Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update
Abstract
1. Introduction
2. Literature Search Strategy
3. Antibiotic Treatment Targeting MAP in Active CD Patients
4. Antibiotic Treatment Targeting AIEC in Patients with Active CD
5. Short-Term Antibiotic Treatment
6. Other Therapeutic Strategies Targeting AIEC
- -
- Anti-adhesive molecules
- -
- Fecal microbiota transplantation
- -
- Probiotics, prebiotics, and postbiotics
- -
- Phage therapy
- -
- Stem cells
7. Discussion
8. Conclusions
9. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Roda, G.; Chien Ng, S.; Kotze, P.G.; Argollo, M.; Panaccione, R.; Spinelli, A.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Crohn’s disease. Nat. Rev. Dis. Primers 2020, 6, 26, Erratum in Nat. Rev. Dis. Primers 2020, 6, 22. [Google Scholar] [CrossRef]
- Khan, I.A.; Nayak, B.; Markandey, M.; Bajaj, A.; Verma, M.; Kumar, S.; Singh, M.K.; Kedia, S.; Ahuja, V. Differential prevalence of pathobionts and host gene polymorphisms in chronic inflammatory intestinal diseases: Crohn’s disease and intestinal tuberculosis. PLoS ONE 2021, 16, e0256098. [Google Scholar] [CrossRef] [PubMed]
- Vebr, M.; Pomahačová, R.; Sýkora, J.; Schwarz, J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Patho-genesis. Biomedicines 2023, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, N.S.F.; Barros, L.L.; Azevedo, M.F.C.; Oba, J.; Sobrado, C.W.; Carlos, A.S.; Milani, L.R.; Sipahi, A.M.; Damião, A.O.M.C. Management of inflammatory bowel disease patients in the COVID-19 pandemic era: A Brazilian tertiary referral center guidance. Clinics 2020, 75, e1909. [Google Scholar] [CrossRef]
- Liefferinckx, C.; Cremer, A.; Franchimont, D. Switching biologics used in inflammatory bowel diseases: How to deal with in practice? Curr. Opin. Pharmacol. 2020, 55, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Panaccione, R.; Bossuyt, P.; Lukas, M.; Baert, F.; Vaňásek, T.; Danalioglu, A.; Novacek, G.; Armuzzi, A.; Hébuterne, X.; et al. Effect of tight control management on Crohn’s disease (CALM): A multicentre, randomised, controlled phase 3 trial. Lancet 2017, 390, 2779–2789, Erratum in Lancet 2018, 390, 2768. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.K.; Begum, J.; Benchimol, E.I.; Bernstein, C.N.; Kaplan, G.G.; McCurdy, J.D.; Singh, H.; Targownik, L.; Taljaard, M. Introduction of anti-TNF therapy has not yielded expected declines in hospitalisation and intestinal resection rates in inflammatory bowel diseases: A population-based interrupted time series study. Gut 2020, 69, 274–282. [Google Scholar] [CrossRef]
- Ahmed, M.; Metwaly, A.; Haller, D. Modeling microbe-host interaction in the pathogenesis of Crohn’s disease. Int. J. Med. Microbiol. 2021, 311, 151489. [Google Scholar] [CrossRef]
- Iaquinto, G.; Rotondi Aufiero, V.; Mazzarella, G.; Lucariello, A.; Panico, L.; Melina, R.; Iaquinto, S.; De Luca, A.; Sellitto, C. Pathogens in Crohn’s disease: The role of Adherent Invasive Escherichia coli. Crit. Rev. Eukaryot. Gene Expr. 2024, 34, 83–99. [Google Scholar] [CrossRef]
- Mirsepasi-Lauridsen, H.C.; Vallance, B.A.; Krogfelt, K.A.; Petersen, A.M. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2019, 32, e00060-18. [Google Scholar] [CrossRef]
- Palmela, C.; Chevarin, C.; Xu, Z.; Torres, J.; Sevrin, G.; Hirten, R.; Barnich, N.; Ng, S.C.; Colombel, J.F. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018, 67, 574–587. [Google Scholar] [CrossRef]
- Shaler, C.R.; Elhenawy, W.; Coombes, B.K. The Unique Lifestyle of Crohn’s Disease-Associated Adherent-Invasive Escherichia coli. J. Mol. Biol. 2019, 431, 2970–2981. [Google Scholar] [CrossRef]
- Zheng, L.; Duan, S.L.; Dai, Y.C.; Wu, S.C. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J. Clin. Cases 2022, 10, 11671–11689. [Google Scholar] [CrossRef]
