The Occurrence and Characteristics of Methicillin-Resistant Staphylococcal Isolates from Foods and Containers
Abstract
:1. Introduction
2. Results
2.1. Distribution of Methicillin-Resistant Staphylococci
2.2. Antimicrobial Resistance
2.3. Detection of Foodborne Staphylococcus Aureus Enterotoxin Genes
3. Discussion
4. Materials and Methods
4.1. Ethical Statement
4.2. Sample Collection, Isolation, and Presumptive Deification
4.3. Microbiology and Molecular Characterization of S. Aureus and MRSA
4.4. Enterotoxin Genes and PVL Detection
4.5. Sequencing of mecA-or mecC-Harboring Staphylococci
4.6. Molecular Typing
4.7. Electrophoretic Analysis of PCR Products
4.8. Analysis of New STs
4.9. Antimicrobial Susceptibility Testing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, S.I.; Kim, S.D.; Park, J.H.; Yang, S.J. Species Distribution, Antimicrobial Resistance, and Enterotoxigenicity of Non- aureus Staphylococci in Retail Chicken Meat. Antibiotics 2020, 9, 809. [Google Scholar] [CrossRef]
- Lakhundi, S.; Zhang, K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin. Microbiol. Rev. 2018, 31, 10–1128. [Google Scholar] [CrossRef] [Green Version]
- Khairullah, A.R.; Sudjarwo, S.A.; Effendi, M.H.; Ramandinianto, S.C.; Gelolodo, M.A.; Widodo, A.; Riwu, K.H.P.; Kurniawati, D.A. Pet animals as reservoirs for spreading methicillin-resistant Staphylococcus aureus to human health. J. Adv. Vet. Anim. Res. 2023, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; de Oliveira Mendes, T.A.; Fitzgerald, J.R.; de Oliveira Barros Ribon, A. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Ren, Q.; Liao, G.; Wu, Z.; Lv, J.; Chen, W. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. J. Dairy Sci. 2020, 103, 3368–3380. [Google Scholar] [CrossRef] [Green Version]
- Becker, K.; Both, A.; Weißelberg, S.; Heilmann, C.; Rohde, H. Emergence of coagulase-negative staphylococci. Expert Rev. Anti-Infect. Ther. 2020, 18, 349–366. [Google Scholar] [CrossRef] [PubMed]
- Holden, M.T.G.; Feil, E.J.; Lindsay, J.A.; Peacock, S.J.; Day, N.P.J.; Enright, M.C.; Foster, T.J.; Moore, C.E.; Hurst, L.; Atkin, R.; et al. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc. Natl. Acad. Sci. USA 2004, 101, 9786–9791. [Google Scholar] [CrossRef] [PubMed]
- Urmi, M.R.; Ansari, W.K.; Islam, M.S.; Sobur, M.A.; Rahman, M.; Rahman, M.T. Antibiotic resistance patterns of Staphylococcus spp. isolated from fast foods sold in different restaurants of Mymensingh, Bangladesh. J. Adv. Vet. Anim. Res. 2021, 8, 274–281. [Google Scholar] [CrossRef]
- Sadat, A.; Shata, R.R.; Farag, A.M.M.; Ramadan, H.; Alkhedaide, A.; Soliman, M.M.; Elbadawy, M.; Abugomaa, A.; Awad, A. Prevalence and Characterization of PVL-Positive Staphylococcus aureus Isolated from Raw Cow’s Milk. Toxins 2022, 14, 97. [Google Scholar] [CrossRef]
