A Review of the Clinical Utilization of Oral Antibacterial Therapy in the Treatment of Bone Infections in Adults
Abstract
:1. Introduction
2. Results
2.1. Efficacy of Oral Antibiotics in Treatment of Osteomyelitis
2.2. Treatment of Diabetic Osteomyelitis
2.3. Treatment of Staphylococcus aureus as Leading Causative Organism
2.4. Treatment of Pseudomonas aeruginosa and Other Gram-Negative Etiologies of Osteomyelitis
2.5. Treatment of Osteomyelitis Caused by Less Common Organisms
2.6. Antimicrobial Bone Levels
2.7. Economic Perspectives
3. Discussion
4. Materials and Methods
5. Recommendations
- Enteral agents (alone or in appropriate combinations) recommended in the management of osteomyelitis include fluroquinolones, cotrimoxazole, clindamycin, doxycycline, amoxicillin, amoxicillin/clavulanic acid, linezolid, rifampin, and metronidazole; these agents have excellent bioavailability, and their use facilitates safe outpatient treatment, avoiding the inherent risk of prolonged IV access.
- Enteral linezolid, clindamycin, trimethoprim–sulfamethoxazole, and doxycycline are effective treatment options for staphylococcal osteomyelitis when culture and sensitivity data corroborate their use at any stage of infection.
- Treatment of Staphylococcus aureus osteomyelitis with fluoroquinolones is associated with higher failure rates and should be generally avoided as a monotherapy.
- Rifampin is considered a niche as a biofilm-active agent, best to be considered for staphylococcal prosthetic joint infection in the setting of hardware retention, where its use results in lower treatment failures.
- Enteral ciprofloxacin is the agent of choice in management of pseudomonal osteomyelitis, when oral therapy is deemed appropriate, and the organism demonstrates sensitivity to quinolones.
- In the management of osteomyelitis, surgical debridement is a cornerstone of therapy, together with antimicrobial therapy. Most studies reviewed indicate that a few days to few weeks of culture-based intravenous therapy, then transitioning to oral therapy, is effective in achieving long-term cure. Very few studies started with oral antibiotics alone, such that no generalizable recommendation can be made regarding the exclusive utilization of oral antimicrobial therapy, although this could be appropriate in certain clinical circumstances.
- In patients on IV therapy for chronic osteomyelitis caused by pathogens sensitive to oral antibiotics, consideration should be given to continuation with an oral agent to which the pathogen is confirmed sensitive. This is based on ongoing demonstration in the literature over many years that there is no significant difference in rates of remission after treatment with oral versus IV antibiotics, granted that the oral agent has an established high bioavailability profile and tolerance by the patient. Duration may need to be prolonged; studies quote anywhere between 6 weeks and 6 months, depending on clinical response. This wide range is related to the heterogeneity of patients in those studies.
- In patients who start IV therapy and are potentially good candidates for enteral therapy, transitioning from IV to oral therapy can be considered without time considerations once full source control (debridement) has been achieved, symptoms have improved, and inflammatory markers have decreased. Many of the published studies suggest a time frame of two weeks as optimal for this switch to occur. Some studies compared earlier transitioning to enteral therapy within the first week without significant clinical difference in outcome. The current thought on this based on the above review is that two weeks of IV therapy may be necessary for most patients before any consideration of switching to oral treatments. There is ample evidence so far to prove similar long-term efficacy in the cohorts switched to oral therapy early during their six-week course as compared to those who continued IV.
- After initial IV treatment of patients with implant-related infection, oral suppressive antibiotics should be initiated until all implants are removed. In patients where implants cannot be completely removed, lifelong oral suppressive antibiotic therapy should be considered.
- In diabetic patients, empiric addition of rifampin should be a consideration as adjunctive therapy to backbone culture-based oral antimicrobial treatment, as it may improve amputation-free survival.
- In diabetics without known vascular disease, culture-based oral antimicrobial therapy can be safely used as an alternative to IV therapy in most situations.
- Contraindications to the use of oral antibiotics alone include osteomyelitis associated with severe systemic illness, poor enteral absorption, vasculopathy prior to surgical correction, and infections caused by organisms resistant to oral antimicrobials.
- Populations who may particularly benefit from oral therapy compared to IV are persons who inject drugs, where oral antibiotics prescribed at discharge were associated with significantly less than no antibiotics in regard to 90-day readmission, and that was comparable to continuation of IV treatment after discharge.
- Mandibular and hand osteomyelitis, typically caused by trauma in otherwise healthy individuals, can be effectively treated with oral regimens, as has been shown by multiple small studies and case series using amoxicillin, amoxicillin/clavulanic acid, clindamycin, moxifloxacin, levofloxacin, trimethoprim-sulfamethoxazole, and even penicillin VK.
- Recommendations for treatment in specific situations/pathogens:
- Aggregatibacter actinomycetemcomitans discitis: oral levofloxacin for six weeks.
- Salmonella vertebraal osteomyelitis:chloramphenicol, third-generation cephalosporins, and fluoroquinolones for at least six weeks.
- Fusobacterium nucleatum discitis and vertebral osteomyelitis: IV ertapenem for eight weeks in combination with oral amoxicillin/clavulanate as oral suppression for a total of 10 weeks.
- Yersinia enterocolitica septic arthritis and osteomyelitis: oral ciprofloxacin.
