Risk Factors and Management of Prosthetic Joint Infections in Megaprostheses—A Review of the Literature
Abstract
:1. Introduction
2. Diagnosis of PJI
3. Risk of PJI in Megaprosthesis
4. Prevention of PJI
4.1. Megaprosthesis Alloys and Coatings
4.1.1. Implant Alloys
4.1.2. Antimicrobial Coatings
5. Microbiology of PJI in Megaprosthesis
6. Treatment of PJI
6.1. Debridement, Antibiotics, and Implant Retention (DAIR)
6.2. One-Stage and Two-Stage Revision
6.3. Amputation
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Simon, M.A.; Aschliman, M.A.; Thomas, N.; Mankin, H.J. Limb-salvage treatment versus amputation for osteosarcoma of the distal end of the femur. J. Bone Jt. Surg. Am. 1986, 68, 1331–1337. Available online: http://www.ncbi.nlm.nih.gov/pubmed/3465732 (accessed on 1 November 2023). [CrossRef]
- Rougraff, B.T.; Simon, M.A.; Kneisl, J.S.; Greenberg, D.B.; Mankin, H.J. Limb salvage compared with amputation for osteosarcoma of the distal end of the femur. A long-term oncological, functional, and quality-of-life study. J. Bone Jt. Surg. Am. 1994, 76, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Ji, T.; Yang, R.; Tang, X.; Yang, Y. Endoprosthetic replacement for primary tumours around the knee: Experience from Peking University. J. Bone Jt. Surg. Br. 2008, 90, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Zeegen, E.N.; Aponte-Tinao, L.A.; Hornicek, F.J.; Gebhardt, M.C.; Mankin, H.J. Survivorship Analysis of 141 Modular Metallic Endoprostheses at Early Followup. Clin. Orthop. Relat. Res. 2004, 420, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Meluzio, M.C.; Oliva, M.S.; Minutillo, F.; Ziranu, A.; Saccomanno, M.F.; Maccauro, G. The use of knee mega-prosthesis for the management of distal femoral fractures: A systematic review. Injury 2020, 51, S17–S22. [Google Scholar] [CrossRef] [PubMed]
- Windhager, R.; Schreiner, M.; Staats, K.; Apprich, S. Megaprostheses in the treatment of periprosthetic fractures of the knee joint: Indication, technique, results and review of literature. Int. Orthop. 2016, 40, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, V.I.; Babis, G.C. Management bone loss of the proximal femur in revision hip arthroplasty: Update on reconstructive options. World J. Orthop. 2014, 5, 614–622. [Google Scholar] [CrossRef]
- Parvizi, J.; Tarity, T.D.; Slenker, N.; Wade, F.; Trappler, R.; Hozack, W.J.; Sim, F.H. Proximal femoral replacement in patients with non-neoplastic conditions. J. Bone Jt. Surg. Am. 2007, 89, 1036–1043. [Google Scholar] [CrossRef]
- Henderson, E.R.; Groundland, J.S.; Pala, E.; Dennis, J.A.; Wooten, R.; Cheong, D.; Windhager, R.; Kotz, R.I.; Mercuri, M.; Funovics, P.T.; et al. Failure mode classification for tumor endoprostheses: Retrospective review of five institutions and a literature review. J. Bone Jt. Surg. 2011, 93, 418–429. [Google Scholar] [CrossRef]
- Abudu, A.; Grimer, R.J.; Tillman, R.M.; Carter, S.R. Endoprosthetic replacement of the distal tibia and ankle joint for aggressive bone tumours. Int. Orthop. 1999, 23, 291–294. [Google Scholar] [CrossRef]
- Anract, P.; Missenard, G.; Jeanrot, C.; Dubois, V.; Tomeno, B. Knee reconstruction with prosthesis and muscle flap after total arthrectomy. Clin. Orthop. Relat. Res. 2001, 384, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, S.M.; Lane, J.M.; Otis, J.C.; Healey, J.H. Prosthetic arthroplasty of the knee after resection of a sarcoma in the proximal end of the tibia. A report of sixteen cases. J. Bone Jt. Surg. Am. 1991, 73, 286–293. Available online: http://www.ncbi.nlm.nih.gov/pubmed/1993723 (accessed on 1 November 2023). [CrossRef]