- Al-Ashmawy, M.A.; Sallam, K.I.; Abd-Elghany, S.M.; Elhadidy, M.; Tamura, T. Prevalence, Molecular Characterization, and Antimicrobial Susceptibility of Methicillin-Resistant Staphylococcus aureus Isolated from Milk and Dairy Products. Foodborne Pathog. Dis. 2016, 13, 156–162. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Zhang, F.; Wu, Q.; Zhang, J.; Pang, R.; Zeng, H.; Yang, X.; Chen, M.; Wang, J.; et al. Prevalence and Characterization of Food-Related Methicillin-Resistant Staphylococcus aureus (MRSA) in China. Front. Microbiol. 2019, 10, 304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, A.; Ramos, C.; Monteiro, V.; Santos, J.; Fernandes, P. Virulence Potential and Antibiotic Susceptibility of S. aureus Strains Isolated from Food Handlers. Microorganisms 2022, 10, 2155. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, P.; Papadopoulos, T.; Angelidis, A.S.; Kotzamanidis, C.; Zdragas, A.; Papa, A.; Filioussis, G.; Sergelidis, D. Prevalence, antimicrobial susceptibility and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from dairy industries in north-central and north-eastern Greece. Int. J. Food Microbiol. 2019, 291, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Poudel, B.; Zhang, Q.; Trongtorsak, A.; Pyakuryal, B.; Egoryan, G.; Sous, M.; Ahmed, R.; Trelles-Garcia, D.P.; Yanez-Bello, M.A.; Trelles-Garcia, V.P.; et al. An overlooked cause of septic shock: Staphylococcal Toxic Shock Syndrome secondary to an axillary abscess. IDCases 2020, 23, e01039. [Google Scholar] [CrossRef]
- Schaumburg, F.; Ngoa, U.A.; Kösters, K.; Köck, R.; Adegnika, A.A.; Kremsner, P.G.; Lell, B.; Peters, G.; Mellmann, A.; Becker, K. Virulence factors and genotypes of Staphylococcus aureus from infection and carriage in Gabon. Clin. Microbiol. Infect. 2011, 17, 1507–1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buz On-Dur, L.; Capita, R.; Alonso-Calleja, C. Antibiotic susceptibility of methicillin-resistant staphylococci (MRS) of food origin: A comparison of agar disc diffusion method and a commercially available miniaturized test. Food Microbiol. 2017, 72, 220–224. [Google Scholar] [CrossRef]
- Huber, H.; Ziegler, D.; Pflüger, V.; Vogel, G.; Zweifel, C.; Stephan, R. Prevalence and characteristics of methicillin-resistant coagulase-negative staphylococci from livestock, chicken carcasses, bulk tank milk, minced meat, and contact persons. BMC Vet. Res. 2011, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Nemeghaire, S.; Vanderhaeghen, W.; Angeles Argudín, M.; Haesebrouck, F.; Butaye, P. Characterization of methicillin-resistant Staphylococcus sciuri isolates from industrially raised pigs, cattle and broiler chickens. J. Antimicrob. Chemother. 2014, 69, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Igbinosa, E.O.; Beshiru, A.; Igbinosa, I.H.; Ogofure, A.G.; Ekundayo, T.C.; Okoh, A.I. Prevalence, multiple antibiotic resistance and virulence profile of methicillin-resistant Staphylococcus aureus (MRSA) in retail poultry meat from Edo, Nigeria. Front. Cell. Infect. Microbiol. 2023, 13, 183. [Google Scholar] [CrossRef]
