Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update
Abstract
:1. Introduction
2. Literature Search Strategy
3. Antibiotic Treatment Targeting MAP in Active CD Patients
4. Antibiotic Treatment Targeting AIEC in Patients with Active CD
5. Short-Term Antibiotic Treatment
6. Other Therapeutic Strategies Targeting AIEC
- -
- Anti-adhesive molecules
- -
- Fecal microbiota transplantation
- -
- Probiotics, prebiotics, and postbiotics
- -
- Phage therapy
- -
- Stem cells
7. Discussion
8. Conclusions
9. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Roda, G.; Chien Ng, S.; Kotze, P.G.; Argollo, M.; Panaccione, R.; Spinelli, A.; Kaser, A.; Peyrin-Biroulet, L.; Danese, S. Crohn’s disease. Nat. Rev. Dis. Primers 2020, 6, 26, Erratum in Nat. Rev. Dis. Primers 2020, 6, 22. [Google Scholar] [CrossRef]
- Khan, I.A.; Nayak, B.; Markandey, M.; Bajaj, A.; Verma, M.; Kumar, S.; Singh, M.K.; Kedia, S.; Ahuja, V. Differential prevalence of pathobionts and host gene polymorphisms in chronic inflammatory intestinal diseases: Crohn’s disease and intestinal tuberculosis. PLoS ONE 2021, 16, e0256098. [Google Scholar] [CrossRef] [PubMed]
- Vebr, M.; Pomahačová, R.; Sýkora, J.; Schwarz, J. A Narrative Review of Cytokine Networks: Pathophysiological and Therapeutic Implications for Inflammatory Bowel Disease Patho-genesis. Biomedicines 2023, 11, 3229. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, N.S.F.; Barros, L.L.; Azevedo, M.F.C.; Oba, J.; Sobrado, C.W.; Carlos, A.S.; Milani, L.R.; Sipahi, A.M.; Damião, A.O.M.C. Management of inflammatory bowel disease patients in the COVID-19 pandemic era: A Brazilian tertiary referral center guidance. Clinics 2020, 75, e1909. [Google Scholar] [CrossRef]
- Liefferinckx, C.; Cremer, A.; Franchimont, D. Switching biologics used in inflammatory bowel diseases: How to deal with in practice? Curr. Opin. Pharmacol. 2020, 55, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Colombel, J.F.; Panaccione, R.; Bossuyt, P.; Lukas, M.; Baert, F.; Vaňásek, T.; Danalioglu, A.; Novacek, G.; Armuzzi, A.; Hébuterne, X.; et al. Effect of tight control management on Crohn’s disease (CALM): A multicentre, randomised, controlled phase 3 trial. Lancet 2017, 390, 2779–2789, Erratum in Lancet 2018, 390, 2768. [Google Scholar] [CrossRef] [PubMed]
- Murthy, S.K.; Begum, J.; Benchimol, E.I.; Bernstein, C.N.; Kaplan, G.G.; McCurdy, J.D.; Singh, H.; Targownik, L.; Taljaard, M. Introduction of anti-TNF therapy has not yielded expected declines in hospitalisation and intestinal resection rates in inflammatory bowel diseases: A population-based interrupted time series study. Gut 2020, 69, 274–282. [Google Scholar] [CrossRef]
- Ahmed, M.; Metwaly, A.; Haller, D. Modeling microbe-host interaction in the pathogenesis of Crohn’s disease. Int. J. Med. Microbiol. 2021, 311, 151489. [Google Scholar] [CrossRef]
- Iaquinto, G.; Rotondi Aufiero, V.; Mazzarella, G.; Lucariello, A.; Panico, L.; Melina, R.; Iaquinto, S.; De Luca, A.; Sellitto, C. Pathogens in Crohn’s disease: The role of Adherent Invasive Escherichia coli. Crit. Rev. Eukaryot. Gene Expr. 2024, 34, 83–99. [Google Scholar] [CrossRef]
- Mirsepasi-Lauridsen, H.C.; Vallance, B.A.; Krogfelt, K.A.; Petersen, A.M. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin. Microbiol. Rev. 2019, 32, e00060-18. [Google Scholar] [CrossRef]