- Group G streptococcus osteomyelitis of the proximal femur: IV penicillin for six weeks and oral cephalexin for another six months.
- Kingella kingae pubic osteomyelitis with soft tissue abscess: high-dose PO amoxicillin 3 g for three months.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spellberg, B.; Lipsky, B.A. Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Fantoni, M.; Taccari, F.; Giovannenze, F. Systemic antibiotic treatment of chronic osteomyelitis in adults. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 258–270. [Google Scholar] [CrossRef] [PubMed]
- Nowak, M.A.; Winner, J.S.; Beilke, M.A. Prolonged oral antibiotic suppression in osteomyelitis and associated outcomes in a Veterans population. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2015, 72, S150–S155. [Google Scholar] [CrossRef] [PubMed]
- Lazzarini, L.; Lipsky, B.A.; Mader, J.T. Antibiotic treatment of osteomyelitis: What have we learned from 30 years of clinical trials? Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2005, 9, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Stumphauzer, A.; Moenster, R.P.; Linneman, T.W. 231. Retrospective Comparison of Intravenous Therapy, Oral Therapy, and Lipoglycopeptides for the Treatment of Osteomyelitis. Open Forum Infect. Dis. 2021, 8, S225. [Google Scholar] [CrossRef]
- Wald-Dickler, N.; Holtom, P.D.; Phillips, M.C.; Centor, R.M.; Lee, R.A.; Baden, R.; Spellberg, B. Oral Is the New IV. Challenging Decades of Blood and Bone Infection Dogma: A Systematic Review. Am. J. Med. 2022, 135, 369–379.e1. [Google Scholar] [CrossRef]
- Conterno, L.O.; da Silva Filho, C.R. Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst. Rev. 2009, 9, CD004439. [Google Scholar] [CrossRef]
- Loupa, C.V.; Meimeti, E.; Voyatzoglou, E.; Donou, A.; Koutsantoniou, E.; Lafoyanni, S. Successful nonsurgical therapy of a diabetic foot osteomyelitis in a patient with peripheral artery disease with almost complete radiological restoration. BMC Res. Notes 2018, 11, 579. [Google Scholar] [CrossRef]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial Oral versus Intravenous Antibiotic Treatment of Endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef]
- Bhagat, H.; Sikka, M.K.; Sukerman, E.S.; Makadia, J.; Lewis, J.S., 2nd; Streifel, A.C. Evaluation of Opportunities for Oral Antibiotic Therapy in Bone and Joint Infections. Ann. Pharmacother. 2023, 57, 156–162. [Google Scholar] [CrossRef]
- Henry, M.; Lundy, F.H. Oral Antibiotic Management of Acute Osteomyelitis of the Hand: Outcomes and Cost Comparison to Standard Intravenous Regimen. Hand 2021, 16, 535–541. [Google Scholar] [CrossRef]
- Marks, M.; Bell, L.C.K.; Jones, I.; Rampling, T.; Kranzer, K.; Morris-Jones, S.; Logan, S.; Pollara, G. Clinical and Economic Impact of Implementing OVIVA Criteria on Patients With Bone and Joint Infections in Outpatient Parenteral Antimicrobial Therapy. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 207–210. [Google Scholar] [CrossRef]
- Restelli, U.; Bonfanti, M.; Croce, D.; Grau, S.; Metallidis, S.; Moreno Guillen, S.; Pacelli, V.; Rizzardini, G.; Soro, M.; Vozikis, A.; et al. Organisational and financial consequences of the early discharge of patients treated for acute bacterial skin and skin structure infection and osteomyelitis in infectious disease departments in Greece, Italy and Spain: A scenario analysis. BMJ Open 2019, 9, e031356. [Google Scholar] [CrossRef]
- Melis, F.; De Vito, A.; Fiore, V.; Rostagno, R.; Ravera, L.; Babudieri, S.; Borre, S.; Madeddu, G. Is oral antibiotic therapy as effective as intravenous treatment in bacterial osteomyelitis? A real-life experience. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 4069–4073. [Google Scholar] [CrossRef]
- Li, H.K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.A.; Atkins, B.L.; Lipsky, B.A.; Hughes, H.C.; Bose, D.; Kumin, M.; et al. Oral versus Intravenous Antibiotics for Bone and Joint Infection. N. Engl. J. Med. 2019, 380, 425–436. [Google Scholar] [CrossRef]
- Nguyen, S.; Pasquet, A.; Legout, L.; Beltrand, E.; Dubreuil, L.; Migaud, H.; Yazdanpanah, Y.; Senneville, E. Efficacy and tolerance of rifampicin-linezolid compared with rifampicin-cotrimoxazole combinations in prolonged oral therapy for bone and joint infections. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2009, 15, 1163–1169. [Google Scholar] [CrossRef]
- Lim, R.; Mills, C.; Burke, A.B.; Dhanireddy, S.; Beieler, A.; Dillon, J.K. Are Oral Antibiotics an Effective Alternative to Intravenous Antibiotics in Treatment of Osteomyelitis of the Jaw? J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2021, 79, 1882–1890. [Google Scholar] [CrossRef]