- Bernier-Lachance, J.; Arsenault, J.; Usongo, V.; Parent, E.; Labrie, J.; Jacques, M.; Malouin, F.; Archambault, M. Prevalence and characteristics of Livestock-Associated Methicillin-Resistant Staphylococcus aureus (LA-MRSA) isolated from chicken meat in the province of Quebec, Canada. PLoS ONE 2020, 15, e0227183. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, J.; Yu, S.; Wu, Q.; Guo, W.; Huang, J.; Cai, S. Prevalence of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Retail Ready-to-Eat Foods in China. Front. Microbiol. 2016, 7, 816. [Google Scholar] [CrossRef] [PubMed]
- Klibi, A.; Maaroufi, A.; Torres, C.; Jouini, A. Detection and characterization of methicillin-resistant and susceptible coagulase-negative staphylococci in milk from cows with clinical mastitis in Tunisia. Int. J. Antimicrob. Agents 2018, 52, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Fernandes dos Santos, F.; Mendonça, L.C.; Reis, D.R.d.L.; Guimarães, A.d.S.; Lange, C.C.; Ribeiro, J.B.; Machado, M.A.; Brito, M.A.V.P. Presence of mecA-positive multidrug-resistant Staphylococcus epidermidis in bovine milk samples in Brazil. J. Dairy Sci. 2016, 99, 1374–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chajecka-Wierzchowska, W.; Zadernowska, A.; Nalepa, B.; Sierpińska, M.; Laniewska-Trokenheim, L. Coagulase-negative staphylococci (CoNS) isolated from ready-to-eat food of animal origin--phenotypic and genotypic antibiotic resistance. Food Microbiol. 2015, 46, 222–226. [Google Scholar] [CrossRef]
- Osman, K.; Alvarez-Ordóñez, A.; Ruiz, L.; Badr, J.; ElHofy, F.; Al-Maary, K.S.; Moussa, I.M.I.; Hessain, A.M.; Orabi, A.; Saad, A.; et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 35. [Google Scholar] [CrossRef] [Green Version]
- Sorour, H.K.; Shalaby, A.G.; Abdelmagid, M.A.; Hosny, R.A. Characterization and pathogenicity of multidrug-resistant coagulase-negative Staphylococci isolates in chickens. Int. Microbiol. 2023, 1–12. [Google Scholar] [CrossRef]
- Seng, R.; Kitti, T.; Thummeepak, R.; Kongthai, P.; Leungtongkam, U.; Wannalerdsakun, S.; Sitthisak, S. Biofilm formation of methicillin-resistant coagulase negative staphylococci (MR-CoNS) isolated from community and hospital environments. PLoS ONE 2017, 12, e0184172. [Google Scholar] [CrossRef] [Green Version]
- Vestergaard, M.; Cavaco, L.M.; Sirichote, P.; Unahalekhaka, A.; Dangsakul, W.; Svendsen, C.A.; Aarestrup, F.M.; Hendriksen, R.S. SCCmec Type IX Element in Methicillin Resistant Staphylococcusaureusspa Type t337 (CC9) Isolated from Pigs and Pork in Thailand. Front. Microbiol. 2012, 3, 103. [Google Scholar] [CrossRef] [Green Version]
- Tanomsridachchai, W.; Changkaew, K.; Changkwanyeun, R.; Prapasawat, W.; Intarapuk, A.; Fukushima, Y.; Yamasamit, N.; Kapalamula, T.F.; Nakajima, C.; Suthienkul, O.; et al. Antimicrobial Resistance and Molecular Characterization of Methicillin-Resistant Staphylococcus aureus Isolated from Slaughtered Pigs and Pork in the Central Region of Thailand. Antibiotics 2021, 10, 206. [Google Scholar] [CrossRef]
- Saenhom, N.; Kansan, R.; Chopjitt, P.; Boueroy, P.; Hatrongjit, R.; Kerdsin, A. Evaluation of in-house cefoxitin screening broth to determine methicillin-resistant staphylococci. Heliyon 2022, 8, ee08950. [Google Scholar] [CrossRef]