- Agrawal, G.; Aitken, J.; Hamblin, H.; Collins, M.; Borody, T.J. Putting Crohn’s on the MAP: Five Common Questions on the Contribution of Mycobacterium avium subspecies paratuberculosis to the Pathophysiology of Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 348–358. [Google Scholar] [CrossRef]
- Aitken, J.M.; Phan, K.; Bodman, S.E.; Sharma, S.; Watt, A.; George, P.M.; Agrawal, G.; Tie, A.B.M. A Mycobacterium species for Crohn’s disease? Pathology 2021, 53, 818–823. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A.; Neut, C.; Barnich, N.; Lederman, E.; Di Martino, P.; Desreumaux, P.; Gambiez, L.; Joly, B.; Cortot, A.; Colombel, J.F. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998, 115, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Mazzarella, G.; Perna, A.; Marano, A.; Lucariello, A.; Rotondi Aufiero, V.; Sorrentino, A.; Melina, R.; Guerra, G.; Taccone, F.S.; Iaquinto, G.; et al. Pathogenic Role of Associated Adherent-Invasive Escherichia coli in Crohn’s Disease. J. Cell. Physiol. 2017, 232, 2860–2868. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Han, D.S.; Jo, S.V.; Lee, A.R.; Park, C.H.; Eun, C.S.; Lee, Y. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes. PLoS ONE 2019, 14, e0216165. [Google Scholar] [CrossRef]
- Mansour, S.; Asrar, T.; Elhenawy, W. The multifaceted virulence of adherentinvasive Escherichia coli. Gut Microbes 2023, 15, 2172669. [Google Scholar] [CrossRef] [PubMed]
- Glasser, A.L.; Boudeau, J.; Barnich, N.; Perruchot, M.H.; Colombel, J.F.; Darfeuille-Michaud, A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 2001, 69, 5529–5537. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Borody, T.J.; Leis, S. The many faces of Crohn’s disease: Latest concepts in etiology. Open J. Int. Med. 2012, 2, 107. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A.; Boudeau, J.; Bulois, P.; Neut, C.; Glasser, A.L.; Barnich, N.; Bringer, M.A.; Swidsinski, A.; Beaugerie, L.; Colombel, J.F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004, 127, 412–421. [Google Scholar] [CrossRef]
- Buisson, A.; Vazeille, E.; Fumery, M.; Pariente, B.; Nancey, S.; Seksik, P.; Peyrin-Biroulet, L.; Allez, M.; Ballet, N.; Filippi, J.; et al. Faster and less invasive tools to identify patients with ileal colonization by adherent-invasive E. coli in Crohn’s disease. United Eur. Gastroenterol. J. 2021, 9, 1007–1018. [Google Scholar] [CrossRef]
- Nadalian, B.; Yadegar, A.; Houri, H.; Olfatifar, M.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Suzuki, H.; Zali, M.R. Prevalence of the pathobiont adherent-invasive Escherichia coli and inflammatory bowel disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 852–863. [Google Scholar] [CrossRef]
- Petersen, A.M. Gastrointestinal dysbiosis and Escherichia coli pathobionts in inflammatory bowel diseases. APMIS 2022, 130 (Suppl. S144), 1–38. [Google Scholar] [CrossRef]
- Spaulding, C.N.; Klein, R.D.; Schreiber, H.L., 4th; Janetka, J.W.; Hultgren, S.J. Precision antimicrobial therapeutics: The path of least resistance? NPJ Biofilms Microbiomes 2018, 4, 4. [Google Scholar] [CrossRef]
- Olsen, I.; Tollefsen, S.; Aagaard, C.; Reitan, L.J.; Bannantine, J.P.; Andersen, P.; Sollid, L.M.; Lundin, K.E. Isolation of Mycobacterium avium subspecies paratuberculosis reactive CD4 T cells from intestinal biopsies of Crohn’s disease patients. PLoS ONE 2009, 5, e5641. [Google Scholar] [CrossRef] [PubMed]
- Naser, S.A.; Sagramsingh, S.R.; Naser, A.S.; Thanigachalam, S. Mycobacterium avium subspecies paratuberculosis causes Crohn’s disease in some inflammatory bowel disease patients. World J. Gastroenterol. 2014, 20, 7403–7415. [Google Scholar] [CrossRef] [PubMed]