- Zimmerman, J.; Silver, J.; Shapiro, M.; Friedman, G.; Melmed, R.N. Clindamycin unresponsive anaerobic osteomyelitis treated with oral metronidazole. Scand. J. Infect. Dis. 1980, 12, 79–80. [Google Scholar] [CrossRef]
- Wang, S.; Cunha, B.A.; Hamid, N.S.; Amato, B.M.; Feuerman, M.; Malone, B. Metronidazole single versus multiple daily dosing in serious intraabdominal/pelvic and diabetic foot infections. J Chemother. 2007, 19, 410–416. [Google Scholar] [CrossRef]
- Frieler, S.; Hanusrichter, Y.; Bellova, P.; Gesmann, J.; Schildhauer, T.A.; Baecker, H. Facing multidrug-resistant pathogens in periprosthetic joint infections with self-administered outpatient parenteral antimicrobial therapy—A prospective cohort study. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2021, 39, 320–332. [Google Scholar] [CrossRef]
- Palmowski, Y.; Burger, J.; Kienzle, A.; Trampuz, A. Antibiotic treatment of postoperative spinal implant infections. J. Spine Surg. 2020, 6, 785–792. [Google Scholar] [CrossRef]
- Wilmes, D.; Omoumi, P.; Squifflet, J.; Cornu, O.; Rodriguez-Villalobos, H.; Yombi, J.C. Osteomyelitis pubis caused by Kingella kingae in an adult patient: Report of the first case. BMC Infect. Dis. 2012, 12, 236. [Google Scholar] [CrossRef]
- Ramos-Otero, G.P.; Sarangarm, P.; Walraven, C. A Retrospective Analysis of Intravenous vs Oral Antibiotic Step-Down Therapy for the Treatment of Uncomplicated Streptococcal Bloodstream Infections. J. Clin. Pharmacol. 2022, 62, 1372–1378. [Google Scholar] [CrossRef]
- Sur, A.; Tsang, K.; Brown, M.; Tzerakis, N. Management of adult spontaneous spondylodiscitis and its rising incidence. Ann. R. Coll. Surg. Engl. 2015, 97, 451–455. [Google Scholar] [CrossRef]
- Laghmouche, N.; Compain, F.; Jannot, A.-S.; Guigui, P.; Mainardi, J.-L.; Lonjon, G.; Bouyer, B.; Fernandez-Gerlinger, M.-P. Successful treatment of Pseudomonas aeruginosa osteomyelitis with antibiotic monotherapy of limited duration. J. Infect. 2017, 75, 198–206. [Google Scholar] [CrossRef]
- Babouee Flury, B.; Elzi, L.; Kolbe, M.; Frei, R.; Weisser, M.; Scharen, S.; Widmer, A.F.; Battegay, M. Is switching to an oral antibiotic regimen safe after 2 weeks of intravenous treatment for primary bacterial vertebral osteomyelitis? BMC Infect. Dis. 2014, 14, 226. [Google Scholar] [CrossRef]
- Yamazaki, H.; Kikuchi, M.; Shinohara, S.; Naito, Y.; Fujiwara, K.; Kanazawa, Y.; Tona, R. Intra-arterial administration of antibiotics for refractory skull base osteomyelitis. Auris Nasus Larynx 2014, 41, 380–383. [Google Scholar] [CrossRef]
- Cordero-Ampuero, J.; Esteban, J.; Garcia-Cimbrelo, E. Oral antibiotics are effective for highly resistant hip arthroplasty infections. Clin. Orthop. Relat. Res. 2009, 467, 2335–2342. [Google Scholar] [CrossRef]
- Crowe, M.; Ashford, K.; Ispahani, P. Clinical features and antibiotic treatment of septic arthritis and osteomyelitis due to Yersinia enterocolitica. J. Med. Microbiol. 1996, 45, 302–309. [Google Scholar] [CrossRef]
- Yamaguti, A.; Trevisanello, C.; Lobo, I.M.; Carvalho, M.C.; Bortoletto, M.L.; Silva, M.L.; Brasil Filho, R.; Levi, G.C.; Mendonca, J.S. Oral ciprofloxacin for treatment of chronic osteomyelitis. Int. J. Clin. Pharmacol. Res. 1993, 13, 75–79. [Google Scholar]
- MacGregor, R.R.; Graziani, A.L.; Esterhai, J.L. Oral ciprofloxacin for osteomyelitis. Orthopedics 1990, 13, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Powers, T.; Bingham, D.H. Clinical and economic effect of ciprofloxacin as an alternative to injectable antimicrobial therapy. Am. J. Hosp. Pharm. 1990, 47, 1781–1784. [Google Scholar] [CrossRef] [PubMed]
- Mader, J.T.; Cantrell, J.S.; Calhoun, J. Oral ciprofloxacin compared with standard parenteral antibiotic therapy for chronic osteomyelitis in adults. J. Bone Jt. Surg. Am. Vol. 1990, 72, 104–110. [Google Scholar] [CrossRef]
- Dellamonica, P.; Bernard, E.; Etesse, H.; Garraffo, R.; Drugeon, H.B. Evaluation of pefloxacin, ofloxacin and ciprofloxacin in the treatment of thirty-nine cases of chronic osteomyelitis. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 1989, 8, 1024–1030. [Google Scholar] [CrossRef]
- Greenberg, R.N.; Tice, A.D.; Marsh, P.K.; Craven, P.C.; Reilly, P.M.; Bollinger, M.; Weinandt, W.J. Randomized trial of ciprofloxacin compared with other antimicrobial therapy in the treatment of osteomyelitis. Am. J. Med. 1987, 82, 266–269. [Google Scholar] [PubMed]
- Uno, S.; Horiuchi, Y.; Uchida, T.; Yonaha, A.; Miyata, T.; Nagano, E.; Kodama, T.; Hasegawa, N. A successful antimicrobial therapeutic strategy for the discitis caused by Aggregatibacter actinomycetemcomitans under unknown drug susceptibility: A case report. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2018, 24, 849–851. [Google Scholar] [CrossRef]