- Sukhumungoon, P.; Bunnueang, N.; Kongpheng, S.; Singkhamanan, K.; Saengsuwan, P.; Rattanachuay, P.; Dangsriwan, S. Methicillin-Resistant Staphylococcus aureus from Ready-to-Eat Foods in a Hospital Canteen, Southern Thailand: Virulence Characterization And Genetic Relationship. Southeast Asian J. Trop. Med. Public Health 2015, 46, 86. [Google Scholar]
- Sankomkai, W.; Boonyanugomol, W.; Kraisriwattana, K.; Nutchanon, J.; Boonsam, K.; Kaewbutra, S.; Wongboot, W. Characterisation of Classical Enterotoxins, Virulence Activity, and Antibiotic Susceptibility of Staphylococcus aureus Isolated from Thai Fermented Pork Sausages, Clinical Samples, and Healthy Carriers in Northeastern Thailand. J. Vet. Res. 2020, 64, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Şanlıbaba, P. Prevalence, antibiotic resistance, and enterotoxin production of Staphylococcus aureus isolated from retail raw beef, sheep, and lamb meat in Turkey. Int. J. Food Microbiol. 2022, 361, 109461. [Google Scholar] [CrossRef]
- Zehra, A.; Gulzar, M.; Singh, R.; Kaur, S.; Gill, J.P.S. Prevalence, multidrug resistance and molecular typing of methicillin-resistant Staphylococcus aureus (MRSA) in retail meat from Punjab, India. J. Glob. Antimicrob. Resist. 2019, 16, 152–158. [Google Scholar] [CrossRef]
- Wu, S.; Huang, J.; Wu, Q.; Zhang, J.; Zhang, F.; Yang, X.; Wu, H.; Zeng, H.; Chen, M.; Ding, Y.; et al. Staphylococcus aureus Isolated From Retail Meat and Meat Products in China: Incidence, Antibiotic Resistance and Genetic Diversity. Front. Microbiol. 2018, 9, 2767. [Google Scholar] [CrossRef]
- Ou, C.; Shang, D.; Yang, J.; Chen, B.; Chang, J.; Jin, F.; Shi, C. Prevalence of multidrug-resistant Staphylococcus aureus isolates with strong biofilm formation ability among animal-based food in Shanghai. Food Control 2020, 112, 107106. [Google Scholar] [CrossRef]
- Zhu, Z.; Liu, X.; Chen, X.; Zou, G.; Huang, Q.; Meng, X.; Pei, X.; Chen, Z.; Zhou, R.; Hu, D.; et al. Prevalence and Virulence Determinants of Staphylococcus aureus in Wholesale and Retail Pork in Wuhan, Central China. Foods 2022, 11, 4114. [Google Scholar] [CrossRef]
- Velasco, V.; Vergara, J.L.; Bonilla, A.M.; Muñoz, J.; Mallea, A.; Vallejos, D.; Quezada-Aguiluz, M.; Campos, J.; Rojas-García, P. Prevalence and Characterization of Staphylococcus aureus Strains in the Pork Chain Supply in Chile. Foodborne Pathog. Dis. 2018, 15, 262–268. [Google Scholar] [CrossRef]
- Komodromos, D.; Kotzamanidis, C.; Giantzi, V.; Pappa, S.; Papa, A.; Zdragas, A.; Angelidis, A.; Sergelidis, D. Prevalence, Infectious Characteristics and Genetic Diversity of Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus (MRSA) in Two Raw-Meat Processing Establishments in Northern Greece. Pathog. 2022, 11, 1370. [Google Scholar] [CrossRef]
- Feßler, A.T.; Kadlec, K.; Hassel, M.; Hauschild, T.; Eidam, C.; Ehricht, R.; Monecke, S.; Schwarz, S. Characterization of methicillin-resistant Staphylococcus aureus isolates from food and food products of poultry origin in Germany. Appl. Environ. Microbiol. 2011, 77, 7151–7157. [Google Scholar] [CrossRef] [Green Version]