- Palmela, C.; Chevarin, C.; Xu, Z.; Torres, J.; Sevrin, G.; Hirten, R.; Barnich, N.; Ng, S.C.; Colombel, J.F. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018, 67, 574–587. [Google Scholar] [CrossRef]
- Shaler, C.R.; Elhenawy, W.; Coombes, B.K. The Unique Lifestyle of Crohn’s Disease-Associated Adherent-Invasive Escherichia coli. J. Mol. Biol. 2019, 431, 2970–2981. [Google Scholar] [CrossRef]
- Zheng, L.; Duan, S.L.; Dai, Y.C.; Wu, S.C. Role of adherent invasive Escherichia coli in pathogenesis of inflammatory bowel disease. World J. Clin. Cases 2022, 10, 11671–11689. [Google Scholar] [CrossRef]
- Agrawal, G.; Aitken, J.; Hamblin, H.; Collins, M.; Borody, T.J. Putting Crohn’s on the MAP: Five Common Questions on the Contribution of Mycobacterium avium subspecies paratuberculosis to the Pathophysiology of Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 348–358. [Google Scholar] [CrossRef]
- Aitken, J.M.; Phan, K.; Bodman, S.E.; Sharma, S.; Watt, A.; George, P.M.; Agrawal, G.; Tie, A.B.M. A Mycobacterium species for Crohn’s disease? Pathology 2021, 53, 818–823. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A.; Neut, C.; Barnich, N.; Lederman, E.; Di Martino, P.; Desreumaux, P.; Gambiez, L.; Joly, B.; Cortot, A.; Colombel, J.F. Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn’s disease. Gastroenterology 1998, 115, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Mazzarella, G.; Perna, A.; Marano, A.; Lucariello, A.; Rotondi Aufiero, V.; Sorrentino, A.; Melina, R.; Guerra, G.; Taccone, F.S.; Iaquinto, G.; et al. Pathogenic Role of Associated Adherent-Invasive Escherichia coli in Crohn’s Disease. J. Cell. Physiol. 2017, 232, 2860–2868. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Han, D.S.; Jo, S.V.; Lee, A.R.; Park, C.H.; Eun, C.S.; Lee, Y. Characteristics and pathogenic role of adherent-invasive Escherichia coli in inflammatory bowel disease: Potential impact on clinical outcomes. PLoS ONE 2019, 14, e0216165. [Google Scholar] [CrossRef]
- Mansour, S.; Asrar, T.; Elhenawy, W. The multifaceted virulence of adherentinvasive Escherichia coli. Gut Microbes 2023, 15, 2172669. [Google Scholar] [CrossRef] [PubMed]
- Glasser, A.L.; Boudeau, J.; Barnich, N.; Perruchot, M.H.; Colombel, J.F.; Darfeuille-Michaud, A. Adherent invasive Escherichia coli strains from patients with Crohn’s disease survive and replicate within macrophages without inducing host cell death. Infect. Immun. 2001, 69, 5529–5537. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.; Borody, T.J.; Leis, S. The many faces of Crohn’s disease: Latest concepts in etiology. Open J. Int. Med. 2012, 2, 107. [Google Scholar] [CrossRef]
- Darfeuille-Michaud, A.; Boudeau, J.; Bulois, P.; Neut, C.; Glasser, A.L.; Barnich, N.; Bringer, M.A.; Swidsinski, A.; Beaugerie, L.; Colombel, J.F. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology 2004, 127, 412–421. [Google Scholar] [CrossRef]
- Buisson, A.; Vazeille, E.; Fumery, M.; Pariente, B.; Nancey, S.; Seksik, P.; Peyrin-Biroulet, L.; Allez, M.; Ballet, N.; Filippi, J.; et al. Faster and less invasive tools to identify patients with ileal colonization by adherent-invasive E. coli in Crohn’s disease. United Eur. Gastroenterol. J. 2021, 9, 1007–1018. [Google Scholar] [CrossRef]
