Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Semen Collection and Dilution
4.2. Sperm Motility
4.3. Sperm Viability
4.4. Acrosome Integrity
4.5. Mitochondrial Membrane Potential (MMP)
4.6. Sperm DNA Fragmentation
4.7. Reactive Oxygen Species (ROS) Generation
4.8. Bacteriological Analysis
4.9. Identification of Bacteria
4.10. Antibiotic Resistance Testing
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scanes, C. The Global Importance of Poultry. Poult. Sci. 2007, 86, 1057–1058. [Google Scholar] [CrossRef] [PubMed]
- Birhanu, M.Y.; Osei-Amponsah, R.; Yeboah Obese, F.; Dessie, T. Smallholder poultry production in the context of increasing global food prices: Roles in poverty reduction and food security. Anim. Front. 2023, 13, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Mai, C.; Cai, R.; Gou, Q.; Zhang, B.; Li, J.; Sun, C.; Yang, N. Inheritance of the duration of fertility in chickens and its correlation with laying performance. Genet. Sel. Evol. 2022, 54, 41. [Google Scholar] [CrossRef] [PubMed]
- Mohan, J.; Sharma, S.; Kolluri, G.; Dhama, K. History of artificial insemination in poultry, its components and significance. Worlds Poult. Sci. J. 2018, 74, 475–488. [Google Scholar] [CrossRef]
- Bakst, M.R.; Dymo, J.S. Artificial Insemination in Poultry. In Success in Artificial Insemination—Quality of Semen and Diagnostics Employed, 1st ed.; Lemma, A., Ed.; InTech: London, UK, 2013; pp. 175–195. [Google Scholar]
- Donoghue, A.M.; Wishart, G.J. Storage of poultry semen. Anim. Reprod. Sci. 2000, 62, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Blesbois, E.; Brillard, J.P. Specific features of in vivo and in vitro sperm storage in birds. Animal 2007, 1, 1472–1481. [Google Scholar] [CrossRef] [Green Version]
- Partyka, A.; Niżański, W. Advances in storage of poultry semen. Anim. Reprod. Sci. 2022, 246, 106921. [Google Scholar] [CrossRef]
- Bustani, G.S.; Baiee, F.H. Semen extenders: An evaluative overview of preservative mechanisms of semen and semen extenders. Vet. World. 2021, 14, 1220–1233. [Google Scholar] [CrossRef]
- Morrell, J.M.; Wallgren, M. Alternatives to antibiotics in semen extenders: A review. Pathogens 2014, 3, 934–946. [Google Scholar] [CrossRef] [Green Version]
- Maasjost, J.; Mühldorfer, K.; de Jäckel, S.C.; Hafez, H.M. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany. Avian Dis. 2015, 59, 143–148. [Google Scholar] [CrossRef]
- Tvrdá, E.; Petrovičová, M.; Benko, F.; Ďuračka, M.; Kováč, J.; Slanina, T.; Galovičová, L.; Žiarovská, J.; Kačániová, M. Seminal Bacterioflora of Two Rooster Lines: Characterization, Antibiotic Resistance Patterns and Possible Impact on Semen Quality. Antibiotics 2023, 12, 336. [Google Scholar] [CrossRef] [PubMed]
- Cox, N.A.; Stern, N.J.; Wilson, J.L.; Musgrove, M.T.; Buhr, R.J.; Hiett, K.L. Isolation of Campylobacter spp. from Semen Samples of Commercial Broiler Breeder Roosters. Avian Dis. 2002, 46, 717–720. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K. Bacterial Flora of Poultry Semen and Their Antibiotic Sensitivity Pattern. Int. J. Appl. Pure Sci. Agric. 2015, 1, 39–41. [Google Scholar]
- Reiber, M.A.; McInroy, J.A.; Conner, D.E. Enumeration and Identification of Bacteria in Chicken Semen. Poult. Sci. 1995, 74, 795–799. [Google Scholar] [CrossRef]