- Boost, M.V.; Wong, A.; Ho, J.; O’Donoghue, M. Isolation of methicillin-resistant Staphylococcus aureus (MRSA) from retail meats in Hong Kong. Foodborne Pathog. Dis. 2013, 10, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, K.; Wang, X.; Donabedian, S.; Zervos, M.; da Rocha, L.; Zhang, Y. Methicillin-resistant Staphylococcus aureus in retail meat, Detroit, Michigan, USA. Emerg. Infect. Dis. 2011, 17, 1135–1137. [Google Scholar] [CrossRef] [PubMed]
- Hanson, B.M.; Dressler, A.E.; Harper, A.L.; Scheibel, R.P.; Wardyn, S.E.; Roberts, L.K.; Kroeger, J.S.; Smith, T.C. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J. Infect. Public Health 2011, 4, 169–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, D.; Gómez, P.; Lozano, C.; Estepa, V.; Gómez-Sanz, E.; Zarazaga, M.; Torres, C. Genetic lineages, antimicrobial resistance, and virulence in Staphylococcus aureus of meat samples in Spain: Analysis of immune evasion cluster (IEC) genes. Foodborne Pathog. Dis. 2014, 11, 354–356. [Google Scholar] [CrossRef]
- Lo, Y.P.; Wan, M.T.; Chen, M.M.; Su, H.Y.; Lauderdale, T.L.; Chou, C.C. Molecular characterization and clonal genetic diversity of methicillin-resistant Staphylococcus aureus of pig origin in Taiwan. Comp. Immunol. Microbiol. Infect. Dis. 2012, 35, 513–521. [Google Scholar] [CrossRef]
- Guardabassi, L.; O’donoghue, M.; Moodley, A.; Ho, J.; Boost, M. Novel Lineage of Methicillin-Resistant Staphylococcus aureus, Hong Kong. Emerg. Infect. Dis. 2009, 15, 1998. [Google Scholar] [CrossRef]
- Neela, V.; Zafrul, A.M.; Mariana, N.S.; Van Belkum, A.; Liew, Y.K.; Rad, E.G. Prevalence of ST9 methicillin-resistant Staphylococcus aureus among pigs and pig handlers in Malaysia. J. Clin. Microbiol. 2009, 47, 4138–4140. [Google Scholar] [CrossRef] [Green Version]
- Anukool, U.; O’Neill, C.E.; Butr-Indr, B.; Hawkey, P.M.; Gaze, W.H.; Wellington, E.M.H. Meticillin-resistant Staphylococcus aureus in pigs from Thailand. Int. J. Antimicrob. Agents 2011, 38, 86–87. [Google Scholar] [CrossRef]
- Larsen, J.; Imanishi, M.; Hinjoy, S.; Tharavichitkul, P.; Duangsong, K.; Davis, M.F.; Nelson, K.E.; Larsen, A.R.; Skov, R.L. Methicillin-resistant Staphylococcus aureus ST9 in pigs in Thailand. PLoS ONE 2012, 7, e31245. [Google Scholar] [CrossRef] [Green Version]
- Chuang, Y.Y.; Huang, Y.C. Livestock-associated meticillin-resistant Staphylococcus aureus in Asia: An emerging issue? Int. J. Antimicrob. Agents 2015, 45, 334–340. [Google Scholar] [CrossRef]
- Silva, V.; Almeida, F.; Carvalho, J.A.; Castro, A.P.; Ferreira, E.; Manageiro, V.; Tejedor-Junco, M.T.; Caniça, M.; Igrejas, G.; Poeta, P. Emergence of community-acquired methicillin-resistant Staphylococcus aureus EMRSA-15 clone as the predominant cause of diabetic foot ulcer infections in Portugal. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Bonura, C.; Plano, M.R.A.; Di Carlo, P.; Calà, C.; Cipolla, D.; Corsello, G.; Mammina, C. MRSA ST22-IVa (EMRSA-15 clone) in Palermo, Italy. J. Infect. Public Health 2010, 3, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Niek, W.K.; Teh, C.S.J.; Idris, N.; Thong, K.L.; Ponnampalavanar, S. Predominance of ST22-MRSA-IV Clone and Emergence of Clones for Methicillin-Resistant Staphylococcus aureus Clinical Isolates Collected from a Tertiary Teaching Hospital Over a Two-Year Period. Jpn. J. Infect. Dis. 2019, 72, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Coelho, C.; Torres, C.; Radhouani, H.; Pinto, L.; Lozano, C.; Gómez-Sanz, E.; Zaragaza, M.; Igrejas, G.; Poeta, P. Molecular detection and characterization of methicillin-resistant Staphylococcus aureus (MRSA) isolates from dogs in Portugal. Microb. Drug Resist. 2011, 17, 333–337. [Google Scholar] [CrossRef]
- Costa, S.S.; Ribeiro, R.; Serrano, M.; Oliveira, K.; Ferreira, C.; Leal, M.; Pomba, C.; Couto, I. Staphylococcus aureus Causing Skin and Soft Tissue Infections in Companion Animals: Antimicrobial Resistance Profiles and Clonal Lineages. Antibiotics 2022, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Z.; Chen, Y.S.; Yang, J.P.; Zhang, W.; Hu, C.P.; Li, J.S.; Mu, L.; Hu, Y.H.; Geng, R.; Hu, K.; et al. Preliminary molecular epidemiology of the Staphylococcus aureus in lower respiratory tract infections: A multicenter study in China. Chin. Med. J. 2011, 124, 687–692. [Google Scholar] [CrossRef]
- Boamah, V.E.; Agyare, C.; Odoi, H.; Adu, F.; Gbedema, S.Y.; Dalsgaard, A. Prevalence and antibiotic resistance of coagulase-negative Staphylococci isolated from poultry farms in three regions of Ghana. Infect. Drug Resist. 2017, 10, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Pimenta, R.L.; de Melo, D.A.; Bronzato, G.F.; de Salles Souza, V.R.; Holmström, T.C.N.; de Oliveira Coelho, S.D.M.; da Silva Coelho, I.; de Souza, M.M.S. Characterization of staphylococcus spp. isolates and β-lactam resistance in broiler chicken production. Rev. Bras. Med. Vet. 2021, 43, e00720. [Google Scholar] [CrossRef]
- Rall, V.L.M.; Sforcin, J.M.; De Deus, M.F.R.; De Sousa, D.C.; Camargo, C.H.; Godinho, N.C.; Galindo, L.A.; Soares, T.C.S.; Araújo, J.P. Polymerase Chain Reaction Detection of Enterotoxins Genes in Coagulase-Negative Staphylococci Isolated from Brazilian Minas Cheese. Foodborne Pathog. Dis. 2010, 7, 1121–1123. [Google Scholar] [CrossRef] [Green Version]
- Podkowik, M.; Park, J.Y.; Seo, K.S.; Bystroń, J.; Bania, J. Enterotoxigenic potential of coagulase-negative staphylococci. Int. J. Food Microbiol. 2013, 163, 34–40. [Google Scholar] [CrossRef]
- Silva, V.; Caniça, M.; Ferreira, E.; Vieira-Pinto, M.; Saraiva, C.; Pereira, J.E.; Capelo, J.L.; Igrejas, G.; Poeta, P. Multidrug-Resistant Methicillin-Resistant Coagulase-Negative Staphylococci in Healthy Poultry Slaughtered for Human Consumption. Antibiotics 2022, 11, 365. [Google Scholar] [CrossRef]
- El-Deeb, W.; Cave, R.; Fayez, M.; Alhumam, N.; Quadri, S.; Mkrtchyan, H.V. Methicillin Resistant Staphylococci Isolated from Goats and Their Farm Environments in Saudi Arabia Genotypically Linked to Known Human Clinical Isolates: A Pilot Study. Microbiol. Spectr. 2022, 10, e00387-22. [Google Scholar] [CrossRef]