- Nadalian, B.; Yadegar, A.; Houri, H.; Olfatifar, M.; Shahrokh, S.; Asadzadeh Aghdaei, H.; Suzuki, H.; Zali, M.R. Prevalence of the pathobiont adherent-invasive Escherichia coli and inflammatory bowel disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 852–863. [Google Scholar] [CrossRef]
- Petersen, A.M. Gastrointestinal dysbiosis and Escherichia coli pathobionts in inflammatory bowel diseases. APMIS 2022, 130 (Suppl. S144), 1–38. [Google Scholar] [CrossRef]
- Spaulding, C.N.; Klein, R.D.; Schreiber, H.L., 4th; Janetka, J.W.; Hultgren, S.J. Precision antimicrobial therapeutics: The path of least resistance? NPJ Biofilms Microbiomes 2018, 4, 4. [Google Scholar] [CrossRef]
- Olsen, I.; Tollefsen, S.; Aagaard, C.; Reitan, L.J.; Bannantine, J.P.; Andersen, P.; Sollid, L.M.; Lundin, K.E. Isolation of Mycobacterium avium subspecies paratuberculosis reactive CD4 T cells from intestinal biopsies of Crohn’s disease patients. PLoS ONE 2009, 5, e5641. [Google Scholar] [CrossRef] [PubMed]
- Naser, S.A.; Sagramsingh, S.R.; Naser, A.S.; Thanigachalam, S. Mycobacterium avium subspecies paratuberculosis causes Crohn’s disease in some inflammatory bowel disease patients. World J. Gastroenterol. 2014, 20, 7403–7415. [Google Scholar] [CrossRef] [PubMed]
- Autschbach, F.; Eisold, S.; Hinz, U.; Zinser, S.; Linnebacher, M.; Giese, T.; Löffler, T.; Büchler, M.W.; Schmidt, J. High prevalence of Mycobacterium avium subspecies paratuberculosis IS900 DNA in gut tissues from individuals with Crohn’s disease. Gut 2005, 54, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Greenstein, R.J. Is Crohn’s disease caused by a mycobacterium? Comparisons with le-prosy, tuberculosis, and Johne’s disease. Lancet Infect. Dis. 2003, 3, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Mintz, M.J.; Lukin, D.J. Mycobacterium avium subspecies paratuberculosis (MAP) and Crohn’s disease: The debate continues. Transl. Gastroenterol. Hepatol. 2023, 8, 28. [Google Scholar] [CrossRef]
- Chamberlin, W.; Borody, T.J.; Campbell, J. Primary treatment of Crohn’s disease: Combi-ned antibiotics taking center stage. Expert. Rev. Clin. Immunol. 2011, 7, 751–760. [Google Scholar] [CrossRef]
- Borgaonkar, M.R.; MacIntosh, D.G.; Fardy, J.M. A meta-analysis of anti mycobacterial therapy for Crohn’s disease. Am. J. Gastroenterol. 2000, 95, 725–729. [Google Scholar] [CrossRef] [PubMed]
- Feller, M.; Huwiler, K.; Schoepfer, A.; Shang, A.; Furrer, H.; Egger, M. Long-term antibiotic treatment for Crohn’s disease: Systematic review and me-ta-analysis of placebo-controlled trials. Clin. Infect. Dis. 2010, 50, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.J.; Ullman, T.A.; Ford, A.C.; Abreu, M.T.; Abadir, A.; Marshall, J.K.; Talley, N.J.; Moayyedi, P. Antibiotic therapy in inflammatory bowel disease: A systematic review and meta-analysis. Am. J. Gastroenterol. 2011, 106, 661–673, Erratum in Am. J. Gastroenterol. 2011, 106, 1014. [Google Scholar] [CrossRef] [PubMed]
- Savarino, E.; Bertani, L.; Ceccarelli, L.; Bodini, G.; Zingone, F.; Buda, A.; Facchin, S.; Lorenzon, G.; Marchi, S.; Marabotto, E.; et al. Antimicrobial treatment with the fixed-dose antibiotic combination RHB-104 for Mycobacterium avium subspecies paratuberculosis in Crohn’s disease: Pharmacological and clinical implications. Expert Opin. Biol. Ther. 2019, 19, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Townsend, C.M.; Parker, C.E.; MacDonald, J.K.; Nguyen, T.M.; Jairath, V.; Feagan, B.G.; Khanna, R. Antibiotics for induction and maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2019, 2, CD012730. [Google Scholar] [CrossRef] [PubMed]