- McMaster Arthroplasty Collaborative (MAC). Risk Factors for Periprosthetic Joint Infection Following Primary Total Hip Arthroplasty: A 15-Year, Population-Based Cohort Study. J. Bone Jt. Surg. Am. 2020, 102, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Namba, R.S.; Inacio, M.C.S.; Paxton, E.W. Risk factors associated with deep surgical site infections after primary total knee arthroplasty: An analysis of 56,216 knees. J. Bone Jt. Surg. Am. 2013, 95, 775–782. [Google Scholar] [CrossRef]
- Koh, C.K.; Zeng, I.; Ravi, S.; Zhu, M.; Vince, K.G.; Young, S.W. Periprosthetic Joint Infection Is the Main Cause of Failure for Modern Knee Arthroplasty: An Analysis of 11,134 Knees. Clin. Orthop. Relat. Res. 2017, 475, 2194–2201. [Google Scholar] [CrossRef] [PubMed]
- Pangaud, C.; Ollivier, M.; Argenson, J.-N. Outcome of single-stage versus two-stage exchange for revision knee arthroplasty for chronic periprosthetic infection. EFORT Open Rev. 2019, 4, 495–502. [Google Scholar] [CrossRef] [PubMed]
- Peel, T.; May, D.; Buising, K.; Thursky, K.; Slavin, M.; Choong, P. Infective complications following tumour endoprosthesis surgery for bone and soft tissue tumours. Eur. J. Surg. Oncol. 2014, 40, 1087–1094. [Google Scholar] [CrossRef]
- Grimer, R.J.; Belthur, M.; Chandrasekar, C.; Carter, S.R.; Tillman, R.M. Two-stage revision for infected endoprostheses used in tumor surgery. Clin. Orthop. Relat. Res. 2002, 395, 193–203. [Google Scholar] [CrossRef]
- Pala, E.; Trovarelli, G.; Angelini, A.; Maraldi, M.; Berizzi, A.; Ruggieri, P. Megaprosthesis of the knee in tumor and revision surgery. Acta Biomed. 2017, 88, 129–138. [Google Scholar] [CrossRef]
- Gradl, G.; De Witte, P.B.; Evans, B.T.; Hornicek, F.; Raskin, K.; Ring, D. Surgical site infection in orthopaedic oncology. J. Bone Jt. Surg. 2014, 96, 223–230. [Google Scholar] [CrossRef]
- Anatone, A.J.; Danford, N.C.; Jang, E.S.; Smartt, A.; Konigsberg, M.; Tyler, W.K. Risk Factors for Surgical Site Infection in Orthopaedic Oncology. J. Am. Acad. Orthop. Surg. 2020, 28, E923–E928. [Google Scholar] [CrossRef]
- Sigmund, I.K.; Gamper, J.; Weber, C.; Holinka, J.; Panotopoulos, J.; Funovics, P.T.; Windhager, R. Efficacy of different revision procedures for infected megaprostheses in musculoskeletal tumour surgery of the lower limb. PLoS ONE 2018, 13, e0200304. [Google Scholar] [CrossRef] [PubMed]
- Holzer, G.; Windhager, R.; Kotz, R. One-stage revision surgery for infected megaprostheses. J. Bone Jt. Surg. Br. 1997, 79, 31–35. [Google Scholar] [CrossRef]
- Parvizi, J.; Tan, T.L.; Goswami, K.; Higuera, C.; Della Valle, C.; Chen, A.F.; Shohat, N. The 2018 Definition of Periprosthetic Hip and Knee Infection: An Evidence-Based and Validated Criteria. J. Arthroplast. 2018, 33, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- McNally, M.; Sousa, R.; Wouthuyzen-Bakker, M.; Chen, A.F.; Soriano, A.; Vogely, H.C.; Clauss, M.; Higuera, C.A.; Trebše, R. The EBJIS definition of periprosthetic joint infection. Bone Joint J. 2021, 103B, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Gehrke, T.; Chen, A.F. Proceedings of the International Consensus on Periprosthetic Joint Infection. Bone Jt. J. 2013, 95B, 1450–1452. [Google Scholar] [CrossRef] [PubMed]