- Dinges, M.M.; Orwin, P.M.; Schlievert, P.M. Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 2000, 13, 16–34. [Google Scholar] [CrossRef]
- Chiang, Y.C.; Liao, W.W.; Fan, C.M.; Pai, W.Y.; Chiou, C.S.; Tsen, H.Y. PCR detection of Staphylococcal enterotoxins (SEs) N, O, P, Q, R, U, and survey of SE types in Staphylococcus aureus isolates from food-poisoning cases in Taiwan. Int. J. Food Microbiol. 2008, 121, 66–73. [Google Scholar] [CrossRef]
- Hu, W.D. Distribution of food-borne Staphylococcus aureus enterotoxin genes. Genet. Mol. Res. 2016, 15, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Al-Talib, H.; Yean, C.Y.; Al-Khateeb, A.; Hassan, H.; Singh, K.K.B.; Al-Jashamy, K.; Ravichandran, M. A pentaplex PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus and Panton-Valentine Leucocidin. BMC Microbiol. 2009, 9, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegger, M.; Andersen, P.S.; Kearns, A.; Pichon, B.; Holmes, M.A.; Edwards, G.; Laurent, F.; Teale, C.; Skov, R.; Larsen, A.R. Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA(LGA251). Clin. Microbiol. Infect. 2012, 18, 395–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Petti, C.A.; Bosshard, P.P.; Brandt, M.E.; Clarridge, J.E.; Feldblyum, T.V.; Foxall, P.; Furtado, M.R.; Pace, N.; Procop, G. Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing; Approved Guideline. Clin. Lab. Stand. Inst. (CLSI) Doc. 2008, 28, 19087–19898. [Google Scholar]
- Enright, M.C.; Day, N.P.J.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef]
- Shopsin, B.; Gomez, M.; Waddington, M.; Riehman, M.; Kreiswirth, B.N. Use of coagulase gene (coa) repeat region nucleotide sequences for typing of methicillin-resistant Staphylococcus aureus strains. J. Clin. Microbiol. 2000, 38, 3453–3456. [Google Scholar] [CrossRef]
- Dereeper, A.; Guignon, V.; Blanc, G.; Audic, S.; Buffet, S.; Chevenet, F.; Dufayard, J.-F.; Guindon, S.; Lefort, V.; Lescot, M.; et al. Phylogeny.fr: Robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 2008, 36, 465–469. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; M100; Clinical Laboratory Standard Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Chavez-Bueno, S.; Bozdogan, B.; Katz, K.; Bowlware, K.L.; Cushion, N.; Cavuoti, D.; Ahmad, N.; McCracken, G.H.; Appelbaum, P.C. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob. Agents Chemother. 2005, 49, 2283–2288. [Google Scholar] [CrossRef] [Green Version]
Category of Samples | No. of Sample | No. of Sample Positive for mecA | No. of Sample Positive for mecC | No. of Sample Positive for S. aureus | No. of Sample Positive for MRSA | Enterotoxin Genes (SEj, SEl, SEq, SEm, SEr) |
---|---|---|---|---|---|---|
Food container | 80 | - | - | - | - | - |
Food samples | 30 | - | - | - | - | - |
Pork | 30 | 4 (1.74%) | 1 (0.43%) | 6 (2.6%) | 2 (0.87%) | - |
Chicken | 30 | 2 (0.87%) | - | 19 (8.26%) | - | 2 |
Beef | 30 | 2 (0.87%) | - | 5 (2.17%) | 1 (0.43%) | 1 |
Fermented food | 30 | - | - | 2 (0.87%) | - | 2 |
