky Mountain West: Severe group A streptococcal infections associated with a toxic shock-like syndrome. N. Engl. J. Med. 1989, 321, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Bryant, A.E. Severe group A streptococcal infections. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 661–665. [Google Scholar]
- Proft, T.; Fraser, J.D. Streptococcal superantigens: Biological properties and potential role in disease. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Nobbs, A.H.; Lamont, R.J.; Jenkinson, H.F. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 2009, 73, 407–450. [Google Scholar] [CrossRef] [PubMed]
- Courtney, H.S.; Hasty, D.L.; Dale, J.B. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann. Med. 2002, 34, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Rohde, M.; Chhatwal, G.S. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr. Top. Microbiol. Immunol. 2013, 368, 83–110. [Google Scholar]
- Brouwer, S.; Barnett, T.C.; Rivera-Hernandez, T.; Rohde, M.; Walker, M.J. Streptococcus pyogenes adhesion and colonization. FEBS Lett. 2016, 590, 3739–3757. [Google Scholar] [CrossRef]
- Courtney, H.S.; von Hunolstein, C.; Dale, J.B.; Bronze, M.S.; Beachey, E.H.; Hasty, D.L. Lipoteichoic acid and M protein: Dual adhesins of group A streptococci. Microb. Pathog. 1992, 12, 199–208. [Google Scholar] [CrossRef]
- Cywes, C.; Stamenkovic, I.; Wessels, M.R. CD44 as a receptor for colonization of the pharynx by group A Streptococcus. J. Clin. Investig. 2000, 106, 995–1002. [Google Scholar] [CrossRef]
- Wessels, M.R. Cell Wall and Surface Molecules: Capsule. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. Available online: https://www.ncbi.nlm.nih.gov/sites/books/NBK333410/ (accessed on 2 January 2024).
- Cywes, C.; Wessels, M. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 2001, 414, 648–652. [Google Scholar] [CrossRef]
- Cue, D.; Lam, H.; Cleary, P.P. Genetic dissection of the Streptococcus pyogenes M1 protein: Regions involved in fibronectin-bindingand intracellular invasion. Microb. Pathog. 2001, 31, 231–242. [Google Scholar] [CrossRef]
- Purushothaman, S.S.; Wang, B.; Cleary, P.P. M1 protein triggers a phosphoinositide cascade for group A Streptococcus invasion of epithelial cells. Infect. Immun. 2003, 71, 5823–5830. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.M.; Rhodes, A.; Phillips, G.S.; Townsend, S.R.; Schorr, C.A.; Beale, R.; Osborn, T.; Lemeshow, S.; Chiche, J.D.; Artigas, A.; et al. Surviving Sepsis Campaign: Association between performance metrics and outcomes in a 7.5-year study. Crit. Care Med. 2015, 43, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Yébenes, J.C.; Ruiz-Rodriguez, J.C.; Ferrer, R.; Clèries, M.; Bosch, A.; Lorencio, C.; Rodriguez, A.; Nuvials, X.; Martin-Loeches, I.; Artigas, A. Epidemiology of sepsis in Catalonia: Analysis of incidence and outcomes in a European setting. Ann. Intensive Care 2017, 7, 19. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Kennedy, J.N.; Wang, S.; Chang, C.C.H.; Elliott, C.F.; Xu, Z.; Berry, S.; Clermont, G.; Cooper, G.; Gomez, H.; et al. Derivation, Validation, and Potential Treatment Implications of Novel Clinical Phenotypes for Sepsis. JAMA 2019, 321, 2003–2017. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, J.C.; Plata-Menchaca, E.P.; Chiscano-Camón, L.; Ruiz-Sanmartin, A.; Pérez-Carrasco, M.; Palmada, C.; Ribas, V.; Martínez-Gallo, M.; Hernández-González, M.; Gonzalez-Lopez, J.J.; et al. Precision medicine in sepsis and septic shock: From omics to clinical tools. World J. Crit. Care Med. 2022, 11, 1–21. [Google Scholar] [CrossRef]