- Autschbach, F.; Eisold, S.; Hinz, U.; Zinser, S.; Linnebacher, M.; Giese, T.; Löffler, T.; Büchler, M.W.; Schmidt, J. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut 2005, 54, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, R.J. Is Crohn’s disease caused by a mycobacterium? Comparisons with le-prosy, tuberculosis, and Johne’s disease. Lancet Infect. Dis. 2003, 3, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Mintz, M.J.; Lukin, D.J. Mycobacterium avium subspecies paratuberculosis (MAP) and Crohn’s disease: The debate continues. Transl. Gastroenterol. Hepatol. 2023, 8, 28. [Google Scholar] [CrossRef]
- Chamberlin, W.; Borody, T.J.; Campbell, J. Primary treatment of Crohn’s disease: Combi-ned antibiotics taking center stage. Expert. Rev. Clin. Immunol. 2011, 7, 751–760. [Google Scholar] [CrossRef]
- Borgaonkar, M.R.; MacIntosh, D.G.; Fardy, J.M. A meta-analysis of anti mycobacterial therapy for Crohn’s disease. Am. J. Gastroenterol. 2000, 95, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Feller, M.; Huwiler, K.; Schoepfer, A.; Shang, A.; Furrer, H.; Egger, M. Long-term antibiotic treatment for Crohn’s disease: Systematic review and me-ta-analysis of placebo-controlled trials. Clin. Infect. Dis. 2010, 50, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.J.; Ullman, T.A.; Ford, A.C.; Abreu, M.T.; Abadir, A.; Marshall, J.K.; Talley, N.J.; Moayyedi, P. Antibiotic therapy in inflammatory bowel disease: A systematic review and meta-analysis. Am. J. Gastroenterol. 2011, 106, 661–673, Erratum in Am. J. Gastroenterol. 2011, 106, 1014. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Bertani, L.; Ceccarelli, L.; Bodini, G.; Zingone, F.; Buda, A.; Facchin, S.; Lorenzon, G.; Marchi, S.; Marabotto, E.; et al. Antimicrobial treatment with the fixed-dose antibiotic combination RHB-104 for Mycobacterium avium subspecies paratuberculosis in Crohn’s disease: Pharmacological and clinical implications. Expert Opin. Biol. Ther. 2019, 19, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Townsend, C.M.; Parker, C.E.; MacDonald, J.K.; Nguyen, T.M.; Jairath, V.; Feagan, B.G.; Khanna, R. Antibiotics for induction and maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2019, 2, CD012730. [Google Scholar] [CrossRef] [PubMed]
- Selby, W.; Pavli, P.; Crotty, B.; Florin, T.; Radford-Smith, G.; Gibson, P.; Mitchell, B.; Connell, W.; Read, R.; Merrett, M.; et al. Antibiotics in Crohn’s Disease Study Group. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology 2007, 132, 2313–2319. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Naser, S.; Offman, E.; Nastya, K.; Robert, H.; Thomas, W.; Grazyna, R.; Beata, S.; Tomasz, A.; Wos Anna, W.; et al. RHB-104, a Fixed-Dose, Oral Antibiotic Combination Against Mycobacterium Avium Paratuberculosis (MAP) Infection, Is Effective in Moderately to Severely Active Crohn’s Disease. Am. J. Gastroenterol. Oct. 2019, 114, S376–S377. [Google Scholar] [CrossRef]
- Agrawal, G.; Hamblin, H.; Clancy, A.; Borody, T. Anti-Mycobacterial Antibiotic Therapy Induces Remission in Active Paediatric Crohn’s Disease. Microorganisms 2020, 8, 1112. [Google Scholar] [CrossRef]
- Agrawal, G.; Clancy, A.; Huynh, R.; Borody, T. Profound remission in Crohn’s disease requiring no further treatment for 3–23 years: A case series. Gut Pathog. 2020, 12, 16. [Google Scholar] [CrossRef]
- Honap, S.; Johnston, E.L.; Agrawal, G.; Al-Hakim, B.; Hermon-Taylor, J.; Sanderson, J.D. Anti-Mycobacterium paratuberculosis (MAP) therapy for Crohn’s disease: An overview and update. Frontline Gastroenterol. 2020, 12, 397–403. [Google Scholar] [CrossRef]