- Parvizi, J.; Zmistowski, B.; Berbari, E.F.; Bauer, T.W.; Springer, B.D.; Della Valle, C.J.; Garvin, K.L.; Mont, M.A.; Wongworawat, M.D.; Zalavras, C.G. New definition for periprosthetic joint infection: From the workgroup of the musculoskeletal infection society. Clin. Orthop. Relat. Res. 2011, 469, 2992–2994. [Google Scholar] [CrossRef]
- Zimmerli, W.; Trampuz, A.; Ochsner, P.E. Prosthetic-joint infections. N. Engl. J. Med. 2004, 351, 1645–1654. [Google Scholar] [CrossRef]
- Abudu, A.; Carter, S.R.; Grimer, R.J. The outcome and functional results of diaphyseal endoprostheses after tumour excision. J. Bone Jt. Surg.-Ser. B 1996, 78, 652–657. [Google Scholar] [CrossRef]
- Lee, S.Y.; Baek, G.H. Limb-salvage operations in primary malignant tumors of the bone--interim report. J. Korean Med. Sci. 1990, 5, 205–212. [Google Scholar] [CrossRef]
- Racano, A.; Pazionis, T.; Farrokhyar, F.; Deheshi, B.; Ghert, M. High infection rate outcomes in long-bone tumor surgery with endoprosthetic reconstruction in adults: A systematic review. Clin. Orthop. Relat. Res. 2013, 471, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.J.; Capanna, R.; Gherlinzoni, F.; Bacci, G.; Ferruzzi, A.; Casadei, R.; Ferraro, A.; Cazzola, A.; Campanacci, M. Influence of chemotherapy on perioperative complications in limb salvage surgery for bone tumors. Cancer 1990, 65, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Donati, D.; Biscaglia, R. The use of antibiotic-impregnated cement in infected reconstructions after resection for bone tumours. J. Bone Jt. Surg. Br. 1998, 80, 1045–1050. [Google Scholar] [CrossRef]
- Donati, D.; D’Arenzo, R.; Ercolani, C.; Boriani, S. Infection in limb salvage surgery for bone tumors. Eur. J. Orthop. Surg. Traumatol. 1995, 5, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Slawaska-Eng, D.; Gazendam, A.M.; Kendal, J.; Schneider, P.; Becker, R.G.; Freitas, J.P.; Bernthal, N.; Ghert, M.; PARITY Investigators. Patient and Surgical Risk Factors for Surgical Site Infection in Lower-Extremity Oncological Endoprosthetic Reconstruction: A Secondary Analysis of the PARITY Trial Data. J. Bone Jt. Surg. Am. 2023, 105 (Suppl. S1), 41–48. [Google Scholar] [CrossRef] [PubMed]
- Jeys, L.M.; Grimer, R.J.; Carter, S.R.; Tillman, R.M. Periprosthetic infection in patients treated for an orthopaedic oncological condition. J. Bone Jt. Surg. 2005, 87, 842–849. [Google Scholar] [CrossRef]
- Flint, M.N.; Griffin, A.M.; Bell, R.S.; Wunder, J.S.; Ferguson, P.C. Two-Stage Revision of Infected Uncemented Lower Extremity Tumor Endoprostheses. J. Arthroplast. 2007, 22, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Prophylactic Antibiotic Regimens in Tumor Surgery (PARITY) Investigators; Ghert, M.; Schneider, P.; Guyatt, G.; Thabane, L.; Vélez, R.; O’Shea, T.; Randall, R.L.; Turcotte, R.; Wilson, D.; et al. Comparison of Prophylactic Intravenous Antibiotic Regimens After Endoprosthetic Reconstruction for Lower Extremity Bone Tumors A Randomized Clinical Trial. JAMA Oncol. 2022, 8, 345–353. [Google Scholar] [CrossRef]
- Grimer, R.J.; Carter, S.R.; Tillman, R.M.; Sneath, R.S.; Walker, P.S.; Unwin, P.S.; Shewell, P.C. Endoprosthetic replacement of the proximal tibia. J. Bone Jt. Surg. Br. 1999, 81, 488–494. [Google Scholar] [CrossRef]
- Summers, S.H.; Zachwieja, E.C.; Butler, A.J.; Mohile, N.V.; Pretell-Mazzini, J. Proximal Tibial Reconstruction After Tumor Resection: A Systematic Review of the Literature. JBJS Rev. 2019, 7, e1. [Google Scholar] [CrossRef]
