Comparison of Minimum Inhibitory Concentrations of Selected Antimicrobials for Non-Aureus Staphylococci, Enterococci, Lactococci, and Streptococci Isolated from Milk Samples of Cows with Clinical Mastitis
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Campos, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Quantification of antimicrobial usage in adult cows and preweaned calves on 40 large Wisconsin dairy farms using dose-based and mass-based metrics. J. Dairy Sci. 2021, 104, 4727–4745. [Google Scholar] [CrossRef] [PubMed]
- USDA. Dairy 2014, Milk Quality, Milking Procedures and Mastitis in the United States, 2014; USDA: Fort Collins, CO, USA, 2016.
- Anonymous. Critically Important Antimcrobials for Human Health, 6th ed.; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Oliver, S.P.; Murinda, S.E. Antimicrobial Resistance of Mastitis Pathogens. Vet. Clin. N. Am.-Food Anim. Pract. 2012, 28, 165–185. [Google Scholar] [CrossRef] [PubMed]
- Griffioen, K.; Hop, G.E.; Holstege, M.M.C.; Velthuis, A.G.J.; Lam, T.; 1Health4Food–Dutch Mastitis Diagnostics Consortium. Dutch dairy farmers’ need for microbiological mastitis diagnostics. J. Dairy Sci. 2016, 99, 5551–5561. [Google Scholar] [CrossRef]
- Nobrega, D.B.; De Buck, J.; Barkema, H.W. Antimicrobial resistance in non-aureus staphylococci isolated from milk is associated with systemic but not intramammary administration of antimicrobials in dairy cattle. J. Dairy Sci. 2018, 101, 7425–7436. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. The Judicious Use of Medically Important Antimicrobial Drugs in Food-Producing Animals; The Food and Drug Administration: Silver Spring, MD, USA, 2012.
- Hoe, F.G.; Ruegg, P.L. Relationship between antimicrobial susceptibility of clinical mastitis pathogens and treatment outcome in cows. J. Am. Vet. Med. Assoc. 2005, 227, 1461–1468. [Google Scholar] [CrossRef]
- Constable, P.D.; Morin, D.E. Use of antimicrobial susceptibility testing of bacterial pathogens isolated from the milk of dairy cows with clinical mastitis to predict response to treatment with cephapirin and oxytetracycline. J. Am. Vet. Med. Assoc. 2002, 221, 103–108. [Google Scholar] [CrossRef]
- Scillieri Smith, J.C.; Moroni, P.; Santisteban, C.G.; Rauch, B.J.; Ospina, P.A.; Nydam, D.V. Distribution of Lactococcus spp. in New York State dairy farms and the association of somatic cell count resolution and bacteriological cure in clinical mastitis samples. J. Dairy Sci. 2020, 103, 1785–1794. [Google Scholar] [CrossRef] [PubMed]
- Plumed-Ferrer, C.; Uusikyla, K.; Korhonen, J.; von Wright, A. Characterization of Lactococcus lactis isolates from bovine mastitis. Vet. Microbiol. 2013, 167, 592–599. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptiblity Tests for Bacteria Isolated from Animals; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptiblity Tests for Bacteria Isolated from Animals. VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Ruegg, P.L.; Oliveira, L.; Jin, W.; Okwumabua, O. Phenotypic antimicrobial susceptibility and occurrence of selected resistance genes in Gram-positive mastitis pathogens isolated from Wisconsin dairy cows. J. Dairy Sci. 2015, 98, 4521–4534. [Google Scholar] [CrossRef] [PubMed]