- Asseray, N.; Bourigault, C.; Boutoille, D.; Happi, L.; Touchais, S.; Corvec, S.; Bemer, P.; Navas, D. Levofloxacin at the usual dosage to treat bone and joint infections: A cohort analysis. Int. J. Antimicrob. Agents 2016, 47, 478–481. [Google Scholar] [CrossRef]
- Gomis, M.; Barberan, J.; Sanchez, B.; Khorrami, S.; Borja, J.; Garcia-Barbal, J. Oral ofloxacin versus parenteral imipenem-cilastatin in the treatment of osteomyelitis. Rev. Esp. Quimioter. Publ. Soc. Esp. Quimioter. 1999, 12, 244–249. [Google Scholar]
- Eron, L.J.; Gentry, L.O. Oral ofloxacin for infections caused by bacteria resistant to oral antimicrobial agents. Diagn. Microbiol. Infect. Dis. 1992, 15, 435–439. [Google Scholar] [CrossRef]
- Gentry, L.O.; Rodriguez-Gomez, G. Ofloxacin versus parenteral therapy for chronic osteomyelitis. Antimicrob. Agents Chemother. 1991, 35, 538–541. [Google Scholar] [CrossRef]
- Abbas, M.; Uckay, I.; Lipsky, B.A. In diabetic foot infections antibiotics are to treat infection, not to heal wounds. Expert Opin. Pharmacother. 2015, 16, 821–832. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Pecoraro, R.E.; Wheat, L.J. The diabetic foot. Soft tissue and bone infection. Infect. Dis. Clin. N. Am. 1990, 4, 409–432. [Google Scholar] [CrossRef]
- Karchmer, A.W. Microbiology and treatment of diabetic foot infections. In The Diabetic Foot; Veves, A., Giurini, J.M., LoGerfo, F.W., Eds.; Humana Press: Totowa, NJ, USA, 2002; pp. 207–219. [Google Scholar]
- Grayson, M.L.; Gibbons, G.W.; Habershaw, G.M.; Freeman, D.V.; Pomposelli, F.B.; Rosenblum, B.I.; Levin, E.; Karchmer, A.W. Use of ampicillin/sulbactam versus imipenem/cilastatin in the treatment of limb-threatening foot infections in diabetic patients. Clin. Infect. Dis. 1994, 18, 683–693. [Google Scholar] [CrossRef]
- Caputo, G.M.; Cavanagh, P.R.; Ulbrecht, J.S.; Gibbons, G.W.; Karchmer, A.W. Assessment and management of foot disease in patients with diabetes. N. Engl. J. Med. 1994, 331, 854–860. [Google Scholar] [CrossRef]
- Venkatesan, P.; Lawn, S.; Macfarlane, R.M.; Fletcher, E.M.; Finch, R.G.; Jeffcoate, W.J. Conservative management of osteomyelitis in the feet of diabetic patients. Diabet. Med. A J. Br. Diabet. Assoc. 1997, 14, 487–490. [Google Scholar] [CrossRef]
- Lew, D.P.; Waldvogel, F.A. Osteomyelitis. Lancet 2004, 364, 369–379. [Google Scholar] [CrossRef]
- Gasbarrini, A.L.; Bertoldi, E.; Mazzetti, M.; Fini, L.; Terzi, S.; Gonella, F.; Mirabile, L.; Barbanti Brodano, G.; Furno, A.; Gasbarrini, A.; et al. Clinical features, diagnostic and therapeutic approaches to haematogenous vertebral osteomyelitis. Eur. Rev. Med. Pharmacol. Sci. 2005, 9, 53–66. [Google Scholar]
- Azamgarhi, T.; Shah, A.; Warren, S. Clinical Experience of Implementing Oral Versus Intravenous Antibiotics (OVIVA) in a Specialist Orthopedic Hospital. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e2582–e2588. [Google Scholar] [CrossRef]
- Lázaro-Martínez, J.L.; Aragón-Sánchez, J.; García-Morales, E. Antibiotics versus conservative surgery for treating diabetic foot osteomyelitis: A randomized comparative trial. Diabetes Care 2014, 37, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Senneville, E.; Yazdanpanah, Y.; Cazaubiel, M.; Cordonnier, M.; Valette, M.; Beltrand, E.; Khazarjian, A.; Maulin, L.; Alfandari, S.; Caillaux, M.; et al. Rifampicin-ofloxacin oral regimen for the treatment of mild to moderate diabetic foot osteomyelitis. J. Antimicrob. Chemother. 2001, 48, 927–930. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Mosher, H.J.; Heintz, B.H.; Livorsi, D.J. Implementation of a consensus protocol for antibiotic use for bone and joint infection to reduce unnecessary outpatient parenteral antimicrobial therapy: A quality improvement initiative. Antimicrob. Steward. Healthc. Epidemiol. ASHE 2022, 2, e6. [Google Scholar] [CrossRef] [PubMed]
- Arjun, R.; Niyas, V.K.M.; Sasidharan, A.; Jomes, J.; Yadav, M.K.; Kesavan, S. Peripherally Inserted Central Catheters-associated blood stream infections-occurrence, risk factors, and pathogens, a single center study. J. Infect. Prev. 2023, 24, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Marton, J.P.; Jackel, J.L.; Carson, R.T.; Rothermel, C.D.; Friedman, M.; Menzin, J. Costs of skin and skin structure infections due to Staphylococcus aureus: An analysis of managed-care claims. Curr. Med. Res. Opin. 2008, 24, 2821–2828. [Google Scholar] [CrossRef]
- Filippone, E.J.; Kraft, W.K.; Farber, J.L. The Nephrotoxicity of Vancomycin. Clin. Pharmacol. Ther. 2017, 102, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Diabetes Statistics. Available online: https://www.niddk.nih.gov/health-information/health-statistics/diabetes-statistics#factsstats (accessed on 8 November 2023).