- Hardes, J.; Gebert, C.; Schwappach, A.; Ahrens, H.; Streitburger, A.; Winkelmann, W.; Gosheger, G. Characteristics and outcome of infections associated with tumor endoprostheses. Arch. Orthop. Trauma Surg. 2006, 126, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ray, G.S.; Werth, P.; Alexander, J.H.; Eward, W.C.; Bernthal, N.M.; Jeys, L.M.; Funovics, P.; Windhager, R.; Temple, H.T.; Lozano-Calderon, S.; et al. Surgical Site Infection in Patients Managed with an Endoprosthesis for the Treatment of Cancer: Evaluation of Patient, Disease, and Index Surgical Factors. J. Bone Jt. Surg. Am. 2023, 105 (Suppl. S1), 87–96. [Google Scholar] [CrossRef] [PubMed]
- Hardes, J.; Von Eiff, C.; Streitbuerger, A.; Balke, M.; Budny, T.; Henrichs, M.P.; Hauschild, G.; Ahrens, H. Reduction of periprosthetic infection with silver-coated megaprostheses in patients with bone sarcoma. J. Surg. Oncol. 2010, 101, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.A.; Baer, H.; Enneking, W.F. Airborne contamination in orthopedic surgery. Evaluation of laminar air flow system and aspiration suit. Clin. Orthop. Relat. Res. 1977, 122, 231–243. Available online: http://www.ncbi.nlm.nih.gov/pubmed/837613 (accessed on 1 November 2023).
- Infectious Diseases Society of America (IDSA); Spellberg, B.; Blaser, M.; Guidos, R.J.; Boucher, H.W.; Bradley, J.S.; Eisenstein, B.I.; Gerding, D.; Lynfield, R.; Reller, L.B.; et al. Combating antimicrobial resistance: Policy recommendations to save lives. Clin. Infect. Dis. 2011, 52 (Suppl. S5), S397–S428. [Google Scholar] [CrossRef]
- Chim, H.; Tan, B.K.; Tan, M.H.; Tan, K.C.; Song, C. Optimizing the use of local muscle flaps for knee megaprosthesis coverage. Ann. Plast. Surg. 2007, 59, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.H.; Song, W.S.; Jeon, D.G.; Kong, C.B.; Kim, J.I.; Lee, S.Y. Cause of infection in proximal tibial endoprosthetic reconstructions. Arch. Orthop. Trauma Surg. 2012, 132, 163–169. [Google Scholar] [CrossRef]
- Theil, C.; Schneider, K.N.; Gosheger, G.; Dieckmann, R.; Deventer, N.; Hardes, J.; Schmidt-Braekling, T.; Andreou, D. Does the Duration of Primary and First Revision Surgery Influence the Probability of First and Subsequent Implant Failures after Extremity Sarcoma Resection and Megaprosthetic Reconstruction? Cancers 2021, 13, 2510. [Google Scholar] [CrossRef]
- Lex, J.R.; Koucheki, R.; Stavropoulos, N.A.; Michele, J.D.; Toor, J.S.; Tsoi, K.; Ferguson, P.C.; Turcotte, R.E.; Papagelopoulos, P.J. Megaprosthesis anti-bacterial coatings: A comprehensive translational review. Acta Biomater. 2022, 140, 136–148. [Google Scholar] [CrossRef]
- Quayle, J.; Barakat, A.; Klasan, A.; Mittal, A.; Chan, G.; Gibbs, J.; Edmondson, M.; Stott, P. Management of peri-prosthetic joint infection and severe bone loss after total hip arthroplasty using a long-stemmed cemented custom-made articulating spacer (CUMARS). BMC Musculoskelet. Disord. 2021, 22, 358. [Google Scholar] [CrossRef]
- Gosheger, G.; Goetze, C.; Hardes, J.; Joosten, U.; Winkelmann, W.; von Eiff, C. The Influence of the Alloy of Megaprostheses on Infection Rate. J. Arthroplast. 2008, 23, 916–920. [Google Scholar] [CrossRef] [PubMed]