- Babiker, A.; Li, X.; Lai, Y.L.; Strich, J.R.; Warner, S.; Sarzynski, S.; Dekker, J.P.; Danner, R.L.; Kadri, S.S. Effectiveness of adjunctive clindamycin in β-lactam antibiotic-treated patients with invasive β-haemolytic streptococcal infections in US hospitals: A retrospective multicentre cohort study. Lancet Infect. Dis. 2021, 21, 697–710. [Google Scholar] [CrossRef]
- Grasselli, G.; Calfee, C.S.; Camporota, L.; Poole, D.; Amato, M.B.; Antonelli, M.; Arabi, Y.M.; Baroncelli, F.; Beitler, J.R.; Bellani, G.; et al. ESICM guidelines on acute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies. Intensive Care Med. 2023, 49, 727–759. [Google Scholar] [CrossRef]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef]
- Ribas Ripoll, V.J.; Vellido, A.; Romero, E.; Ruiz-Rodríguez, J.C. Sepsis mortality prediction with the Quotient Basis Kernel. Artif. Intell. Med. 2014, 61, 45–52. [Google Scholar] [CrossRef]
- Ribas, V.J.; López, J.C.; Ruiz-Sanmartin, A.; Ruiz-Rodríguez, J.C.; Rello, J.; Wojdel, A.; Vellido, A. Severe sepsis mortality prediction with relevance vector machines. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August 2011–3 September 2011. [Google Scholar]
- Knaus, W.A.; Zimmerman, J.E.; Wagner, D.P.; Draper, E.A.; Lawrence, D.E. APACHE-acute physiology and chronic health evaluation: A physiologically based classification system. Crit. Care Med. 1981, 9, 591–597. [Google Scholar] [CrossRef]
- Bermejo-Martín, J.F.; Rodriguez-Fernandez, A.; Herrán-Monge, R.; Andaluz-Ojeda, D.; Muriel-Bombín, A.; Merino, P.; García-García, M.M.; Citores, R.; Gandía, F.; Almansa, R.; et al. Immunoglobulins IgG1, IgM and IgA: A synergistic team influencing survival in sepsis. J. Intern. Med. 2014, 276, 404–412. [Google Scholar] [CrossRef]
- Schmitz, M.; Roux, X.; Huttner, B.; Pugin, J. Streptococcal toxic shock syndrome in the intensive care unit. Ann. Intensive Care 2018, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Hellman, T.; Uusalo, P.; Järvisalo, M.J. Renal Replacement Techniques in Septic Shock. Int. J. Mol. Sci. 2021, 22, 10238. [Google Scholar] [CrossRef] [PubMed]
- Antonucci, E.; Polo, T.; Giovini, M.; Girardis, M.; Martin-Loeches, I.; Nielsen, N.D.; Lozsán, F.J.C.; Ferrer, R.; Lakbar, I.; Leone, M. Refractory septic shock and alternative wordings: A systematic review of literature. J. Crit. Care 2023, 75, 154258. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, T.; Igaki, N.; Kinoshita, S.; Matsuda, T.; Kida, A.; Moriguchi, R.; Sakai, M.; Tamada, F.; Oimomi, M.; Goto, T. A new therapeutic strategy for streptococcal toxic shock syndrome: A key target for cytokines. Intern. Med. 2003, 42, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Hoeper, M.M.; Abou-Rebyeh, F.; Athman, C.; Schwarz, A. Plasmapheresis in streptococcal toxic shock syndrome. Crit. Care Med. 2001, 29, 2399. [Google Scholar] [CrossRef] [PubMed]
- Scheier, J.; Nelson, P.J.; Schneider, A.; Colombier, S.; Kindgen-Milles, D.; Deliargyris, E.N.; Nolin, T.D. Mechanistic Considerations and Pharmacokinetic Implications on Concomitant Drug Administration During CytoSorb Therapy. Crit. Care Explor. 2022, 4, e0688. [Google Scholar] [CrossRef]