- Olde Riekerink, R.G.; Barkema, H.W.; Kelton, D.F.; Scholl, D.T. Incidence rate of clinical mastitis on Canadian dairy farms. J. Dairy Sci. 2008, 91, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Hulland, C.; Ruegg, P.L. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J. Dairy Sci. 2013, 96, 7538–7549. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.L.; Todhunter, D.A.; Schoenberger, P.S. Environmental mastitis: Cause, prevalence, prevention. J. Dairy Sci. 1985, 68, 1531–1553. [Google Scholar] [CrossRef] [PubMed]
- Fortin, M.; Messier, S.; Pare, J.; Higgins, R. Identification of catalase-negative, non-beta-hemolytic, gram-positive cocci isolated from milk samples. J. Clin. Microbiol. 2003, 41, 106–109. [Google Scholar] [CrossRef]
- Werner, B.; Moroni, P.; Gioia, G.; Lavin-Alconero, L.; Yousaf, A.; Charter, M.E.; Carter, B.M.; Bennett, J.; Nydam, D.V.; Welcome, F.; et al. Short communication: Genotypic and phenotypic identification of environmental streptococci and association of Lactococcus lactis ssp. lactis with intramammary infections among different dairy farms. J. Dairy Sci. 2014, 97, 6964–6969. [Google Scholar] [CrossRef] [PubMed]
- Frey, Y.; Rodriguez, J.P.; Thomann, A.; Schwendener, S.; Perreten, V. Genetic characterization of antimicrobial resistance in coagulase-negative staphylococci from bovine mastitis milk. J. Dairy Sci. 2013, 96, 2247–2257. [Google Scholar] [CrossRef]
- Goncalves, J.L.; Mani, R.; Sreevatsan, S.; Ruegg, P.L. Apparent prevalence and selected risk factors of methicillin-resistant Staphylococcus aureus and non-aureus staphylococci and mammaliicocci in bulk tank milk of dairy herds in Indiana, Ohio, and Michigan. JDS Commun. 2023, 4, 489–495. [Google Scholar] [CrossRef]
- Erskine, R.J.; Walker, R.D.; Bolin, C.A.; Bartlett, P.C.; White, D.G. Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J. Dairy Sci. 2002, 85, 1111–1118. [Google Scholar] [CrossRef]
- Anonymous. European Food Safety Authority Guidance on the Assessment of Bacterial Susceptibility to Antimicrobials of Human and Veterinary Im-portance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- Cameron, M.; Saab, M.; Heider, L.; McClure, J.T.; Rodriguez-Lecompte, J.C.; Sanchez, J. Antimicrobial Susceptibility Patterns of Environmental Streptococci Recovered from Bovine Milk Samples in the Maritime Provinces of Canada. Front. Vet. Sci. 2016, 3, 79. [Google Scholar] [CrossRef]
- Elliott, J.A.; Facklam, R.R. Antimicrobial susceptibilities of Lactococcus lactis and Lactococcus garvieae and a proposed method to discriminate between them. J. Clin. Microbiol. 1996, 34, 1296–1298. [Google Scholar] [CrossRef]
- FDA. 2020 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals; FDA: Silver Spring, MD, USA, 2021.
- Haenni, M.; Galofaro, L.; Ythier, M.; Giddey, M.; Majcherczyk, P.; Moreillon, P.; Madec, J.Y. Penicillin-binding protein gene alterations in Streptococcus uberis isolates presenting decreased susceptibility to penicillin. Antimicrob. Agents Chemother. 2010, 54, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- NMC. Laboratory Handbook on Bovine Mastitis, 3rd ed.; NMC: New Prague, MN, USA, 2017. [Google Scholar]