- Shanbhag, A.; Yang, J.; Lilien, J.; Black, J. Decreased neutrophil respiratory burst on exposure to cobalt-chrome alloy and polystyrene in vitro. J. Biomed. Mater. Res. 1992, 26, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Aruni, W.; Inceoglu, S.; Akpolat, Y.T.; Botimer, G.D.; Cheng, W.K.; Danisa, O.A. A comparison of Staphylococcus aureus biofilm formation on cobalt-chrome and titanium-alloy spinal implants. J. Clin. Neurosci. 2016, 31, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Diez-Escudero, A.; Hailer, N.P. The role of silver coating for arthroplasty components. Bone Joint J. 2021, 103B. [Google Scholar] [CrossRef] [PubMed]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef]
- Clement, J.L.; Jarrett, P.S. Antibacterial silver. Met. Based Drugs 1994, 1, 467–482. [Google Scholar] [CrossRef]
- Hardes, J.; Ahrens, H.; Gebert, C.; Streitbuerger, A.; Buerger, H.; Erren, M.; Gunsel, A.; Wedemeyer, C.; Saxler, G.; Winkelmann, W.; et al. Lack of toxicological side-effects in silver-coated megaprostheses in humans. Biomaterials 2007, 28, 2869–2875. [Google Scholar] [CrossRef]
- Fiore, M.; Sambri, A.; Zucchini, R.; Giannini, C.; Donati, D.M.; De Paolis, M. Silver-coated megaprosthesis in prevention and treatment of peri-prosthetic infections: A systematic review and meta-analysis about efficacy and toxicity in primary and revision surgery. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 201–220. [Google Scholar] [CrossRef]
- Wafa, H.; Grimer, R.J.; Reddy, K.; Jeys, L.; Abudu, A.; Carter, S.R.; Tillman, R.M. Retrospective evaluation of the incidence of early periprosthetic infection with silver-treated endoprostheses in high-risk patients: Case-control study. Bone Jt. J. 2015, 97B, 252–257. [Google Scholar] [CrossRef]
- Lansdown, A.B.G. A pharmacological and toxicological profile of silver as an antimicrobial agent in medical devices. Adv. Pharmacol. Sci. 2010, 2010, 910686. [Google Scholar] [CrossRef]
- Puetzler, J.; Hasselmann, J.; Nonhoff, M.; Fobker, M.; Niemann, S.; Theil, C.; Gosheger, G.; Schulze, M. On-Demand Release of Anti-Infective Silver from a Novel Implant Coating Using High-Energy Focused Shock Waves. Pharmaceutics 2023, 15, 2179. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.T.J.; Bus, M.P.A.; Scheper, H.; Van Der Wal, R.J.P.; Van De Sande, M.A.J.; Bramer, J.A.M.; Schaap, G.R.; De Boer, M.G.J.; Dijkstra, P.D.S. Multiflora and gram-negative microorganisms predominate in infections affecting pelvic endoprostheses following tumor resection. J. Bone Jt. Surg. 2019, 101, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Izakovicova, P.; Borens, O.; Trampuz, A. Periprosthetic joint infection: Current concepts and outlook. EFORT Open Rev. 2019, 4, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.R.; Bedi, A.D.S.; Karczewski, D.; Lozano-Calderon, S.A. Treatment and Outcomes of Fungal Prosthetic Joint Infections: A Systematic Review of 225 Cases. J. Arthroplast. 2023, 38, 2464–2471.e1. [Google Scholar] [CrossRef] [PubMed]
- Zmistowski, B.; Fedorka, C.J.; Sheehan, E.; Deirmengian, G.; Austin, M.S.; Parvizi, J. Prosthetic joint infection caused by gram-negative organisms. J. Arthroplast. 2011, 26 (Suppl. S6), 104–108. [Google Scholar] [CrossRef] [PubMed]
- Morii, T.; Morioka, H.; Ueda, T.; Araki, N.; Hashimoto, N.; Kawai, A.; Mochizuki, K.; Ichimura, S. Deep infection in tumor endoprosthesis around the knee: A multi-institutional study by the Japanese musculoskeletal oncology group. BMC Musculoskelet. Disord. 2013, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Ercolano, L.B.; Christensen, T.; McGough, R.; Weiss, K. Treatment solutions are unclear for perimegaprosthetic infections. Clin. Orthop. Relat. Res. 2013, 471, 3204–3213. [Google Scholar] [CrossRef] [PubMed]