- Selby, W.; Pavli, P.; Crotty, B.; Florin, T.; Radford-Smith, G.; Gibson, P.; Mitchell, B.; Connell, W.; Read, R.; Merrett, M.; et al. Antibiotics in Crohn’s Disease Study Group. Two-year combination antibiotic therapy with clarithromycin, rifabutin, and clofazimine for Crohn’s disease. Gastroenterology 2007, 132, 2313–2319. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Naser, S.; Offman, E.; Nastya, K.; Robert, H.; Thomas, W.; Grazyna, R.; Beata, S.; Tomasz, A.; Wos Anna, W.; et al. RHB-104, a Fixed-Dose, Oral Antibiotic Combination Against Mycobacterium Avium Paratuberculosis (MAP) Infection, Is Effective in Moderately to Severely Active Crohn’s Disease. Am. J. Gastroenterol. Oct. 2019, 114, S376–S377. [Google Scholar] [CrossRef]
- Agrawal, G.; Hamblin, H.; Clancy, A.; Borody, T. Anti-Mycobacterial Antibiotic Therapy Induces Remission in Active Paediatric Crohn’s Disease. Microorganisms 2020, 8, 1112. [Google Scholar] [CrossRef]
- Agrawal, G.; Clancy, A.; Huynh, R.; Borody, T. Profound remission in Crohn’s disease requiring no further treatment for 3–23 years: A case series. Gut Pathog. 2020, 12, 16. [Google Scholar] [CrossRef]
- Honap, S.; Johnston, E.L.; Agrawal, G.; Al-Hakim, B.; Hermon-Taylor, J.; Sanderson, J.D. Anti-Mycobacterium paratuberculosis (MAP) therapy for Crohn’s disease: An overview and update. Frontline Gastroenterol. 2020, 12, 397–403. [Google Scholar] [CrossRef]
- Liu, F.; Tang, J.; Ye, L.; Tan, J.; Qiu, Y.; Hu, F.; He, J.; Chen, B.; He, Y.; Zeng, Z.; et al. Prophylactic Antitubercular Therapy Is Associated With Accelerated Disease Progression in Patients With Crohn’s Disease Receiving Anti-TNF Therapy: A Retrospective Multicenter Study. Clin. Transl. Gastroenterol. 2022, 13, e00493. [Google Scholar] [CrossRef]
- Demarre, G.; Prudent, V.; Schenk, H.; Rousseau, E.; Bringer, M.A.; Barnich, N.; Tran Van Nhieu, G.; Rimsky, S.; De Monte, S.; Espéli, O. The Crohn’s disease-associated Escherichia coli strain LF82 relies on SOS and stringent responses to survive, multiply and tolerate antibiotics within macrophages. PLoS Pathog. 2019, 15, e1008123. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–473. [Google Scholar] [CrossRef]
- Wiseman, D. The effect of pH on the inhibitory activity of chloroquine against Esche-richia coli. J. Pharm. Pharmacol. 1972, 24, 162p. [Google Scholar]
- Flanagan, P.K.; Campbell, B.J.; Rhodes, J.M. Hydroxychloroquine as a treatment for Crohn’s disease: Enhancing antibiotic efficacy and macrophage killing of E coli. Gut 2012, 61, A60–A61. [Google Scholar] [CrossRef]
- Flanagan, P.K.; Chiewchengchol, D.; Wright, H.L.; Edwards, S.W.; Alswied, A.; Satsangi, J.; Subramanian, S.; Rhodes, J.M.; Campbell, B.J. Killing of Escherichia coli by Crohn’s Disease Monocyte-derived Macrophages Its Enhancement by Hydroxychloroquine Vitamin, D. Inflamm. Bowel Dis. 2015, 21, 1499–1510. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.M.; Subramanian, S.; Flanagan, P.K.; Horgan, G.W.; Martin, K.; Mansfield, J.; Parkes, M.; Hart, A.; Dallal, H.; Iqbal, T.; et al. Randomized Trial of Ciprofloxacin Doxycycline and Hydroxychloroquine Versus Budesonide in Active Crohn’s Disease. Dig. Dis. Sci. 2021, 66, 2700–2711. [Google Scholar] [CrossRef] [PubMed]