- Grayson, M.L. Diabetic foot infections. Antimicrobial therapy. Infect. Dis. Clin. N. Am. 1995, 9, 143–161. [Google Scholar] [CrossRef]
- National Diabetes Statistics Report. Available online: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf (accessed on 7 November 2023).
- Philbin, T.M.; Leyes, M.; Sferra, J.J.; Donley, B.G. Orthotic and prosthetic devices in partial foot amputations. Foot Ankle Clin. 2001, 6, 215–228. [Google Scholar] [CrossRef]
- Lipsky, B.A.; Senneville, É.; Abbas, Z.G.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.M.; Kono, S.; Lavery, L.A.; Malone, M.; van Asten, S.A.; et al. Guidelines on the diagnosis and treatment of foot infection in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36 (Suppl. S1), e3280. [Google Scholar] [CrossRef]
- Game, F.L.; Jeffcoate, W.J. Primarily non-surgical management of osteomyelitis of the foot in diabetes. Diabetologia 2008, 51, 962–967. [Google Scholar] [CrossRef]
- Eckman, M.H.; Greenfield, S.; Mackey, W.C.; Wong, J.B.; Kaplan, S.; Sullivan, L.; Dukes, K.; Pauker, S.G. Foot infections in diabetic patients. Decision and cost-effectiveness analyses. JAMA 1995, 273, 712–720. [Google Scholar] [CrossRef]
- Embil, J.M.; Rose, G.; Trepman, E.; Math, M.C.M.; Duerksen, F.; Simonsen, J.N.; Nicolle, L.E. Oral antimicrobial therapy for diabetic foot osteomyelitis. Foot Ankle Int. 2006, 27, 771–779. [Google Scholar] [CrossRef]
- Fahey, T.J., 3rd; Sadaty, A.; Jones, W.G., 2nd; Barber, A.; Smoller, B.; Shires, G.T. Diabetes impairs the late inflammatory response to wound healing. J. Surg. Res. 1991, 50, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Karchmer, A.W.; Gibbons, G.W. Foot infections in diabetes: Evaluation and management. Curr. Clin. Top. Infect. Dis. 1994, 14, 1–22. [Google Scholar] [PubMed]
- Tentolouris, N.; Jude, E.B.; Smirnof, I.; Knowles, E.A.; Boulton, A.J. Methicillin-resistant Staphylococcus aureus: An increasing problem in a diabetic foot clinic. Diabet. Med. 1999, 16, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Baker, P.D.; Landon, G.C.; Fernau, R. Antibiotic therapy for diabetic foot infections: Comparison of two parenteral-to-oral regimens. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 1997, 24, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Carro, G.V.; Saurral, R.; Salvador Saguez, F.; Witman, E.L. Diabetic Foot Infections: Bacterial Isolates From the Centers and Hospitals of Latin American Countries. Int. J. Low. Extrem. Wounds 2022, 21, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Bessesen, M.T.; Doros, G.; Henrie, A.M.; Harrington, K.M.; Hermos, J.A.; Bonomo, R.A.; Ferguson, R.E.; Huang, G.D.; Brown, S.T. A multicenter randomized placebo controlled trial of rifampin to reduce pedal amputations for osteomyelitis in veterans with diabetes (VA INTREPID). BMC Infect. Dis. 2020, 20, 23. [Google Scholar] [CrossRef]
- Aragon-Sanchez, J.; Lipsky, B.A. Modern management of diabetic foot osteomyelitis. The when, how and why of conservative approaches. Expert Rev. Anti-Infect. Ther. 2018, 16, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Marks, L.R.; Liang, S.Y.; Muthulingam, D.; Schwarz, E.S.; Liss, D.B.; Munigala, S.; Warren, D.K.; Durkin, M.J. Evaluation of Partial Oral Antibiotic Treatment for Persons Who Inject Drugs and Are Hospitalized with Invasive Infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, e650–e656. [Google Scholar] [CrossRef]
- Gonzalez, B.E.; Martinez-Aguilar, G.; Hulten, K.G.; Hammerman, W.A.; Coss-Bu, J.; Avalos-Mishaan, A.; Mason, E.O., Jr.; Kaplan, S.L. Severe Staphylococcal sepsis in adolescents in the era of community-acquired methicillin-resistant Staphylococcus aureus. Pediatrics 2005, 115, 642–648. [Google Scholar] [CrossRef]
