Bacteriuria in Paediatric Oncology Patients: Clinical Features, Distribution and Antimicrobial Susceptibility of Bacterial Pathogens at University Hospital Centre Zagreb, Croatia over a 4-Year Period
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morello, W.; La Scola, C.; Alberici, I.; Montini, G. Acute pyelonephritis in children. Pediatr. Nephrol. 2016, 31, 1253–1265. [Google Scholar] [CrossRef]
- Becknell, B.; Schober, M.; Korbel, L.; Spencer, J.D. The diagnosis, evaluation and treatment of acute and recurrent pediatric urinary tract infections. Expert Rev. Anti-Infect. Ther. 2015, 13, 81–90. [Google Scholar] [CrossRef]
- Quigley, R. Diagnosis of urinary tract infections in children. Curr. Opin. Pediatr. 2009, 21, 194–198. [Google Scholar] [CrossRef] [PubMed]
- Bachur, R.; Harper, M.B. Reliability of the urinalysis for predicting urinary tract infections in young febrile children. Arch. Pediatr. Adolesc. Med. 2001, 155, 60–65. [Google Scholar] [CrossRef]
- Byington, C.L.; Rittichier, K.K.; Bassett, K.E.; Castillo, H.; Glasgow, T.S.; Daly, J.; Pavia, A.T. Serious bacterial infections in febrile infants younger than 90 days of age: The importance of ampicillin-resistant pathogens. Pediatrics 2003, 111, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Delbet, J.D.; Lorrot, M.; Ulinski, T. An update on new antibiotic prophylaxis and treatment for urinary tract infections in children. Expert Opin. Pharmacother. 2017, 18, 1619–1625. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Bandettini, R.; Rotulo, G.A.; Mesini, A.; Saffioti, C.; Amoroso, L.; Pierri, F.; Guardo, D.; Castagnola, E. Resistance to Antibiotics of Uropathogen Bacteria Isolated From Urine and Blood in Pediatric Cancer Patients: A Single Center, 12-year Study. Pediatr. Infect. Dis. J. 2020, 39, 1106–1110. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.L.; Shortliffe, L.D. Pediatric urinary tract infections. Pediatr. Clin. N. Am. 2006, 53, 379–400. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.J.; Roilides, E.; Groll, A.H. Infectious complications in pediatric cancer patients. In Principles and Practice of Pediatric Oncology, 5th ed.; Pizzo, P.A., Poplack, D.G., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 1269–1329. [Google Scholar]
- Sandoval, C.; Sinaki, B.; Weiss, R.; Munoz, J.; Ozkaynak, M.F.; Tugal, O.; Jayabose, S. Urinary tract infections in pediatric oncology patients with fever and neutropenia. Pediatr. Hematol. Oncol. 2012, 29, 68–72. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Cadenas, J.A.; Sancosmed Ron, M.; Herrero, B.; Lera Carballo, E.; Lassaletta, A.; Rodrigo, R.; de la Torre, M. Role of urine culture in paediatric patients with cancer with fever and neutropenia: A prospective observational study. Arch. Dis. Child. 2023, 108, 982–986. [Google Scholar] [CrossRef]
- Nicolle, L.E.; Gupta, K.; Bradley, S.F.; Colgan, R.; DeMuri, G.P.; Drekonja, D.; Eckert, L.O.; Geerlings, S.E.; Köves, B.; Hooton, T.M.; et al. Clinical Practice Guideline for the Management of Asymptomatic Bacteriuria: 2019 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2019, 68, 83–110. [Google Scholar] [CrossRef]
- Tigabu, A.; Ferede, W.; Belay, G.; Gelaw, B. Prevalence of Asymptomatic Bacteriuria and Antibiotic Susceptibility Patterns of Bacterial Isolates among Cancer Patients and Healthy Blood Donors at the University of Gondar Specialized Hospital. Int. J. Microbiol. 2020, 2020, 3091564. [Google Scholar] [CrossRef]