- Honore, P.; Hoste, E.; Molnár, Z.; Jacobs, R.; Joannes-Boyau, O.; Malbrain, M.; Forni, L. Cytokine removal in human septic shock: Where are we and where are we going. Ann. Intensive Care 2019, 9, 56. [Google Scholar] [CrossRef]
- Ricci, Z.; Romagnoli, S.; Reis, T.; Bellomo, R.; Ronco, C. Hemoperfusion in the intensive care unit. Intensive Care Med. 2022, 48, 1397–1408. [Google Scholar] [CrossRef]
- Chousterman, B.G.; Swirski, F.K.; Weber, G.F. Cytokine storm and sepsis disease pathogenesis. Semin. Immunopathol. 2017, 39, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Klein, D.J.; Foster, D.; Walker, P.M.; Bagshaw, S.M.; Mekonnen, H.; Antonelli, M. Polymyxin B hemoperfusion in endotoxemic septic shock patients without extreme endotoxemia: A post hoc analysis of the EUPHRATES trial. Intensive Care Med. 2018, 44, 2205–2212. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Bagshaw, S.M.; Antonelli, M.; Foster, D.M.; Klein, D.J.; Marshall, J.C.; Palevsky, P.M.; Weisberg, L.S.; Schorr, C.A.; Trzeciak, S.; et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. JAMA 2018, 320, 1455–1463. [Google Scholar] [CrossRef] [PubMed]
- Shoji, H.; Ferrer, R. Potential survival benefit and early recovery from organ dysfunction with polymyxin B hemoperfusion: Perspectives from a real-world big data analysis and the supporting mechanisms of action. J. Anesth. Analg. Crit. Care 2022, 2, 27. [Google Scholar] [CrossRef] [PubMed]
- Cutuli, S.L.; De Rosa, S.; Ferrer, R.; Ruiz-Rodriguez, J.C.; Forfori, F.; Ronco, C.; Antonelli, M.; EUPHAS2-G50 Collaborative Study Group; Cutuli, S.L.; De Rosa, S.; et al. Endotoxin activity trend and multi-organ dysfunction in critically ill patients with septic shock, who received Polymyxin-B hemadsorption: A multicenter, prospective, observational study. Artif. Organs 2023, 47, 1361–1370. [Google Scholar] [CrossRef] [PubMed]
- Malard, B.; Lambert, C.; Kellum, J.A. In vitro comparison of the adsorption of inflammatory mediators by blood purification devices. Intensive Care Med. Exp. 2018, 6, 12. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rodríguez, J.C.; Chiscano-Camón, L.; Palmada, C.; Ruiz-Sanmartin, A.; Pérez-Carrasco, M.; Larrosa, N.; González, J.J.; Hernández-González, M.; Ferrer, R. Endotoxin and Cytokine Sequential Hemoadsorption in Septic Shock and Multi-Organ Failure. Blood Purif. 2022, 51, 630–633. [Google Scholar] [CrossRef]
- Cheng, A.; Sun, H.Y.; Tsai, M.S.; Ko, W.J.; Tsai, P.R.; Hu, F.C.; Chen, Y.C.; Chang, S.C. Predictors of survival in adults undergoing extracorporeal membrane oxygenation with severe infections. J. Thorac. Cardiovasc. Surg. 2016, 152, 1526–1536.e1. [Google Scholar] [CrossRef]
- Riera, J.; Argudo, E.; Ruiz-Rodríguez, J.C.; Ferrer, R. Extracorporeal Membrane Oxygenation for Adults With Refractory Septic Shock. ASAIO J. 2019, 65, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Sriskandan, S.; Ferguson, M.; Elliot, V.; Faulkner, L.; Cohen, J. Human intravenous immunoglobulin for experimental streptococcal toxic shock: Bacterial clearance and modulation of inflammation. J. Antimicrob. Chemother. 2006, 58, 117–124. [Google Scholar] [CrossRef]
- Madsen, M.B.; Hjortrup, P.B.; Hansen, M.B.; Lange, T.; Norrby-Teglund, A.; Hyldegaard, O.; Perner, A. Immunoglobulin G for patients with necrotising soft tissue infection (INSTINCT): A randomised, blinded, placebo-controlled trial. Intensive Care Med. 2017, 43, 1585–1593. [Google Scholar] [CrossRef] [PubMed]