- Dagher, M.; Fowler, V.G., Jr.; Wright, P.W.; Staub, M.B. A Narrative Review of Early Oral Stepdown Therapy for the Treatment of Uncomplicated Staphylococcus aureus Bacteremia: Yay or Nay? Open Forum Infect. Dis. 2020, 7, ofaa151. [Google Scholar] [CrossRef]
- Zimmerli, W.; Sendi, P. Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. Antimicrob. Agents Chemother. 2019, 63, 2. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Sendi, P. Orthopaedic biofilm infections. Apmis 2017, 125, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, C.L.; Schmidt-Malan, S.M.; Mandrekar, J.N.; Patel, R. Rifampin-Based Combination Therapy Is Active in Foreign-Body Osteomyelitis after Prior Rifampin Monotherapy. Antimicrob. Agents Chemother. 2017, 61, 2. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, G.; Albert, J.D.; Arvieux, C.; Guggenbuhl, P. Optimizing combination rifampin therapy for staphylococcal osteoarticular infections. Jt. Bone Spine 2013, 80, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Pushkin, R.; Iglesias-Ussel, M.D.; Keedy, K.; MacLauchlin, C.; Mould, D.R.; Berkowitz, R.; Kreuzer, S.; Darouiche, R.; Oldach, D.; Fernandes, P. A Randomized Study Evaluating Oral Fusidic Acid (CEM-102) in Combination with Oral Rifampin Compared with Standard-of-Care Antibiotics for Treatment of Prosthetic Joint Infections: A Newly Identified Drug-Drug Interaction. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb. Perspect. Med. 2016, 6, a025437. [Google Scholar] [CrossRef]
- Zeller, V.; Magreault, S.; Heym, B.; Salmon, D.; Kitzis, M.-D.; Billaud, E.; Marmor, S.; Jannot, A.-S.; Salomon, L.; Jullien, V. Influence of the clindamycin administration route on the magnitude of clindamycin-rifampicin interaction: A prospective pharmacokinetic study. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2021, 27, 1857.e1–1857.e7. [Google Scholar] [CrossRef]
- Evans, M.D.; Sammelson, R.; McDowell, S. Differential effects of cotreatment of the antibiotic rifampin with host-directed therapeutics in reducing intracellular Staphylococcus aureus infection. PeerJ 2020, 8, e10330. [Google Scholar] [CrossRef]
- Charalambous, L.T.; Kim, B.I.; Schwartz, A.M.; Case, A.; Seidelman, J.L.; Hendershot, E.F.; Bolognesi, M.P.; Seyler, T.M.; Jiranek, W.A. Prosthetic Knee Infection with Coagulase-Negative Staphylococcus: A Harbinger of Poor Outcomes. J. Arthroplast. 2022, 37, S313–S320. [Google Scholar] [CrossRef]
- Report from a Swedish Study Group. Therapy of acute and chronic gram-negative osteomyelitis with ciprofloxacin. Report from a Swedish Study Group. J. Antimicrob. Chemother. 1988, 22, 221–228. [Google Scholar] [CrossRef]
- Gentry, L.O. Oral antimicrobial therapy for osteomyelitis. Ann. Intern. Med. 1991, 114, 986–987. [Google Scholar] [CrossRef] [PubMed]
- Barriere, S.L. Therapeutic decisions: Assessing clinical fit. Pharmacotherapy 1993, 13, 18S–22S. [Google Scholar] [CrossRef] [PubMed]
- Gentry, L.O.; Rodriguez, G.G. Oral ciprofloxacin compared with parenteral antibiotics in the treatment of osteomyelitis. Antimicrob. Agents Chemother. 1990, 34, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, D.N.; Tice, A.D.; Marsh, P.K.; Craven, P.C.; Preheim, L.C. Oral ciprofloxacin therapy for chronic contiguous osteomyelitis caused by aerobic gram-negative bacilli. Am. J. Med. 1987, 82, 254–258. [Google Scholar] [PubMed]
- Nix, D.E.; Cumbo, T.J.; Kuritzky, P.; DeVito, J.M.; Schentag, J.J. Oral ciprofloxacin in the treatment of serious soft tissue and bone infections. Efficacy, safety, and pharmacokinetics. Am. J. Med. 1987, 82, 146–153. [Google Scholar]
- FDA Drug Safety Podcast: FDA Updates Warnings for Oral and Injectable Fluoroquinolone Antibiotics Due to Disabling Side Effects. Available online: https://www.fda.gov/drugs/fda-drug-safety-podcasts/fda-drug-safety-podcast-fda-updates-warnings-oral-and-injectable-fluoroquinolone-antibiotics-due (accessed on 7 November 2023).