- Liu, F.; Tang, J.; Ye, L.; Tan, J.; Qiu, Y.; Hu, F.; He, J.; Chen, B.; He, Y.; Zeng, Z.; et al. Prophylactic Antitubercular Therapy Is Associated With Accelerated Disease Progression in Patients With Crohn’s Disease Receiving Anti-TNF Therapy: A Retrospective Multicenter Study. Clin. Transl. Gastroenterol. 2022, 13, e00493. [Google Scholar] [CrossRef]
- Demarre, G.; Prudent, V.; Schenk, H.; Rousseau, E.; Bringer, M.A.; Barnich, N.; Tran Van Nhieu, G.; Rimsky, S.; De Monte, S.; Espéli, O. The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathog. 2019, 15, e1008123. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–473. [Google Scholar] [CrossRef]
- Wiseman, D. The effect of pH on the inhibitory activity of chloroquine against Esche-richia coli. J. Pharm. Pharmacol. 1972, 24, 162p. [Google Scholar]
- Flanagan, P.K.; Campbell, B.J.; Rhodes, J.M. Hydroxychloroquine as a treatment for Crohn’s disease: Enhancing antibiotic efficacy and macrophage killing of E coli. Gut 2012, 61, A60–A61. [Google Scholar] [CrossRef]
- Flanagan, P.K.; Chiewchengchol, D.; Wright, H.L.; Edwards, S.W.; Alswied, A.; Satsangi, J.; Subramanian, S.; Rhodes, J.M.; Campbell, B.J. Killing of Escherichia coli by Crohn’s Disease Monocyte-derived Macrophages Its Enhancement by Hydroxychloroquine Vitamin, D. Inflamm. Bowel Dis. 2015, 21, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Subramanian, S.; Flanagan, P.K.; Horgan, G.W.; Martin, K.; Mansfield, J.; Parkes, M.; Hart, A.; Dallal, H.; Iqbal, T.; et al. Randomized Trial of Ciprofloxacin Doxycycline and Hydroxychloroquine Versus Budesonide in Active Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 2700–2711. [Google Scholar] [CrossRef] [PubMed]
- Steinhart, A.H.; Feagan, B.G.; Wong, C.J.; Vandervoort, M.; Mikolainis, S.; Croitoru, K.; Seidman, E.; Leddin, D.J.; Bitton, A.; Drouin, E.; et al. Combined budesonide and antibiotic therapy for active Crohn’s disease: A randomized controlled trial. Gastroenterology 2002, 123, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Nikfar, S.; Rezaie, A.; Abdollahi, M. A meta-analysis of broad-spectrum anti-biotic therapy in patients with active Crohn’s disease. Clin. Ther. 2006, 28, 1983–1988. [Google Scholar] [CrossRef]
- Prantera, C.; Lochs, H.; Grimaldi, M.; Danese, S.; Scribano, M.L.; Gionchetti, P.; Retic Study Group (Rifaximin-Eir Treatment in Crohn’s Disease). Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology 2012, 142, 473–481.e4. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, Z.R.; Yang, C.Q. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp. Ther. Med. 2012, 4, 1051–1056. [Google Scholar] [CrossRef]
- Su, J.W.; Ma, J.J.; Zhang, H.J. Use of antibiotics in patients with Crohn’s disease: A syste-matic review and meta-analysis. J. Dig. Dis. 2015, 16, 58–66. [Google Scholar] [CrossRef]
- Sivignon, A.; Bouckaert, J.; Bernard, J.; Gouin, S.G.; Barnich, N. The potential of FimH as a novel therapeutic target for the treatment of Crohn’s disease. Expert Opin. Ther. Targets 2017, 21, 837–847. [Google Scholar] [CrossRef]
- Barnich, N.; Carvalho, F.A.; Glasser, A.L.; Darcha, C.; Jantscheff, P.; Allez, M.; Peeters, H.; Bommelaer, G.; Desreumaux, P.; Colombel, J.F.; et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Investig. 2007, 117, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Mydock-McGrane, L.K.; Hannan, T.J.; Janetka, J.W. Rational design strategies for FimH antagonists: New drugs on the horizon for urinary tract infection and Crohn’s disease. Expert Opin. Drug Discov. 2017, 12, 711–731. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Fu, L.; Wang, J. Protocol for Fecal Microbiota Transplantation in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2018, 2018, 8941340. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Harbord, M. A patient with severe Crohn’s colitis responds to Faecal Microbiota Transplantation. J. Crohn’s Colitis 2014, 8, 256–257. [Google Scholar] [CrossRef]