- Steinhart, A.H.; Feagan, B.G.; Wong, C.J.; Vandervoort, M.; Mikolainis, S.; Croitoru, K.; Seidman, E.; Leddin, D.J.; Bitton, A.; Drouin, E.; et al. Combined budesonide and antibiotic therapy for active Crohn’s disease: A randomized controlled trial. Gastroenterology 2002, 123, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, R.; Nikfar, S.; Rezaie, A.; Abdollahi, M. A meta-analysis of broad-spectrum anti-biotic therapy in patients with active Crohn’s disease. Clin. Ther. 2006, 28, 1983–1988. [Google Scholar] [CrossRef]
- Prantera, C.; Lochs, H.; Grimaldi, M.; Danese, S.; Scribano, M.L.; Gionchetti, P.; Retic Study Group (Rifaximin-Eir Treatment in Crohn’s Disease). Rifaximin-extended intestinal release induces remission in patients with moderately active Crohn’s disease. Gastroenterology 2012, 142, 473–481.e4. [Google Scholar] [CrossRef]
- Wang, S.L.; Wang, Z.R.; Yang, C.Q. Meta-analysis of broad-spectrum antibiotic therapy in patients with active inflammatory bowel disease. Exp. Ther. Med. 2012, 4, 1051–1056. [Google Scholar] [CrossRef]
- Su, J.W.; Ma, J.J.; Zhang, H.J. Use of antibiotics in patients with Crohn’s disease: A syste-matic review and meta-analysis. J. Dig. Dis. 2015, 16, 58–66. [Google Scholar] [CrossRef]
- Sivignon, A.; Bouckaert, J.; Bernard, J.; Gouin, S.G.; Barnich, N. The potential of FimH as a novel therapeutic target for the treatment of Crohn’s disease. Expert Opin. Ther. Targets 2017, 21, 837–847. [Google Scholar] [CrossRef]
- Barnich, N.; Carvalho, F.A.; Glasser, A.L.; Darcha, C.; Jantscheff, P.; Allez, M.; Peeters, H.; Bommelaer, G.; Desreumaux, P.; Colombel, J.F.; et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J. Clin. Investig. 2007, 117, 1566–1574. [Google Scholar] [CrossRef] [PubMed]
- Mydock-McGrane, L.K.; Hannan, T.J.; Janetka, J.W. Rational design strategies for FimH antagonists: New drugs on the horizon for urinary tract infection and Crohn’s disease. Expert Opin. Drug Discov. 2017, 12, 711–731. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Fu, L.; Wang, J. Protocol for Fecal Microbiota Transplantation in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. BioMed Res. Int. 2018, 2018, 8941340. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.; Harbord, M. A patient with severe Crohn’s colitis responds to Faecal Microbiota Transplantation. J. Crohn’s Colitis 2014, 8, 256–257. [Google Scholar] [CrossRef]
- Cui, B.; Feng, Q.; Wang, H.; Wang, M.; Peng, Z.; Li, P.; Huang, G.; Liu, Z.; Wu, P.; Fan, Z.; et al. Fecal microbiota transplantation through mid-gut for refractory Crohn’s disease: Safety, feasibility, and efficacy trial results. J. Gastroenterol. Hepatol. 2015, 30, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Kao, D.; Hotte, N.; Gillevet, P.; Madsen, K. Fecal micro-biota transplantation inducing remission in Crohn’s colitis and the associated changes in fecal microbial profile. J. Clin. Gastroenterol. 2014, 48, 625–628. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Joossens, M.; Verbeke, K.; Hildebrand, F.; Machiels, K.; Van den Broeck, K.; Van Assche, G.; Rutgeerts, P.; Raes, J. Pilot Study on the safety and efficacy of faecal microbiota transplantation in refractory Crohn’s disease. Gastroenterology 2012, 142, S360. [Google Scholar] [CrossRef]