- Edlin, R.S.; Shapiro, D.J.; Hersh, A.L.; Copp, H.L. Antibiotic resistance patterns of outpatient pediatric urinary tract infections. J. Urol. 2013, 190, 222–227. [Google Scholar] [CrossRef]
- Larcombe, J. Urinary tract infection in children. Am. Fam. Physician. 2010, 82, 1252–1256. [Google Scholar] [PubMed]
- Larcombe, J. Urinary tract infection in children: Recurrent infections. BMJ Clin. Evid. 2015, 2015, 0306. [Google Scholar]
- Mahony, M.; McMullan, B.; Brown, J.; Kennedy, S.E. Multidrug-resistant organisms in urinary tract infections in children. Pediatr. Nephrol. 2020, 35, 1563–1573. [Google Scholar] [CrossRef]
- Ladhani, S.; Gransden, W. Increasing antibiotic resistance among urinary tract isolates. Arch. Dis. Child. 2003, 88, 444–445. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Navarro, M.D.; Romero, L.; Muniain, M.A.; de Cueto, M.; Ríos, M.J.; Hernández, J.R.; Pascual, A. Bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli in the CTX-M era: A new clinical challenge. Clin. Infect. Dis. 2006, 43, 1407–1414. [Google Scholar] [CrossRef] [PubMed]
- Andreu, A.; Alós, J.I.; Gobernado, M.; Marco, F.; de la Rosa, M.; García-Rodríguez, J.A. Etiology and antimicrobial susceptibility among uropathogens causing community-acquired lower urinary tract infections: A nationwide surveillance study. Enferm. Infecc. Microbiol. Clin. 2005, 23, 4–9. [Google Scholar] [CrossRef]
- Awais, M.; Rehman, A.; Baloch, N.U.; Khan, F.; Khan, N. Evaluation and management of recurrent urinary tract infections in children: State of the art. Expert Rev. Anti-Infect. Ther. 2015, 13, 209–231. [Google Scholar] [CrossRef] [PubMed]
- Doré-Bergeron, M.-J.; Gauthier, M.; Chevalier, I.; McManus, B.; Tapiero, B.; Lebrun, S. Urinary tract infections in 1- to 3-month-old infants: Ambulatory treatment with intravenous antibiotics. Pediatrics 2009, 124, 16–22. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 13.1, 2023. Available online: http://www.eucast.org (accessed on 1 December 2023).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; Available online: https://clsi.org/ (accessed on 1 December 2023).
- Media Preparation for EUCAST Disk Diffusion Testing and for Determination of MIC Values by Broth Microdilution Method. Version 7.0, 2022. Available online: https://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology (accessed on 1 December 2023).
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, J.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, H.; Zakhem, A.E.; Wakil, C.; Cheaito, M.A.; Cheaito, R.; Finianos, A.; Chebl, R.B.; Kaddoura, R.; Souky, N.A.; Majzoub, I.E. Role of urine studies in asymptomatic febrile neutropenic patients presenting to the emergency department. World J. Emerg. Med. 2021, 12, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Mitsuboshi, A.; Kishimoto, K.; Ito, Y.; Ishida, T.; Kasai, M.; Hasegawa, D.; Kosaka, Y. Incidence and Causative Organisms of Bacteriuria in Children with Cancer: A 9-Year Experience in a Tertiary Pediatric Center. J. Pediatr. Hematol. Oncol. 2023, 45, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Hirmas, N.; Mubarak, S.; Sultan, I. Patterns of microbial growth in urine cultures in pediatric hematology/oncology unit over a one-year period: A single institution study. Int. J. Pediatr. Adolesc. Med. 2017, 4, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary Tract Infections: The Current Scenario and Future Prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef]
- Committee for Antibiotic Resistance Surveillance in Croatia. Antibiotic Resistance in Croatia, 2023; The Croatian Acadamy of Medical Sciences: Zagreb, Croatia, 2023; pp. 54–65. [Google Scholar]