- Gentry, L.O. Management of osteomyelitis. Int. J. Antimicrob. Agents 1997, 9, 37–42. [Google Scholar] [CrossRef]
- Shih, H.N.; Shih, L.Y.; Wong, Y.C. Diagnosis and treatment of subacute osteomyelitis. J. Trauma 2005, 58, 83–87. [Google Scholar] [CrossRef]
- Esposito, S.; Leone, S.; Noviello, S.; Ianniello, F.; Fiore, M.; Russo, M.; Foti, G.; Carpentieri, M.S.; Cellesi, C.; Zanelli, G.; et al. Outpatient parenteral antibiotic therapy for bone and joint infections: An Italian multicenter study. J. Chemother. 2007, 19, 417–422. [Google Scholar] [CrossRef]
- Estes, C.S.; Beauchamp, C.P.; Clarke, H.D.; Spangehl, M.J. A two-stage retention debridement protocol for acute periprosthetic joint infections. Clin. Orthop. Relat. Res. 2010, 468, 2029–2038. [Google Scholar] [CrossRef]
- Tong, S.H.Y.; Tang, W.M.; Wong, J.W.K. Group G streptococcus—A rare cause of osteomyelitis simulating bone tumour: A case report. J. Orthop. Surg. 2003, 11, 221–223. [Google Scholar] [CrossRef]
- Cheng, W.; Lian, K.; Luo, D.; Lin, D.; Feng, W.; Xian, H.; Li, T. Salmonella potsdam causing lumbar vertebral osteomyelitis: A case report. Medicine 2018, 97, e0682. [Google Scholar] [CrossRef] [PubMed]
- Malincarne, L.; Ghebregzabher, M.; Moretti, M.V.; Egidi, A.M.; Canovari, B.; Tavolieri, G.; Francisci, D.; Cerulli, G.; Baldelli, F. Penetration of moxifloxacin into bone in patients undergoing total knee arthroplasty. J. Antimicrob. Chemother. 2006, 57, 950–954. [Google Scholar] [CrossRef] [PubMed]
- Uçkay, I.; Aragón-Sánchez, J.; Lew, D.; Lipsky, B.A. Diabetic foot infections: What have we learned in the last 30 years? Int. J. Infect. Dis. 2015, 40, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, M.R.; Spangler, S.K.; Appelbaum, P.C. Susceptibility of Bacteroides non-fragilis and fusobacteria to amoxicillin, amoxicillin/clavulanate, ticarcillin, ticarcillin/clavulanate, cefoxitin, imipenem and metronidazole. Eur. J. Clin. Microbiol. Infect. Dis. 1990, 9, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N. In vitro evaluations of aminopenicillin/beta-lactamase inhibitor combinations. Drugs 1988, 35 (Suppl. S7), 17–26. [Google Scholar] [CrossRef] [PubMed]
- Gariani, K.; Lebowitz, D.; Kressmann, B.; von Dach, E.; Sendi, P.; Waibel, F.; Berli, M.; Huber, T.; Lipsky, B.A.; Uckay, I. Oral amoxicillin-clavulanate for treating diabetic foot infections. Diabetes Obes. Metab. 2019, 21, 1483–1486. [Google Scholar] [CrossRef]
- Birmingham, M.C.; Rayner, C.R.; Meagher, A.K.; Flavin, S.M.; Batts, D.H.; Schentag, J.J. Linezolid for the treatment of multidrug-resistant, gram-positive infections: Experience from a compassionate-use program. Clin. Infect. Dis. 2003, 36, 159–168. [Google Scholar] [CrossRef]
- Salvana, J.; Rodner, C.; Browner, B.D.; Livingston, K.; Schreiber, J.; Pesanti, E. Chronic osteomyelitis: Results obtained by an integrated team approach to management. Conn. Med. 2005, 69, 195–202. [Google Scholar]
- Shuford, J.A.; Steckelberg, J.M. Role of oral antimicrobial therapy in the management of osteomyelitis. Curr. Opin. Infect. Dis. 2003, 16, 515–519. [Google Scholar] [CrossRef]
- Eyichukwu, G.O.; Anyaehie, U.E. Outcome of management of chronic osteomyelitis at National Orthopaedic Hospital, Enugu. Niger. J. Med. 2009, 18, 194–198. [Google Scholar] [CrossRef]
- Eckardt, J.J.; Wirganowicz, P.Z.; Mar, T. An aggressive surgical approach to the management of chronic osteomyelitis. Clin. Orthop. Relat. Res. 1994, 298, 229–239. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, W.J.; Ren, Z.; Han, P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022, 10, 1909. [Google Scholar] [CrossRef] [PubMed]
Drug (Class) | Oral Dosing for Bone Infection in Normal Kidney Function q = Every, h = hours | Targeted Organism(s) |
---|---|---|
Amoxicillin [20,21,22] | 3 g daily 1 g q8 h | Kingella kingae Streptococcus Enterococcus Gram-positive anaerobes |
Augmentin [23] | 875/125 mg q12 h Renal adjustment | Fusobacterium |
Bactrim [24] | 1 DS tab q12 h Renal adjustment | Staph aureus and/or Enterobacteriaceae (in combination with rifampin for staph infections) |
Ciprofloxacin [20,21,25,26,27,28,29,30,31,32,33,34,35] | 750 mg q12 h 500 mg q12 h Renal adjustment | Gram-negative bacilli Staph aureus (in addition to rifampin) Staphylococcus epidermidis Enterococcus Pseudomonas aeruginosa |
Clindamycin [24,28] | 300–450 mg q6-8 h | Cutibacterium acnes MRSA |
Doxycycline [20,21,24,28] | 100 mg q12 h 100 mg q8 h No dose adjustment | Staph aureus (in combination with rifampin) Gram-positive anaerobes |