- Werdan, K.; Pilz, G.; Bujdoso, O.; Fraunberger, P.; Neeser, G.; Schmieder, R.E.; Viell, B.; Marget, W.; Seewald, M.; Walger, P.; et al. Score-based immunoglobulin G therapy of patients with sepsis: The SBITS study. Crit. Care Med. 2007, 35, 2693–2701. [Google Scholar]
- Alejandria, M.M.; Lansang, M.A.D.; Dans, L.F.; Mantaring, J.B., 3rd. Intravenous immunoglobulin for treating sepsis, severe sepsis and septic shock. Cochrane Database Syst. Rev. 2013, 9, CD001090. [Google Scholar] [CrossRef]
- Busani, S.; Damiani, E.; Cavazzuti, I.; Donati, A.; Girardis, M. Intravenous immunoglobulin in septic shock: Review of the mechanisms of action and meta-analysis of the clinical effectiveness. Minerva Anestesiol. 2016, 82, 559–572. [Google Scholar]
- Olivares, M.M.; Olmos, C.E.; Álvarez, M.I.; Fajardo, A.M.; Zea-Vera, A.F.; Ortega, M.C.; Medina, D.; Pérez, P.M.; Beltrán, D.G.; Duque, B.; et al. Colombian Guidelines of clinical practice for the use of immunoglobulins in the treatment of replacement and immunomodulation. Rev. Alerg. Mex. 2017, 64 (Suppl. S2), s5–s65. [Google Scholar] [CrossRef] [PubMed]
- Newburger, J.W.; Takahashi, M.; Beiser, A.S.; Burns, J.C.; Bastian, J.; Chung, K.J.; Colan, S.D.; Duffy, C.E.; Fulton, D.R.; Glode, M.P.; et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N. Engl. J. Med. 1991, 324, 1633–1639. [Google Scholar] [CrossRef]
- Berlot, G.; Vassallo, M.C.; Busetto, N.; Nieto Yabar, M.; Istrati, T.; Baronio, S.; Quarantotto, G.; Bixio, M.; Barbati, G.; Dattola, R.; et al. Effects of the timing of administration of IgM- and IgA-enriched intravenous polyclonal immunoglobulins on the outcome of septic shock patients. Ann. Intensive Care 2018, 8, 122. [Google Scholar] [CrossRef]
- Bulger, E.M.; May, A.K.; Robinson, B.R.; Evans, D.C.; Henry, S.; Green, J.M.; Toschlog, E.; Sperry, J.L.; Fagenholz, P.; Martin, N.D.; et al. A Novel Immune Modulator for Patients With Necrotizing Soft Tissue Infections (NSTI): Results of a Multicenter, Phase 3 Randomized Controlled Trial of Reltecimod (AB 103). Ann. Surg. 2020, 272, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Lappin, E.; Ferguson, A.J. Gram-positive toxic shock syndromes. Lancet Infect. Dis. 2009, 9, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef] [PubMed]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Ranieri, V.I.T.O.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L. Acute respiratory distress syndrome: The Berlin Definition. JAMA 2012, 307, 2526–2533. [Google Scholar]
n = 13 | ||
---|---|---|
Age [years, m (SD)] | 42 (13.8) | |
Gender [n (%)] | Female | 7 (53.8) |
Male | 6 (46.2) | |
Comorbidities [n (%)] | Hypertension | 3 (23.1) |
Obesity | 1 (7.7) | |
Cardiac | 1 (7.7) | |
Inmunosuppression | 2 (15.4) | |
Peripheral Vascular Disease | 1 (7.7) | |
APACHE II [m (SD)] | 29 (15) | |
SOFA [m (SD)] | 17 ± 5.7 | |
Infection source [n (%)] | Respiratory | 8 (61.5) |
SSTIs | 4 (30.8) | |
PID | 1 (7.7) | |
Source control [n (%)] | Thorax Drainage | 4 (30.8) |
Surgery | 3 (23.1) | |
Coinfection [n (%)] | FLUB-V | 5 (38.5) |
Metapneumovirus | 2 (15.4) | |
Microbiologic culture-positive tests | Isolated PBC [n (%)] | 5 (38.5) |
PBC + BAL [n (%)] | 2 (15.4) | |
Bronchoalveolar lavage [n (%)] | 4 (31) | |
Skin/soft tissue [n (%)] | 1 (7.7) | |