- Nucci, N.; Gazendam, A.; Gouveia, K.; Ghert, M.; Wilson, D. Management of infected extremity endoprostheses: A systematic review. Eur. J. Orthop. Surg. Traumatol. 2020, 30, 1139–1149. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Beswick, A.D.; Whitehouse, M.R.; Wylde, V.; Blom, A.W. Debridement, antibiotics and implant retention for periprosthetic joint infections: A systematic review and meta-analysis of treatment outcomes. J. Infect. 2018, 77, 479–488. [Google Scholar] [CrossRef]
- Lee, S.H.; Oh, J.H.; Lee, K.S.; Yoo, K.H.; Kim, H.S. Infection after prosthetic reconstruction in limb salvage surgery. Int. Orthop. 2002, 26, 179–184. [Google Scholar] [CrossRef]
- Allison, D.; Huang, E.; Ahlmann, E.; Carney, S.; Wang, L.; Menendez, L. Peri-Prosthetic Infection in the Orthopedic Tumor Patient. Reconstr. Rev. 2014, 4, 13–17. [Google Scholar] [CrossRef]
- Sukhonthamarn, K.; Tan, T.L.; Strony, J.; Brown, S.; Nazarian, D.; Parvizi, J. The Fate of Periprosthetic Joint Infection Following Megaprosthesis Reconstruction. JBJS Open Access 2021, 6, e21.00003. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, A.; Ribera, A.; Mavrogenis, A.F.; Rodriguez-Pardo, D.; Bonnet, E.; Salles, M.J.; Dolores del Toro, M.; Nguyen, S.; Blanco-García, A.; Skaliczki, G.; et al. Multidrug-resistant and extensively drug-resistant Gram-negative prosthetic joint infections: Role of surgery and impact of colistin administration. Int. J. Antimicrob. Agents 2019, 53, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Funovics, P.T.; Hipfl, C.; Hofstaetter, J.G.; Puchner, S.; Kotz, R.I.; Dominkus, M. Management of septic complications following modular endoprosthetic reconstruction of the proximal femur. Int. Orthop. 2011, 35, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Bejon, P.; Berendt, A.; Atkins, B.L.; Green, N.; Parry, H.; Masters, S.; McLardy-Smith, P.; Gundle, R.; Byren, I. Two-stage revision for prosthetic joint infection: Predictors of outcome and the role of reimplantation microbiology. J. Antimicrob. Chemother. 2010, 65, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Razii, N.; Clutton, J.M.; Kakar, R.; Morgan-Jones, R. Single-stage revision for the infected total knee arthroplasty: The Cardiff experience. Bone Jt. Open 2021, 2, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Menge, T.J.; Koethe, J.R.; Jenkins, C.A.; Wright, P.W.; Shinar, A.A.; Miller, G.G.; Holt, G.E. Acute kidney injury after placement of an antibiotic-impregnated cement spacer during revision total knee arthroplasty. J. Arthroplast. 2012, 27, 1221–1227.e2. [Google Scholar] [CrossRef]
- Thomas, T.L.; Kothari, P.D.; Baker, C.M.; Tarabichi, S.; Clark, S.C.; Goh, G.S. High Incidence of Acute Kidney Injury Following Antibiotic-Loaded Spacer Insertion for Periprosthetic Joint Infection: An Updated Review of the Literature. J. Arthroplast. 2023, in press. [Google Scholar] [CrossRef]
- Huguet, S.; Bernaus, M.; Gómez, L.; Cuchí, E.; Soriano, A.; Font-Vizcarra, L. Role of joint aspiration before re-implantation in patients with a cement spacer in place. World J. Orthop. 2022, 13, 615–621. [Google Scholar] [CrossRef]
- McKee, M.D.; Li-Bland, E.A.; Wild, L.M.; Schemitsch, E.H. A prospective, randomized clinical trial comparing an antibiotic-impregnated bioabsorbable bone substitute with standard antibiotic-impregnated cement beads in the treatment of chronic osteomyelitis and infected nonunion. J. Orthop. Trauma 2010, 24, 483–490. [Google Scholar] [CrossRef]