- Cui, B.; Feng, Q.; Wang, H.; Wang, M.; Peng, Z.; Li, P.; Huang, G.; Liu, Z.; Wu, P.; Fan, Z.; et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: Safety, feasibility, and efficacy trial results. J. Gastroenterol. Hepatol. 2015, 30, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Kao, D.; Hotte, N.; Gillevet, P.; Madsen, K. Fecal micro-biota transplantation inducing remission in Crohn’s colitis and the associated changes in fecal microbial profile. J. Clin. Gastroenterol. 2014, 48, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Joossens, M.; Verbeke, K.; Hildebrand, F.; Machiels, K.; Van den Broeck, K.; Van Assche, G.; Rutgeerts, P.; Raes, J. Pilot Study on the safety and efficacy of faecal microbiota transplantation in refractory Crohn’s disease. Gastroenterology 2012, 142, S360. [Google Scholar] [CrossRef]
- Cheng, F.; Huang, Z.; Wei, W.; Li, Z. Fecal microbiota transplantation for Crohn’s disease: A systematic review and me-ta-analysis. Tech. Coloproctology 2021, 25, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Tsilingiri, K.; Rescigno, M. Postbiotics: What else? Benef. Microbes 2013, 4, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Limketkai, B.N.; Akobeng, A.K.; Gordon, M.; Adepoju, A.A. Probiotics for in-duction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2020, 7, CD006634. [Google Scholar] [CrossRef] [PubMed]
- Kotłowski, R. Use of Escherichia coli Nissle 1917 producing recombinant colicins for treatment of IBD patients. Med. Hypotheses 2016, 93, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Sivignon, A.; Chervy, M.; Chevarin, C.; Ragot, E.; Billard, E.; Denizot, J.; Barnich, N. An adherent-invasive Escherichia coli-colonized mouse model to evaluate microbiota-targeting strategies in Crohn’s disease. Dis. Model. Mech. 2022, 15, dmm049707. [Google Scholar] [CrossRef]
- Galtier, M.; De Sordi, L.; Sivignon, A.; de Vallée, A.; Maura, D.; Neut, C.; Rahmouni, O.; Wannerberger, K.; Darfeuille-Michaud, A.; Desreumaux, P.; et al. Bacteriophages Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. J. Crohn’s Colitis 2017, 11, 840–847. [Google Scholar] [CrossRef]
- Gutiérrez, B.; Domingo-Calap, P. Phage Therapy in Gastrointestinal Diseas-es. Microorganisms 2020, 8, 1420. [Google Scholar] [CrossRef]
- Boucher, D.; Barnich, N. Phage Therapy Against Adherent-invasive E. coli: Towards a Promising Treatment of Crohn’s Disease Patients? J. Crohn’s Colitis 2022, 16, 1509–1510. [Google Scholar] [CrossRef]
- Mohammadi, T.C.; Jazi, K.; Bolouriyan, A.; Soleymanitabar, A. Stem cells in treatment of crohn’s disease: Recent advances and future directions. Transpl. Immunol. 2023, 80, 101903. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. An-Timicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- Subramanian, S.; Roberts, C.L.; Hart, C.A.; Martin, H.M.; Edwards, S.W.; Rhodes, J.M.; Campbell, B.J. Replication of Colonic Crohn’s Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob. Agents Chemother. 2008, 52, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Dogan, B.; Scherl, E.; Bosworth, B.; Yantiss, R.; Altier, C.; McDonough, P.L.; Jiang, Z.D.; Dupont, H.L.; Garneau, P.; Harel, J.; et al. Multidrug resistance is common in Escherichia coli associated with ileal Crohn’s disease. Inflamm. Bowel Dis. 2013, 19, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Ledder, O.; Turner, D. Antibiotics in IBD: Still a Role in the Biological Era? Inflamm. Bowel Dis. 2018, 24, 1676–1688. [Google Scholar] [CrossRef] [PubMed]
Bacteria | References |
---|---|
| [2] |
| [2] |
| [2] |
| [2] |
| [8,9,10,11,12,13] |
| [14,15] |