- Sayed, M.A.M.; Abd-Elhafeez, H.H.; Afifi, O.S.; Marzouk, M.W.; El-Sherry, T.M. Sperm tendency to agglutinate in motile bundles in relation to sperm competition and fertility duration in chickens. Sci. Rep. 2022, 12, 18860. [Google Scholar] [CrossRef]
- Omprakash, A.; Venkatesh, G. Effect of vaginal douching and different semen extenders on bacterial load and fertility in turkeys. Br. Poult. Sci. 2006, 47, 523–526. [Google Scholar] [CrossRef]
- Haines, M.D.; Parker, H.M.; McDaniel, C.D.; Kiess, A.S. Impact of 6 different intestinal bacteria on broiler breeder sperm motility in vitro. Poult. Sci. 2013, 92, 2174–2181. [Google Scholar] [CrossRef]
- Tvrdá, E.; Petrovičová, M.; Benko, F.; Ďuračka, M.; Galovičová, L.; Slanina, T.; Kačániová, M. Curcumin Attenuates Damage to Rooster Spermatozoa Exposed to Selected Uropathogens. Pharmaceutics 2022, 15, 65. [Google Scholar] [CrossRef]
- Tvrdá, E.; Ďuračka, M.; Benko, F.; Lukáč, N. Bacteriospermia—A formidable player in male subfertility. Open Life Sci. 2022, 17, 1001–1029. [Google Scholar] [CrossRef]
- Dhama, K.; Singh, R.P.; Karthik, K.; Chakraborty, S.; Tiwari, R.; Wani, M.Y.; Mohan, J. Artificial Insemination in Poultry and Possible Transmission of Infectious Pathogens: A Review. Asian J. Anim. Vet. Adv. 2014, 9, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Al-Bahry, S.N.; Mahmoud, I.Y.; Al Musharafi, S.K.; Paulson, J.R. Consumption of Contaminated Eggs: A Public Health Concern. Med. Res. Arch. 2015, 2, 22–28. [Google Scholar] [CrossRef]
- Mehdi, Y.; Létourneau-Montminy, M.P.; Gaucher, M.L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.R.; Souillard, R.; Bertin, J. Avian diseases which affect egg production and quality. In Improving the Safety and Quality of Eggs and Egg Products, 1st ed.; Nys, Y., Bain, M., Van Immerseel, F., Eds.; Woodhead Publishing: Ambridge, UK, 2011; pp. 376–393. [Google Scholar]
- Lenický, M.; Slanina, T.; Kačániová, M.; Galovičová, L.; Petrovičová, M.; Ďuračka, M.; Benko, F.; Kováč, J.; Tvrdá, E. Identification of Bacterial Profiles and Their Interactions with Selected Quality, Oxidative, and Immunological Parameters of Turkey Semen. Animals 2021, 11, 1771. [Google Scholar] [CrossRef] [PubMed]
- Gale, C.; Brown, K.I. The Identification of Bacteria Contaminating Collected Semen and the Use of Antibiotics in Their Control. Poult. Sci. 1961, 40, 50–55. [Google Scholar] [CrossRef]
- Alkali, I.M.; Asuku, S.O.; Umar, M.B.; Abba, A.; Mustapha, A.; Bukar, M.M.; Waziri, M.A. Microbial Contaminants in Fresh and Extended Turkey Semen and their Sensitivity to Antibiotics. Nig. Vet. J. 2020, 41, 1–6. [Google Scholar] [CrossRef]
- Sexton, T.J.; Jacobs, L.A.; McDaniel, G.R. A new poultry semen extender. 4. Effect of antibacterials in control of bacterial contamination in chicken semen. Poult. Sci. 1980, 59, 274–281. [Google Scholar] [CrossRef]
- Duracka, M.; Lukac, N.; Kacaniova, M.; Kantor, A.; Hleba, L.; Ondruska, L.; Tvrda, E. Antibiotics Versus Natural Biomolecules: The Case of In Vitro Induced Bacteriospermia by Enterococcus faecalis in Rabbit Semen. Molecules 2019, 24, 4329. [Google Scholar] [CrossRef] [Green Version]
- Rakha, B.A.; Zafar, Z.; Ansari, M.S.; Akhter, S.; Qadeer, S.; Akhter, A.; Waseem, K.; Santiago-Moreno, J. Influence of Bacterial Contamination and Antibiotic Sensitivity on Cryopreserved Sperm Quality of Indian Red Jungle Fowl. Biopreserv. Biobank. 2023; advance online publication. [Google Scholar] [CrossRef]