- Constable, P.D.; Morin, D.E. Treatment of clinical mastitis using antimicrobial susceptibility profiles for treatment decisions. Vet. Clin. N. Am.-Food Anim. Pract. 2003, 19, 139–155. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.; Silva, M.; Frey, E.; Fritz, H.; Marshall, E. Antibiograms as one-health tools for antimicrobial stewardship: California’s experience with livestock antibiogram development. J. Am. Vet. Med. Assoc. 2023, 261, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
Pathogen Group | Number | Percent |
---|---|---|
Non-Aureus Staphylococci | 28 | 25.9 |
Staphylococcus chromogenes | 18 | 16.7 |
Staphylococcus simulans | 5 | 4.6 |
Staphylococcus haemolyticus | 2 | 1.8 |
Staphylococcus species | 2 | 1.8 |
Staphylococcus epidermidis | 1 | 0.9 |
Streptococci | 25 | 23.1 |
Streptococcus dysgalactiae | 16 | 14.8 |
Streptococcus uberis | 5 | 4.6 |
Streptococcus species | 4 | 3.7 |
Lactococci | 44 | 40.7 |
Lactococcus lactis | 26 | 24.1 |
Lactococcus garvieae | 18 | 16.7 |
Enterococci | 11 | 10.2 |
Enterococcus saccarolyticus | 9 | 8.3 |
Enterococcus faecalis | 1 | 0.9 |
Enterococcus aquimarinus | 1 | 0.9 |
Total | 108 | 100% |
Drug | Etiology | B.P 1 | Number | Sus. 2 | Percent of Isolates at Each Indicated MIC (μg/mL) | N.I. 3 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
% | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | % | ||||
Ampicillin † | NAS | ≤0.12 4 | 28 | 82.1 | 82.1 | 0.0 | 3.6 | 7.1 | 3.6 | 0.0 | 0 | - | 0.0 |
Strepto. | ≤0.25 4 | 25 | 80.0 | 64.0 | 16.0 | 16.0 | 0.0 | 4.0 | 0.0 | 0.0 | - | 0.0 | |
Lacto. | ≤0.25 | 44 | 63.7 | 45.5 | 18.2 | 34.1 | 2.3 | 0.0 | 0.0 | 0.0 | - | 0.0 | |
Entero. | ≤8 4 | 11 | 100.0 | 81.8 | 9.1 | 9.1 | 0.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | |
Ceftiofur *† | NAS | ≤2 | 28 | 92.9 | - | - | 25.0 | 39.3 | 26.6 | 7.1 | 0.0 | - | 0.0 |
Strepto. | ≤2 | 25 | 100.0 | - | - | 76.0 | 24.0 | 0.0 | 0.0 | 0.0 | - | 0.0 | |
Lacto. | ≤2 | 44 | 100.0 | - | - | 93.2 | 4.6 | 2.3 | 0.0 | 0.0 | - | 0.0 | |
Entero. | ≤2 5 | 11 | 100.0 | - | - | 63.6 | 27.3 | 9.1 | 0.0 | 0.0 | - | 0.0 | |
Cephalothin *† | NAS | ≤8 4 | 28 | 100.0 | - | - | - | - | 100 | 0.0 | 0.0 | 0.0 | 0.0 |
Strepto. | ≤8 4 | 25 | 100.0 | - | - | - | - | 84.0 | 8.0 | 8.0 | 0.0 | 0.0 | |
Lacto. | ≤8 | 44 | 100.0 | - | - | - | - | 61.4 | 11.4 | 27.3 | 0.0 | 0.0 | |
Entero. | ≤8 5 | 11 | 100.0 | - | - | - | - | 81.8 | 18.2 | 0.0 | 0.0 | 0.0 | |
Erythromycin *† | NAS | ≤0.5 4 | 28 | 89.2 | - | 32.1 | 57.1 | 3.6 | 0.0 | 0.0 | - | - | 7.1 |
Strepto. | ≤0.25 4 | 25 | 80.0 | - | 80.0 | 0 | 4.0 | 4.0 | 0.0 | - | - | 12.0 | |
Lacto. | ≤0.25 | 44 | 97.7 | - | 97.7 | 2.3 | 0.0 | 0.0 | 0.0 | - | - | 0.0 | |
Entero. | ≤0.5 4 | 11 | 100.0 | - | 100 | 0.0 | 0.0 | 0.0 | 0.0 | - | - | ||
Oxacillin | NAS | ≤2 4 | 28 | 100.0 | - | - | - | - | 100 | 0.0 | - | - | 0.0 |
Strepto. | ≤2 4 | 25 | 100.0 | - | - | - | - | 100 | 0.0 | - | - | 0.0 | |
Lacto. | ≤2 | 44 | 100.0 | - | - | - | - | 100 | 0.0 | - | - | 0.0 | |