Author | Number of Trials | Number of Patients | Antibiotics | Duration | Placebo or Other Comparators | Primary Outcome | OR |
---|---|---|---|---|---|---|---|
Borgoankar [33] | 6 | 317 | Anti-MAP + corticosteroids (2 trials) | 6–24 months | - | CDAI < 150 | 1.10 (0.69–1.74) (all trials) |
865 | Anti-MAP + standard therapy (4 trials) | 3.37 (1.38–8.24) (2 trials) | |||||
Feller [34] | 16 | 58 | Rifaximin (1 trial) | 3 months | Placebo | CDAI < 150 | 2.07 (0.71–6.06) |
206 | Nitroimidazole (3 trials) | 3–24 months | Placebo | CDAI < 150 | 3.54 (1.94–6.47) | ||
322 | Clofazimine (4 trials) | 3–24 months | Placebo | CDAI > 70 from baseline | 2.86 (1.67–4.88) | ||
287 | Clarithromycin alone or in combination (4 trials) | 3–24 months | Placebo | CDAI < 150 | 0.58 (0.29–1.18) | ||
107 | Anti-tuberculosis drugs (3 trials) | 3–24 months | Placebo | CDAI < 150 | 11.3 (2.60–48.8) | ||
47 | Ciprofloxacin (1 trial) | 6 months | Placebo | CDAI < 150 | 0.85 (0.73–0.99) | ||
Khan [35] | 10 | 1160 | Macrolides, fluorochinolones, 5-nitromidazole, Rifaximin alone or in combination | 1–4 months | Placebo | CDAI < 150 | 0.85 |
Selby [38] | 1 | 213 | Rifabutin, clarithromycin, and clofazimine (AMAT) | 16–104 months | Placebo + 16 weeks tapering course Prednisolone | At least 1 relapse between 16 and 52 weeks | 2.04 (0.84–4.93) |
Graham [39] | 1 | 331 | RHB104: rifabutin, clarithromycin, or Clofazimine + anti-TNF or azatioprine or 6-mercaptopurine + 5 ASA corcorticosteroids (tapering after 8 weeks) | 12 months | Placebo | CDAI < 150 | at 26 weeks |
Agrawal [40] | 1 | 16 | Rifabutin, clarithromycin, clofazimine + metronidazole or ciprofloxacin | 5 months | - | wPCDAI: 47.5 | - |
Author | Number of Trials | Number of Patients | Antibiotics | Duration | Placebo or Other Comparators | Primary Outcome | OR |
---|---|---|---|---|---|---|---|
Steinhart [50] | 1 | 134 | Metronidazole, ciprofloxacin, budesonide | 8 weeks | Placebo | CDAI < 150 | - |
Rahimi [51] | 6 | 804 | Metronidazole, ciprofloxacin, Cotrimoxazole alone (2 trials) or in combination (4 trials) | 2–24 weeks | Placebo | CDAI < 150 | 2.257 |
Prantera [52] | 1 | 402 | Rifaximin | 12 weeks | Placebo | CDAI < 150 | - |
Wang [53] | - | 83 | Ciprofloxacin, metronuidazole alone or in combination, rifaximin, clarithromycin | 2–16 weeks | Placebo | CDAI < 150 | 1.35 |
Su [54] | 15 | 1407 | Ciprofloxacin, fluoroquinolones, clarithromycin, metronidazole, rifaximin | at least 4 weeks | Placebo | CDAI < 15 | 1.35 |
Townsend [37] | 13 | 1303 | Rifaximin, clarithomycin, metronidazole, cotrimoxazole, Anti-MAP alone or in combination with budesonide | 6–14 weeks | Placebo alone or in combination | CDAI < 150 | 0.77 to 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iaquinto, G.; Mazzarella, G.; Sellitto, C.; Lucariello, A.; Melina, R.; Iaquinto, S.; De Luca, A.; Rotondi Aufiero, V. Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update. Antibiotics 2024, 13, 151. https://doi.org/10.3390/antibiotics13020151
Iaquinto G, Mazzarella G, Sellitto C, Lucariello A, Melina R, Iaquinto S, De Luca A, Rotondi Aufiero V. Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update. Antibiotics. 2024; 13(2):151. https://doi.org/10.3390/antibiotics13020151
Chicago/Turabian StyleIaquinto, Gaetano, Giuseppe Mazzarella, Carmine Sellitto, Angela Lucariello, Raffaele Melina, Salvatore Iaquinto, Antonio De Luca, and Vera Rotondi Aufiero. 2024. "Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update" Antibiotics 13, no. 2: 151. https://doi.org/10.3390/antibiotics13020151
APA StyleIaquinto, G., Mazzarella, G., Sellitto, C., Lucariello, A., Melina, R., Iaquinto, S., De Luca, A., & Rotondi Aufiero, V. (2024). Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update. Antibiotics, 13(2), 151. https://doi.org/10.3390/antibiotics13020151