- Cheng, F.; Huang, Z.; Wei, W.; Li, Z. Fecal microbiota transplantation for Crohn’s disease: A systematic review and me-ta-analysis. Tech. Coloproctology 2021, 25, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Tsilingiri, K.; Rescigno, M. Postbiotics: What else? Benef. Microbes 2013, 4, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Limketkai, B.N.; Akobeng, A.K.; Gordon, M.; Adepoju, A.A. Probiotics for in-duction of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2020, 7, CD006634. [Google Scholar] [CrossRef] [PubMed]
- Kotłowski, R. Use of Escherichia coli Nissle 1917 producing recombinant colicins for treatment of IBD patients. Med. Hypotheses 2016, 93, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Sivignon, A.; Chervy, M.; Chevarin, C.; Ragot, E.; Billard, E.; Denizot, J.; Barnich, N. An adherent-invasive Escherichia coli-colonized mouse model to evaluate microbiota-targeting strategies in Crohn’s disease. Dis. Model. Mech. 2022, 15, dmm049707. [Google Scholar] [CrossRef]
- Galtier, M.; De Sordi, L.; Sivignon, A.; de Vallée, A.; Maura, D.; Neut, C.; Rahmouni, O.; Wannerberger, K.; Darfeuille-Michaud, A.; Desreumaux, P.; et al. Bacteriophages Targeting Adherent Invasive Escherichia coli Strains as a Promising New Treatment for Crohn’s Disease. J. Crohn’s Colitis 2017, 11, 840–847. [Google Scholar] [CrossRef]
- Gutiérrez, B.; Domingo-Calap, P. Phage Therapy in Gastrointestinal Diseas-es. Microorganisms 2020, 8, 1420. [Google Scholar] [CrossRef]
- Boucher, D.; Barnich, N. Phage Therapy Against Adherent-invasive E. coli: Towards a Promising Treatment of Crohn’s Disease Patients? J. Crohn’s Colitis 2022, 16, 1509–1510. [Google Scholar] [CrossRef]
- Mohammadi, T.C.; Jazi, K.; Bolouriyan, A.; Soleymanitabar, A. Stem cells in treatment of crohn’s disease: Recent advances and future directions. Transpl. Immunol. 2023, 80, 101903. [Google Scholar] [CrossRef]
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. An-Timicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- Subramanian, S.; Roberts, C.L.; Hart, C.A.; Martin, H.M.; Edwards, S.W.; Rhodes, J.M.; Campbell, B.J. Replication of Colonic Crohn’s Disease Mucosal Escherichia coli Isolates within Macrophages and Their Susceptibility to Antibiotics. Antimicrob. Agents Chemother. 2008, 52, 427–434. [Google Scholar] [CrossRef] [PubMed]
- Dogan, B.; Scherl, E.; Bosworth, B.; Yantiss, R.; Altier, C.; McDonough, P.L.; Jiang, Z.D.; Dupont, H.L.; Garneau, P.; Harel, J.; et al. Multidrug resistance is common in Escherichia coli associated with ileal Crohn’s disease. Inflamm. Bowel Dis. 2013, 19, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Ledder, O.; Turner, D. Antibiotics in IBD: Still a Role in the Biological Era? Inflamm. Bowel Dis. 2018, 24, 1676–1688. [Google Scholar] [CrossRef] [PubMed]
Bacteria | References |
---|---|
| [2] |
| [2] |
| [2] |
| [2] |
| [8,9,10,11,12,13] |
| [14,15] |
Author | Number of Trials | Number of Patients | Antibiotics | Duration | Placebo or Other Comparators | Primary Outcome | OR |
---|---|---|---|---|---|---|---|
Borgoankar [33] | 6 | 317 | Anti-MAP + corticosteroids (2 trials) | 6–24 months | - | CDAI < 150 | 1.10 (0.69–1.74) (all trials) |
865 | Anti-MAP + standard therapy (4 trials) | 3.37 (1.38–8.24) (2 trials) | |||||
Feller [34] | 16 | 58 | Rifaximin (1 trial) | 3 months | Placebo | CDAI < 150 | 2.07 (0.71–6.06) |