Total | 230 | 8 (3.47%) | 1 (0.43%) | 32 (13.91%) | 3 (1.3%) | 5 (2.17%) |
ID | Sample | mecA/C | Species | SCCmec Types | STs | Spa Types | Resistance Profiles ** | |
---|---|---|---|---|---|---|---|---|
P(2)12.4 | Pork | mecA | MRSA | * UN | ST9 | t526 | FOX-OX-E-DA-CN-AZM -TE-CIP-SXT-C- D+ | MDR |
B(3)1.2 | Beef | mecA | MRSA | IV | ST22 | t005 | FOX-OX-E-DA-CN-AZM -CIP-D+ | MDR |
B22.5 | Beef | mecA | MRSA | V | new | new | FOX-OX -E-CN-AZM-CIP | MDR |
P3.5 | Pork | mecA | S. sciuri | * UN. | - | - | FOX-OX-DA-AZM-TE -SXT | MDR |
P(3) 1.2 | Pork | mecA | S. haemolyticus | * UN. | - | - | FOX-OX-DA-AZM-TE | MDR |
P(3) 1.3 | Pork | mecA | S. sciuri | * UN. | - | - | FOX-OX -DA-TE | MDR |
P(3) 1.5 | Pork | mecA | S. haemolyticus | * UN. | - | - | FOX-OX -DA--TE | MDR |
C49.2 | Chicken | mecA | S. haemolyticus | III | - | - | FOX-OX | - |
C49.4 | Chicken | mecA | S. simulans | * UN. | - | - | FOX-OX -TE | MDR |
B57.3 | Beef | mecA | S. warneri | V | - | - | FOX-OX -E-DA- AZM -TE-C | MDR |
B79.1 | Beef | mecA | S. warneri | V | - | - | FOX-OX -E-DA-AZM-TE | MDR |
P20.3 | Pork | mecC | S. xylosus | * UN. | - | - | OX-TE | - |
Target Gene | Primer Sequence (5′-3′) | Size (bp) | Reference |
---|---|---|---|
femA | F: CGATCCATATTTACATATCA R: ATAACGCTCTTCGTTTAGTT | 450 | [66] |
mecA | F: ACGAGTAGATGCTCAATATAA R: CTTAGTTCTTTAGCGATTGC | 293 | |
Luks | F: CAGGAGGTAATGGTTCATTT R: ATGTCCAGACATTTTACCTAA | 151 | |
mecC | F: GAAAAAAAGGCTTAGAACGCCTC R: GAAGATCTTTTCCGTTTTCAGC | 138 | [67] |
SEj | F: CACCAGAACTGTTGTTCTGCTAG R: CTGAATTTTACCATCAAAGGTAC | 114 | [65] |
SEl | F: TGGACATAACGGCACTAAAA R: TTGGTARCCCATCATCTCCT | 145 | |
SEq | F: ATACCTATTAATCTCTGGGTCAATG R: AATGGAAAGTAATTTTTCCTTTG | 222 | |
SEm | F: AGTTTGTGTAAGAAGTCAAGTGTAGA R: ATCTTTAAATTCAGCAGATATTCCATCTAA | 178 | |
SEr | F: TCCCATTCCTTATTTAGAATACA R: GGATATTCCAAACACATCTGAC | 440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kansaen, R.; Boueroy, P.; Hatrongjit, R.; Kamjumphol, W.; Kerdsin, A.; Chopjitt, P. The Occurrence and Characteristics of Methicillin-Resistant Staphylococcal Isolates from Foods and Containers. Antibiotics 2023, 12, 1287. https://doi.org/10.3390/antibiotics12081287
Kansaen R, Boueroy P, Hatrongjit R, Kamjumphol W, Kerdsin A, Chopjitt P. The Occurrence and Characteristics of Methicillin-Resistant Staphylococcal Isolates from Foods and Containers. Antibiotics. 2023; 12(8):1287. https://doi.org/10.3390/antibiotics12081287
Chicago/Turabian StyleKansaen, Rada, Parichart Boueroy, Rujirat Hatrongjit, Watcharaporn Kamjumphol, Anusak Kerdsin, and Peechanika Chopjitt. 2023. "The Occurrence and Characteristics of Methicillin-Resistant Staphylococcal Isolates from Foods and Containers" Antibiotics 12, no. 8: 1287. https://doi.org/10.3390/antibiotics12081287
APA StyleKansaen, R., Boueroy, P., Hatrongjit, R., Kamjumphol, W., Kerdsin, A., & Chopjitt, P. (2023). The Occurrence and Characteristics of Methicillin-Resistant Staphylococcal Isolates from Foods and Containers. Antibiotics, 12(8), 1287. https://doi.org/10.3390/antibiotics12081287