- Committee for Antibiotic Resistance Surveillance in Croatia. Antibiotic Resistance in Croatia, 2022; The Croatian Acadamy of Medical Sciences: Zagreb, Croatia, 2020; pp. 45–56. [Google Scholar]
- Sivasankar, S.; Goldman, J.L.; Hoffman, M.A. Variation in antibiotic resistance patterns for children and adults treated at 166 non-affiliated US facilities using EHR data. JAC Antimicrob. Resist. 2023, 5, dlac128. [Google Scholar] [CrossRef]
- Lehrnbecher, T.; Robinson, P.D.; Ammann, R.A.; Fisher, B.; Patel, P.; Phillips, R.; Beauchemin, M.P.; Carlesse, F.; Castagnola, E.; Davis, B.L.; et al. Guideline for the Management of Fever and Neutropenia in Pediatric Patients With Cancer and Hematopoietic Cell Transplantation Recipients: 2023 Update. J. Clin. Oncolog. 2023, 41, 1774–1785. [Google Scholar] [CrossRef]
- de la Court, J.R.; Bruns, A.H.W.; Roukens, A.H.E.; Baas, I.O.; van Steeg, K.; Toren-Wielema, M.L.; Tersmette, M.; Blijlevens, N.M.A.; Huis in ’t Veld, R.A.G.; Wolfs, T.F.W.; et al. The Dutch Working Party on Antibiotic Policy (SWAB) Recommendations for the Diagnosis and Management of Febrile Neutropenia in Patients with Cancer. Infect. Dis. Ther. 2022, 11, 2063–2098. [Google Scholar] [CrossRef]
- Torres, I.; Huntley, D.; Tormo, M.; Calabuig, M.; Hernández-Boluda, J.C.; Terol, M.J.; Carretero, C.; de Michelena, P.; Pérez, A.; Piñana, J.L.; et al. Multi-body-site colonization screening cultures for predicting multi-drug resistant Gram-negative and Gram-positive bacteremia in hematological patients. BMC Infect. Dis. 2022, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- MacFadden, D.R.; Ridgway, J.P.; Robicsek, A.; Elligsen, M.; Daneman, N. Predictive utility of prior positive urine cultures. Clin. Infect. Dis. 2014, 59, 1265–1271. [Google Scholar] [CrossRef] [PubMed]
Characteristics | n (%) |
---|---|
Male, n (%) | 35 (47.3) |
Female, n (%) | 39 (52.7) |
Median age, years (range) (y) | 8 (0–17) |
Neutropenia (×109/L) | 20 (27.0) |
Hematologic disease, n (%) | |
Acute lymphoblastic leukemia | 45 (60.8) |
Acute myeloid leukemia | 3 (4.1) |
Non-Hodgkin and nonspecified lymphoma | 5 (6.8) |
Hodgkin lymphoma | 6 (8.1) |
Leukaemia, nonspecified | 3 (4.1) |
Myelodysplastic syndrome | 1 (1.4) |
Solid tumour, n (%) | |
Neuroblastoma | 4 (5.4) |
Retinoblastoma | 1 (1.4) |
Hepatoblastoma | 1 (1.4) |
Sarcoma | 2 (2.7) |
Teratoma | 1 (1.4) |
Nasopharyngeal carcinoma | 1 (1.4) |
Malignant tumor of the sphenoidal sinus | 1 (1.4) |
Number of bacteriuria episodes per patient, n (%) | |
1 episode | 37 (50.0) |
2 episodes | 20 (27.0) |
3 episodes | 7 (9.5) |
4 episodes | 6 (8.1) |
5 episodes | 3 (4.1) |
6 episodes | 1 (1.4) |
Overall (n = 143) | Symptomatic Bacteriuria (n = 37) | Asymptomatic Bacteriuria (n = 106) | p | |
---|---|---|---|---|
Female, n (%) | 74 (51.8) | 19 (51.4) | 55 (51.9) | 0.9554 |
Underlying disease, n (%) | ||||
Solid tumour | 21 (14.7) | 7 (18.9) | 14 (13.2) | 0.3997 |
Hematologic disease | 122 (85.3) | 30 (81.1) | 92 (86.8) | |
History of UTI 1, n (%) | 74 (51.8) | 21 (56.8) | 53 (50.0) | 0.4804 |
Urinary catheter, n (%) | 10 (7.0) | 4 (10.8) | 6 (5.7) | 0.2919 |
Neutropenia, n (%) | 25 (17.5) | 11 (29.7) | 14 (13.2) | 0.0232 |
Causative pathogens, n (%) | ||||
Escherichia coli | 44 (30.8) | 8 (21.6) | 36 (34.0) | |
Klebsiella spp. | 27 (18.9) | 11 (29.7) | 16 (15.1) | |
Pseudomonas aeruginosa | 18 (12.6) | 3 (8.1) | 15 (14.2) | |
Proteus mirabilis | 11 (7.7) | 4 (10.8) | 7 (6.6) | |