- McConoughey, S.J.; Howlin, R.P.; Wiseman, J.; Stoodley, P.; Calhoun, J.H. Comparing PMMA and calcium sulfate as carriers for the local delivery of antibiotics to infected surgical sites. J. Biomed. Mater. Res. B. Appl. Biomater. 2015, 103, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Sanicola, S.M.; Albert, S.F. The in vitro elution characteristics of vancomycin and tobramycin from calcium sulfate beads. J. Foot Ankle Surg. 2005, 44, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Tarity, T.D.; Xiang, W.; Jones, C.W.; Gkiatas, I.; Nocon, A.; Selemon, N.A.; Carli, A.; Sculco, P.K. Do Antibiotic-Loaded Calcium Sulfate Beads Improve Outcomes After Debridement, Antibiotics, and Implant Retention? A Matched Cohort Study. Arthroplast. Today 2022, 14, 90–95. [Google Scholar] [CrossRef]
- Flierl, M.A.; Culp, B.M.; Okroj, K.T.; Springer, B.D.; Levine, B.R.; Della Valle, C.J. Poor Outcomes of Irrigation and Debridement in Acute Periprosthetic Joint Infection With Antibiotic-Impregnated Calcium Sulfate Beads. J. Arthroplast. 2017, 32, 2505–2507. [Google Scholar] [CrossRef] [PubMed]
- Son, M.-S.; Lau, E.; Parvizi, J.; Mont, M.A.; Bozic, K.J.; Kurtz, S. What Are the Frequency, Associated Factors, and Mortality of Amputation and Arthrodesis After a Failed Infected TKA? Clin. Orthop. Relat. Res. 2017, 475, 2905–2913. [Google Scholar] [CrossRef]
- Eckers, F.; Laux, C.J.; Schaller, S.; Berli, M.; Achermann, Y.; Fucentese, S.F. Risk factor analysis for above-knee amputation in patients with periprosthetic joint infection of the knee: A case-control study. BMC Musculoskelet. Disord. 2021, 22, 884. [Google Scholar] [CrossRef]
- Gonzalez, M.R.; Clunk, M.J.; Acosta, J.I.; Bedi, A.D.S.; Karczewski, D.; Lozano-Calderon, S.A. High Rates of Treatment Failure and Amputation in Modular Endoprosthesis Prosthetic Joint Infections Caused by Fungal Infections with Candida. Clin. Orthop. Relat. Res. 2023. [Google Scholar] [CrossRef]
- Malek, F.; Somerson, J.S.; Mitchel, S.; Williams, R.P. Does limb-salvage surgery offer patients better quality of life and functional capacity than amputation? Clin. Orthop. Relat. Res. 2012, 470, 2000–2006. [Google Scholar] [CrossRef]
- Walter, N.; Rupp, M.; Hierl, K.; Koch, M.; Kerschbaum, M.; Worlicek, M.; Alt, V. Long-Term Patient-Related Quality of Life after Knee Periprosthetic Joint Infection. J. Clin. Med. 2021, 10, 907. [Google Scholar] [CrossRef]
- Aboltins, C.; Dowsey, M.; Peel, T.; Lim, W.K.; Choong, P. Good quality of life outcomes after treatment of prosthetic joint infection with debridement and prosthesis retention. J. Orthop. Res. 2016, 34, 898–902. [Google Scholar] [CrossRef]
- Rietbergen, L.; Kuiper, J.W.P.; Walgrave, S.; Hak, L.; Colen, S. Quality of life after staged revision for infected total hip arthroplasty: A systematic review. Hip Int. 2016, 26, 311–318. [Google Scholar] [CrossRef] [PubMed]
Unmodifiable | Modifiable | ||
---|---|---|---|
Risk Factor(s) | Reference(s) | Risk Factor(s) | Reference(s) |
Chemotherapy | [32,33,34] | Length of stay | [35] |
Radiation therapy | [18,36,37] | Perioperative antibiotic regimen | [38] |
Immunosuppression | [32,34] | Adequate soft tissue coverage (gastrocnemius flap, free flaps) | [39,40] |
Soft tissue condition | [23,41] | Deep Hemovac drain α | [42] |
Tibial site | [9,36,39] | Operative time | [20,21] |