206 | Nitroimidazole (3 trials) | 3–24 months | Placebo | CDAI < 150 | 3.54 (1.94–6.47) | ||
322 | Clofazimine (4 trials) | 3–24 months | Placebo | CDAI > 70 from baseline | 2.86 (1.67–4.88) | ||
287 | Clarithromycin alone or in combination (4 trials) | 3–24 months | Placebo | CDAI < 150 | 0.58 (0.29–1.18) | ||
107 | Anti-tuberculosis drugs (3 trials) | 3–24 months | Placebo | CDAI < 150 | 11.3 (2.60–48.8) | ||
47 | Ciprofloxacin (1 trial) | 6 months | Placebo | CDAI < 150 | 0.85 (0.73–0.99) | ||
Khan [35] | 10 | 1160 | Macrolides, fluorochinolones, 5-nitromidazole, Rifaximin alone or in combination | 1–4 months | Placebo | CDAI < 150 | 0.85 |
Selby [38] | 1 | 213 | Rifabutin, clarithromycin, and clofazimine (AMAT) | 16–104 months | Placebo + 16 weeks tapering course Prednisolone | At least 1 relapse between 16 and 52 weeks | 2.04 (0.84–4.93) |
Graham [39] | 1 | 331 | RHB104: rifabutin, clarithromycin, or Clofazimine + anti-TNF or azatioprine or 6-mercaptopurine + 5 ASA corcorticosteroids (tapering after 8 weeks) | 12 months | Placebo | CDAI < 150 | at 26 weeks |
Agrawal [40] | 1 | 16 | Rifabutin, clarithromycin, clofazimine + metronidazole or ciprofloxacin | 5 months | - | wPCDAI: 47.5 | - |
Author | Number of Trials | Number of Patients | Antibiotics | Duration | Placebo or Other Comparators | Primary Outcome | OR |
---|---|---|---|---|---|---|---|
Steinhart [50] | 1 | 134 | Metronidazole, ciprofloxacin, budesonide | 8 weeks | Placebo | CDAI < 150 | - |
Rahimi [51] | 6 | 804 | Metronidazole, ciprofloxacin, Cotrimoxazole alone (2 trials) or in combination (4 trials) | 2–24 weeks | Placebo | CDAI < 150 | 2.257 |
Prantera [52] | 1 | 402 | Rifaximin | 12 weeks | Placebo | CDAI < 150 | - |
Wang [53] | - | 83 | Ciprofloxacin, metronuidazole alone or in combination, rifaximin, clarithromycin | 2–16 weeks | Placebo | CDAI < 150 | 1.35 |
Su [54] | 15 | 1407 | Ciprofloxacin, fluoroquinolones, clarithromycin, metronidazole, rifaximin | at least 4 weeks | Placebo | CDAI < 15 | 1.35 |
Townsend [37] | 13 | 1303 | Rifaximin, clarithomycin, metronidazole, cotrimoxazole, Anti-MAP alone or in combination with budesonide | 6–14 weeks | Placebo alone or in combination | CDAI < 150 | 0.77 to 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iaquinto, G.; Mazzarella, G.; Sellitto, C.; Lucariello, A.; Melina, R.; Iaquinto, S.; De Luca, A.; Rotondi Aufiero, V. Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update. Antibiotics 2024, 13, 151. https://doi.org/10.3390/antibiotics13020151
Iaquinto G, Mazzarella G, Sellitto C, Lucariello A, Melina R, Iaquinto S, De Luca A, Rotondi Aufiero V. Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update. Antibiotics. 2024; 13(2):151. https://doi.org/10.3390/antibiotics13020151
Chicago/Turabian StyleIaquinto, Gaetano, Giuseppe Mazzarella, Carmine Sellitto, Angela Lucariello, Raffaele Melina, Salvatore Iaquinto, Antonio De Luca, and Vera Rotondi Aufiero. 2024. "Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update" Antibiotics 13, no. 2: 151. https://doi.org/10.3390/antibiotics13020151
APA StyleIaquinto, G., Mazzarella, G., Sellitto, C., Lucariello, A., Melina, R., Iaquinto, S., De Luca, A., & Rotondi Aufiero, V. (2024). Antibiotic Therapy for Active Crohn’s Disease Targeting Pathogens: An Overview and Update. Antibiotics, 13(2), 151. https://doi.org/10.3390/antibiotics13020151