Enterobacter cloacae | 9 (6.3) | 1 (2.7) | 8 (7.6) | 0.1641 |
Citrobacter spp. | 5 (3.5) | 1 (2.7) | 4 (3.8) | |
Acinetobacter junii | 1 (0.7) | 0 | 1 (0.9) | |
Enterococcus spp. | 19 (13.3) | 4 (10.8) | 15 (14.2) | |
polymicrobial bacteriuria | 9 (6.3) | 5 (13.5) | 4 (3.8) |
Pathogen | n | % |
---|---|---|
Escherichia coli | 49 | 32.2 |
Klebsiella spp. | 34 | 22.4 |
Pseudomonas aeruginosa | 22 | 14.5 |
Enterococcus spp. | 21 | 13.8 |
Proteus mirabilis | 11 | 7.2 |
Enterobacter cloacae | 9 | 5.9 |
Citrobacter spp. | 5 | 3.3 |
Acinetobacter junii | 1 | 0.7 |
Pathogen | Mean (Days) | Range |
---|---|---|
Escherichia coli (n = 49) | 8 | 0–94 |
Klebsiella spp. (n = 34) | 28.5 | 0–162 |
Pseudomonas aeruginosa (n = 22) | 17.5 | 0–78 |
Enterococcus spp. (n = 21) | 7 | 0–51 |
Proteus mirabilis (n = 11) | 10 | 0–65 |
Enterobacter cloacae (n = 9) | 21 | 0–41 |
Citrobacter spp. (n = 5) | 1 | 0–3 |
Acinetobacter junii (n = 1) | 69 | / |
AMP | AMC | CXM | FEP | TZP | GM | AN | CIP | IMP | MEM | SXT | |
---|---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli (n = 49) | 79.6 | 0 | 8.2 | 6.1 | 0 | 10.2 | 2 | 26.5 | 0 | 0 | 73.5 |
Klebsiella spp. (n = 34) | 100 | 11.8 | 23.5 | 14.7 | 14.7 | 20.6 | 0 | 23.5 | 0 | 0 | 47.1 |
Pseudomonas aeruginosa (n = 22) | N/A | N/A | N/A | 0 | 4.6 | N/A | 0 | 9.1 | 9.1 | 9.1 | N/A |
Proteus mirabilis (n = 11) | 72.7 | 0 | 0 | 0 | 0 | 36.4 | 0 | 27.3 | 0 | 0 | 54.6 |
Enterobacter cloacae (n = 9) | 100 | 100 | 100 | 22.2 | 33.3 | 22.2 | 0 | 11.1 | 0 | 0 | 33.3 |
Citrobacter spp. (n = 5) | 100 | 100 | 100 | 20.0 | 0 | 0 | 0 | 20.0 | 0 | 0 | 60.0 |
Acinetobacter junii (n = 1) | N/A | N/A | N/A | N/A | 0 | 100 | 0 | 0 | 0 | 0 | N/A |
All Gram-negative bacteria (n = 131) | 88.0 (95/108) | 16.7 (18/108) | 24.1 (26/108) | 8.5 (11/130) | 6.9 (9/131) | 17.4 (19/109) | 0.8 (1/131) | 21.4 (28/131) | 1.5 (2/131) | 1.5 (2/131) | 59.3 (64/108) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Predavec, N.; Perčinić, A.; Herljević, Z.; Rezo Vranješ, V.; Pavlović, M.; Šalek, Z.; Kuliš, T.; Bilić, E.; Mareković, I. Bacteriuria in Paediatric Oncology Patients: Clinical Features, Distribution and Antimicrobial Susceptibility of Bacterial Pathogens at University Hospital Centre Zagreb, Croatia over a 4-Year Period. Antibiotics 2024, 13, 118. https://doi.org/10.3390/antibiotics13020118
Predavec N, Perčinić A, Herljević Z, Rezo Vranješ V, Pavlović M, Šalek Z, Kuliš T, Bilić E, Mareković I. Bacteriuria in Paediatric Oncology Patients: Clinical Features, Distribution and Antimicrobial Susceptibility of Bacterial Pathogens at University Hospital Centre Zagreb, Croatia over a 4-Year Period. Antibiotics. 2024; 13(2):118. https://doi.org/10.3390/antibiotics13020118
Chicago/Turabian StylePredavec, Nina, Antonio Perčinić, Zoran Herljević, Violeta Rezo Vranješ, Maja Pavlović, Zrinko Šalek, Tomislav Kuliš, Ernest Bilić, and Ivana Mareković. 2024. "Bacteriuria in Paediatric Oncology Patients: Clinical Features, Distribution and Antimicrobial Susceptibility of Bacterial Pathogens at University Hospital Centre Zagreb, Croatia over a 4-Year Period" Antibiotics 13, no. 2: 118. https://doi.org/10.3390/antibiotics13020118
APA StylePredavec, N., Perčinić, A., Herljević, Z., Rezo Vranješ, V., Pavlović, M., Šalek, Z., Kuliš, T., Bilić, E., & Mareković, I. (2024). Bacteriuria in Paediatric Oncology Patients: Clinical Features, Distribution and Antimicrobial Susceptibility of Bacterial Pathogens at University Hospital Centre Zagreb, Croatia over a 4-Year Period. Antibiotics, 13(2), 118. https://doi.org/10.3390/antibiotics13020118