PBC + Ascitic fluid [n (%)] | 1 (7.7) | |
Septic Shock [n (%)] | 13 (100) | |
Septic Cardiomyopathy [n (%)] | 10 (76.9) | |
Cardiovascular SOFA [m (SD) ] | 4 (0.6) | |
Dobutamine use [n (%)] | 10 (76.9) | |
Hydrocortisone [n (%)] | 13 (100) | |
IMV [n (%)] | 9 (69.2) | |
ECMO (VA. VV) [n (%)] | Total [n(%)] | 7 (53.8) |
VA [n(%)] Low perfusion phenotype | 5 (38.4) | |
CRRT [n (%)] | 10 (76.9) | |
HA [n (%)] | (total) | 10 (76.9) |
Cytosorb® | 9 (69.2) | |
Toraymixin® | 6 (46.2) | |
Oxiris® | 2 (15.4) | |
Sequential hemoadsorption [n (%)] | Cytosorb® + Toraymixin® | 6 (46.2) |
Low IgG [n (%)] | 9 (69.2) | |
Cytokine HA duration [hours, m (SD)] | 50 (34) | |
Length of ICU stay [days, m (SD)] | 33 (40) | |
Length of hospital stay [days, m (SD)] | 54.85 (42) | |
ICU mortality [n (%)] | 3 (23.1%) | |
In hospital mortality [n (%)] | 3 (23.1%) |
Analytical Characteristics of the Study Population | |
---|---|
Leukocyte count [(/mm3) m (SD)] | 6670 (6868) |
Lymphocyte count [(/mm3) m (SD)] | 261 (180) |
Neutrophil count [(/mm3) m (SD)] | 5863 (6546) |
CRP [(mg/dL) m (SD)] | 25.83 (11) |
PCT [(ng/mL) m (SD)] | 167.33 (203) |
IL-6 [(pg/mL) m (SD)] | 108,110.45 (104,325) |
IgG [(mg/dL) m (SD)] | 402 (230) |
IgM [(mg/dL) m (SD)] | 61.5 (29) |
IgA [(mg/dL) m (SD)] | 130 (77) |
EAA [m (SD)] | 0.93 (0.33) |
Platelet count [(×109/L) m (SD)] | 105,000 (61,000) |
Ferritin [(ng/mL) m (SD)] | 2495 (3155) |
Precision Medicine Strategies | Target (s) | Clinical Application | |
---|---|---|---|
Hyperinflammatory profile | High endotoxinemia | Endotoxinemia | Rescue therapy Hemoadsorption |
Severe hypercytokinemia | Cytokine levels | ||
Sequential hemoadsorption | Endotoxin and cytokine hemoadsorption | ||
Low perfusion phenotype | Patients with septic cardiomyopathy | ECMO venoarterial | |
Low immunoglobulin phenotype | Sepsis-associated hypogammaglobulinemia250 mg/kg/d by a 10 h infusion for 3 consecutive days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz-Rodríguez, J.C.; Chiscano-Camón, L.; Maldonado, C.; Ruiz-Sanmartin, A.; Martin, L.; Bajaña, I.; Bastidas, J.; Lopez-Martinez, R.; Franco-Jarava, C.; González-López, J.J.; et al. Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits. Antibiotics 2024, 13, 187. https://doi.org/10.3390/antibiotics13020187
Ruiz-Rodríguez JC, Chiscano-Camón L, Maldonado C, Ruiz-Sanmartin A, Martin L, Bajaña I, Bastidas J, Lopez-Martinez R, Franco-Jarava C, González-López JJ, et al. Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits. Antibiotics. 2024; 13(2):187. https://doi.org/10.3390/antibiotics13020187
Chicago/Turabian StyleRuiz-Rodríguez, Juan Carlos, Luis Chiscano-Camón, Carolina Maldonado, Adolf Ruiz-Sanmartin, Laura Martin, Ivan Bajaña, Juliana Bastidas, Rocio Lopez-Martinez, Clara Franco-Jarava, Juan José González-López, and et al. 2024. "Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits" Antibiotics 13, no. 2: 187. https://doi.org/10.3390/antibiotics13020187
APA StyleRuiz-Rodríguez, J. C., Chiscano-Camón, L., Maldonado, C., Ruiz-Sanmartin, A., Martin, L., Bajaña, I., Bastidas, J., Lopez-Martinez, R., Franco-Jarava, C., González-López, J. J., Ribas, V., Larrosa, N., Riera, J., Nuvials-Casals, X., & Ferrer, R. (2024). Catastrophic Streptococcus pyogenes Disease: A Personalized Approach Based on Phenotypes and Treatable Traits. Antibiotics, 13(2), 187. https://doi.org/10.3390/antibiotics13020187