Levofloxacin [20,21,26,27,28,36,37] | 750 mg daily 500 mg daily 500 mg q12 h Renal adjustment | Gram-negative bacilli Streptococcus Aggregatibacter actinomycetemcomitrans |
Linezolid [20,21,28] | 600 mg q12 h | Enterococcus |
Metronidazole [20,21] | 500 mg q8 h | Gran-negative anaerobes (Bacteroides, Fusobacterium) |
Ofloxacin [28,34,38,39,40] | 400 mg q12 h 200 mg q12 h 200 mg q8 h | Pseudomonas aeruginosa Staph aureus Enterococcus Gram-negative bacilli |
Rifampicin [24,26] | 600 mg daily No dose adjustment | Biofilm—used in addition to anti-staph agent |
Rifampin [20,21,28] | 450 mg q12 h 300 mg q8 h | Staphylococcus Gram-positive anaerobes |
Author and Citation | Number of Patients in Trial | IV Drug(s) and Treatment in Days | PO Drug(s) and Treatment in Days | Severe AE | Outcomes (% Cured) | Study Design |
---|---|---|---|---|---|---|
Nix 1987 [88] | 37 | None | Cipro 139 days | 3 | 31 (84%) | Retrospective |
Greenberg 1987 [35] | 30 | 19–150 | 44–73 | 4 | Ciprofloxacin 57% | Prospective, randomized, open label |
Dellamonica 1989 [34] | 39 | N/A | 90–180 | No mention | Pefloxacin 87% Ofloxacin 76% Ciprofloxacin 57% | Prospective |
Mader 1990 [33] | 26 | 29–60 | 28–64 | No mention | 10/12 (83%) IV patients 11/14 (79%) PO cipro patients | Randomized |
Powers 1990 [32] | 16 | 56 | 42 | No mention | 88% | Prospective |
MacGregor 1990 [31] | 18 | 35–364 | 140 | None | 61.6% | Retrospective |
Gentry 1990 [86] | 67 | 47 | Cipro 56 | No mention | 24 (77%) | Randomized parallel group |
Gentry 1991 [40] | 33 | 28 | 56 | No mention | 74% Ofloxacin 86% IV therapy | Randomized |
Eron 1992 [39] | 53 | 45 | 45 | None | 74% | Open evaluation |
Yamaguti 1993 [30] | 17 | None | 28–254 | None | 76% | Prospective, open label |
Gomis 1999 [38] | 32 | 30–45 | 30–45 | No mention | IV 70% PO 91% | Prospective, randomized, open label |
Shih 2005 [91] | 23 | 14 | 28 | No mention | 13/13 (100%) | Prospective |
Esposito 2007 [92] | 239 | 71.2 | None | 1 patient | 107 (89.2%) | Retrospective analysis of OPAT in Italy |
Cordero-Ampuero 2009 [28] | 36 | 5 | 180 | No mention | 88% | Prospective |
Estes 2010 [93] | 20 | 42 | 270 | No mention | 90% | Retrospective |
Conterno 2013 [7] | 248 | 51 | 31 | 4 of 42 patients | All 8 trials reported cure | Systematic review |
Babouee 2014 [26] | 61 | 19 | 38 | No mention | 97% | Retrospective |
Asseray 2016 [37] | 230 | N/A | 91 | 3 | At end of treatment: 40% After 1 year: 63% | Retrospective cohort |
Laghmouche 2017 [25] | 67 | 14 | 28 | None | 79.1% | Retrospective cohort |
Fantoni 2019 [2] | 50 | <3 days | 4–6 weeks | No mention | 45 (90%) | Descriptive |
Li HK et al. 2019 [15] | 1054 | 6 weeks. Continued beyond 6 weeks for 76.7% of participants. Median duration in IV group: 78 days. | No difference in patients reporting at least one serious adverse event between IV and PO groups. Incidence of catheter complications was significantly higher in the IV group. | Oral antibiotics were non-inferior to IV antibiotics based on treatment failure rates (13.2% and 14.6%, respectively) at one year. | Randomized controlled trial | |
Frieler 2020 [20] | 27 | 14 | 66–92 | Line-associated complications, AKI | 90% | Prospective cohort |
Azamgarhi 2021 [49] | 328 | 43–84 | 42–84 | 4 | 73.3% IV 85.7% PO | Pre/post cohort |
Charalambous 2022 [82] | 55 | 42 | 42–77 | No mention | 47% | Retrospective |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, N.; Ajaz, J.; Mansour, L.; Kasemodel, R.; Jarvis, J.; Jarad, J.; Gorski, H.; Carr, M. A Review of the Clinical Utilization of Oral Antibacterial Therapy in the Treatment of Bone Infections in Adults. Antibiotics 2024, 13, 4. https://doi.org/10.3390/antibiotics13010004
Haddad N, Ajaz J, Mansour L, Kasemodel R, Jarvis J, Jarad J, Gorski H, Carr M. A Review of the Clinical Utilization of Oral Antibacterial Therapy in the Treatment of Bone Infections in Adults. Antibiotics. 2024; 13(1):4. https://doi.org/10.3390/antibiotics13010004
Chicago/Turabian StyleHaddad, Nicholas, Jibran Ajaz, Lina Mansour, Robert Kasemodel, Jennifer Jarvis, John Jarad, Haley Gorski, and Maddie Carr. 2024. "A Review of the Clinical Utilization of Oral Antibacterial Therapy in the Treatment of Bone Infections in Adults" Antibiotics 13, no. 1: 4. https://doi.org/10.3390/antibiotics13010004
APA StyleHaddad, N., Ajaz, J., Mansour, L., Kasemodel, R., Jarvis, J., Jarad, J., Gorski, H., & Carr, M. (2024). A Review of the Clinical Utilization of Oral Antibacterial Therapy in the Treatment of Bone Infections in Adults. Antibiotics, 13(1), 4. https://doi.org/10.3390/antibiotics13010004