Entero. | ≤2 5 | 11 | - | - | - | - | 100 | 0.0 | - | - | 0.0 | ||
Penicillin *† | NAS | ≤0.12 4 | 28 | 78.6 | 78.6 | 7.1 | 0.0 | 7.1 | 0.00 | - | - | - | 7.1 |
Strepto. | ≤0.12 4 | 25 | 44.0 | 44.0 | 36.0 | 16.0 | 4.0 | 0.00 | - | - | - | 0.0 | |
Lacto. | ≤0.12 | 44 | 6.8 | 6.8 | 34.1 | 31.8 | 25.0 | 2.3 | - | - | - | 0.0 | |
Entero. | ≤8 4 | 11 | 100.0 | 54.6 | 9.1 | 27.3 | 9.1 | 0.00 | - | - | - | 0.0 | |
Penicillin novobiocin 7 | NAS | ≤1/2 6 | 28 | 96.4 | - | - | - | - | 96.4 | 0.0 | 0.0 | 0.0 | 3.6 |
Strepto. | ≤1/2 | 25 | 100.0 | - | - | - | - | 100 | 0.0 | 0.0 | 0.0 | 0.0 | |
Lacto. | ≤1/2 | 44 | 100.0 | - | - | - | - | 100 | 0.0 | 0.0 | 0.0 | 0.0 | |
Entero. | ≤1/2 5 | 11 | 100.0 | - | - | - | - | 100 | 0.0 | 0.0 | 0.0 | 0.0 | |
Pirlimycin *† | NAS | ≤2 6 | 28 | 92.9 | - | - | 85.7 | 3.6 | 3.6 | 3.6 | - | - | 3.6 |
Strepto. | ≤2 | 25 | 84.0 | - | - | 76.0 | 4.0 | 4.0 | 0.0 | - | - | 16.0 | |
Lacto. | ≤2 | 44 | 59.1 | - | - | 52.3 | 0.0 | 6.8 | 2.3 | - | - | 38.6 | |
Entero. | ≤2 5 | 11 | 90.6 | - | - | 63.3 | 18.2 | 9.1 | 9.1 | - | - | 0.0 | |
Tetracycline *† | NAS | ≤4 4 | 28 | 71.5 | - | - | - | 64.3 | 3.6 | 3.6 | 3.6 | - | 25.0 |
Strepto. | ≤2 4 | 25 | 8.0 | - | - | - | 8.0 | 0.0 | 16.0 | 0.0 | - | 76.0 | |
Lacto. | ≤2 | 44 | 34.2 | - | - | - | 29.6 | 4.6 | 2.3 | 4.6 | - | 59.1 | |
Entero | ≤4 4 | 11 | 45.0 | - | - | - | 45.0 | 0.0 | 0.0 | 0.0 | - | 55.0 | |
Sulfadimethoxine 8 | NAS | ≤128 9 | 28 | 57.2 | - | - | - | - | 39.3 | 3.6 | 14.3 | 0.0 | 39.3 |
Strep | ≤128 9 | 25 | 24.0 | - | - | - | - | 12.0 | 12.0 | 0.0 | 0.0 | 76.0 | |
Lacto. | ≤128 9 | 44 | 38.6 | - | - | - | - | 31.8 | 2.3 | 4.6 | 2.3 | 59.1 | |
Entero | ≤128 9 | 11 | 36.4 | - | - | - | - | 36.6 | 0.0 | 0.0 | 0.0 | 63.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolar, Q.K.; Goncalves, J.L.; Erskine, R.J.; Ruegg, P.L. Comparison of Minimum Inhibitory Concentrations of Selected Antimicrobials for Non-Aureus Staphylococci, Enterococci, Lactococci, and Streptococci Isolated from Milk Samples of Cows with Clinical Mastitis. Antibiotics 2024, 13, 91. https://doi.org/10.3390/antibiotics13010091
Kolar QK, Goncalves JL, Erskine RJ, Ruegg PL. Comparison of Minimum Inhibitory Concentrations of Selected Antimicrobials for Non-Aureus Staphylococci, Enterococci, Lactococci, and Streptococci Isolated from Milk Samples of Cows with Clinical Mastitis. Antibiotics. 2024; 13(1):91. https://doi.org/10.3390/antibiotics13010091
Chicago/Turabian StyleKolar, Quinn K., Juliano L. Goncalves, Ronald J. Erskine, and Pamela L. Ruegg. 2024. "Comparison of Minimum Inhibitory Concentrations of Selected Antimicrobials for Non-Aureus Staphylococci, Enterococci, Lactococci, and Streptococci Isolated from Milk Samples of Cows with Clinical Mastitis" Antibiotics 13, no. 1: 91. https://doi.org/10.3390/antibiotics13010091
APA StyleKolar, Q. K., Goncalves, J. L., Erskine, R. J., & Ruegg, P. L. (2024). Comparison of Minimum Inhibitory Concentrations of Selected Antimicrobials for Non-Aureus Staphylococci, Enterococci, Lactococci, and Streptococci Isolated from Milk Samples of Cows with Clinical Mastitis. Antibiotics, 13(1), 91. https://doi.org/10.3390/antibiotics13010091