Amount of fascia excised | [42] |
Author | TreatmentStrategy | Population | Sample (n) | Study Sample (n) | Types of Megaprosthesis | Success Rate |
Ercolano et al. [67] | DAIR | Oncologic | 15 | 31 | DFR (39%), PFR (35%), PTR (10%), TFR (10%), THR (6%) α | 40% |
Allison et al. [71] | DAIR | Oncologic | - | 43 | DFR (56%), PFR (23%), DFR (21%) α | 42% |
Lee et al. [70] | DAIR | Oncologic | 11 | 18 | PTR (45%), DFR (36%), PFR (9%), pelvis (9%) | 45% |
Sukhonthamarn et al. [72] | DAIR | Non-oncologic | 8 | 33 | DFR (55%), PFR (45%) | 50% |
Peel et al. [17] | DAIR | Oncologic | 9 | 17 | DFR (75%), saddle prosthesis (25%) | 75% |
Sigmund et al. [22] | DAIR plus | Oncologic | 61 | 81 | DFR (51%), PTR (31%), PFR (15%), other (3%) α | 51% |
Funovics et al. [74] | DAIR plus | Oncologic | 8 | 12 | PFR (100%) | 63% |
Sukhonthamarn et al. [72] | DAIR plus | Non-oncologic | 19 | 33 | DFR (55%), PFR (45%) | 68% |
Allison et al. [71] | DAIR plus | Oncologic | - | 43 | DFR (56%), PFR (23%), DFR (21%) α | 70% |
Holzer et al. [23] | DAIR plus β | Oncologic | 18 | 18 | DFR (44%), PTR (22%), PFR (17%), THR (11%), TFR (6%) | 78% |
Ercolano et al. [67] | One-stage | Oncologic | 11 | 31 | DFR (39%), PFR (35%), PTR (10%), TFR (10%), THR (6%) α | 45% |
Jeys et al. [36] | One-stage | Oncologic | 33 δ | 136 | PTR (42%), DFR (35%), PTR (13%), pelvis (8%), PHR (2%) α | 47% |
Peel et al. [17] | Two-stage | Oncologic | 4 | 17 | DFR (100%) | 50% |
Allison et al. [71] | Two-stage | Oncologic | - | 43 | DFR (56%), PFR (23%), DFR (21%) α | 62% |
Sigmund et al. [22] | Two-stage γ | Oncologic | 16 | 81 | DFR (51%), PTR (31%), PFR (15%), other (3%) α | 62% |
Jeys et al. [36] | Two-stage | Oncologic | 58 δ | 136 | PTR (42%), DFR (35%), PTR (13%), pelvis (8%), PHR (2%) α | 72% |
Flint et al. [37] | Two-stage ε | Oncologic | 11 | 15 | DFR (60%), PTR (27%), PFR 13%) α | 73% |
Ercolano et al. [67] | Two-stage | Oncologic | 4 | 31 | DFR (39%), PFR (35%), PTR (10%), TFR (10%), THR (6%) α | 75% |
Grimer et al. [18] | Two-stage | Oncologic | 34 | 34 | DFR (50%), PTR (29%), PFR (15%), other (6%) | 75% |
Jeys et al. [36] | Amputation | Oncologic | 43 δ | 136 | PTR (42%), DFR (35%), PTR (13%), pelvis (8%), PHR (2%) α | 98% |
Sigmund et al. [22] | Amputation | Oncologic | 4 | 81 | DFR (51%), PTR (31%), PFR (15%), other (3%) α | 100% |
Allison et al. [71] | Amputation | Oncologic | - | 45 | DFR (56%), PFR (23%), DFR (21%) α | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez, M.R.; Pretell-Mazzini, J.; Lozano-Calderon, S.A. Risk Factors and Management of Prosthetic Joint Infections in Megaprostheses—A Review of the Literature. Antibiotics 2024, 13, 25. https://doi.org/10.3390/antibiotics13010025
Gonzalez MR, Pretell-Mazzini J, Lozano-Calderon SA. Risk Factors and Management of Prosthetic Joint Infections in Megaprostheses—A Review of the Literature. Antibiotics. 2024; 13(1):25. https://doi.org/10.3390/antibiotics13010025
Chicago/Turabian StyleGonzalez, Marcos R., Juan Pretell-Mazzini, and Santiago A. Lozano-Calderon. 2024. "Risk Factors and Management of Prosthetic Joint Infections in Megaprostheses—A Review of the Literature" Antibiotics 13, no. 1: 25. https://doi.org/10.3390/antibiotics13010025
APA StyleGonzalez, M. R., Pretell-Mazzini, J., & Lozano-Calderon, S. A. (2024). Risk Factors and Management of Prosthetic Joint Infections in Megaprostheses—A Review of the Literature. Antibiotics, 13(1), 25. https://doi.org/10.3390/antibiotics13010025