- Gross, S.; Seinige, D.; Kehrenberg, C.; Oliveira, M.; Siebert, U. Occurrence of Antimicrobial-Resistant Escherichia coli in Marine Animals in the North and Baltic Sea: Preliminary Results. In Proceedings of the 50th Annual IAAAM Conference, Durban, South Africa, 18–22 May 2019. [Google Scholar]
- Faisal, A.J.; Salman, H.A. Determination of Semen Quality and Antibacterial Susceptibility Pattern of Bacteria Isolated from Semen of Iraqi Subjects. Microbiol. Biotechnol. Lett. 2021, 49, 587–593. [Google Scholar] [CrossRef]
- Goularte, K.L.; Voloski, F.L.S.; Redú, J.F.M.; Ferreira, C.E.R.; Vieira, A.D.; Duval, E.H.; Mondadori, R.G.; Lucia, T., Jr. Antibiotic resistance in microorganisms isolated in a bull semen stud. Reprod. Domest. Anim. 2020, 55, 318–324. [Google Scholar] [CrossRef]
- Tvrdá, E.; Kačániová, M.; Baláži, A.; Vašíček, J.; Vozaf, J.; Jurčík, R.; Ďuračka, M.; Žiarovská, J.; Kováč, J.; Chrenek, P. The Impact of Bacteriocenoses on Sperm Vitality, Immunological and Oxidative Characteristics of Ram Ejaculates: Does the Breed Play a Role? Animals 2022, 12, 54. [Google Scholar] [CrossRef]
- Tvrdá, E.; Bučko, O.; Rojková, K.; Ďuračka, M.; Kunová, S.; Kováč, J.; Benko, F.; Kačániová, M. The Efficiency of Selected Extenders against Bacterial Contamination of Boar Semen in a Swine Breeding Facility in Western Slovakia. Animals 2021, 11, 3320. [Google Scholar] [CrossRef]
- Ďuračka, M.; Belić, L.; Tokárová, K.; Žiarovská, L.; Kačániová, M.; Lukáč, N.; Tvrdá, E. Bacterial communities in bovine ejaculates and their impact on the semen quality. Syst. Biol. Reprod. Med. 2021, 67, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Shafeeque, C.M.; Singh, R.P.; Sharma, S.K.; Mohan, J.; Sastry, K.V.; Kolluri, G.; Saxena, V.K.; Tyagi, J.S.; Kataria, J.M.; Azeez, P.A. Development of a new method for sperm RNA purification in the chicken. Anim. Reprod. Sci. 2014, 149, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Boone, M.A.; Hughes, B.L. Contamination of semen and its effect on avian fertility. Poult. Sci. 1970, 49, 402–404. [Google Scholar] [CrossRef]
- da Silva, M.; Dombre, C.; Brionne, A.; Monget, P.; Chessé, M.; De Pauw, M.; Mills, M.; Combes-Soia, L.; Labas, V.; Guyot, N.; et al. The unique features of proteins depicting the chicken amniotic fluid. Mol. Cell. Proteomics 2019, 18, S174–S190. [Google Scholar] [CrossRef] [PubMed]
- Silphaduang, U.; Hincke, M.T.; Nys, Y.; Mine, Y. Antimicrobial proteins in chicken reproductive system. Biochem. Biophys. Res. Commun. 2006, 340, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Schulz, M.; Sánchez, R.; Soto, L.; Risopatrón, J.; Villegas, J. Effect of Escherichia coli and Its Soluble Factors on Mitochondrial Membrane Potential, Phosphatidylserine Translocation, Viability, and Motility of Human Spermatozoa. Fertil. Steril. 2010, 94, 619–623. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Izuka, E.; Menuba, I.; Jegasothy, R.; Nwagha, U. Staphylococcal Infections and Infertility: Mechanisms and Management. Mol. Cell. Biochem. 2020, 474, 57–72. [Google Scholar] [CrossRef]
- He, B.; Guo, H.; Gong, Y.; Zhao, R. Lipopolysaccharide-induced mitochondrial dysfunction in boar sperm is mediated by activation of oxidative phosphorylation. Theriogenology 2017, 87, 1–8. [Google Scholar] [CrossRef]
- Qiang, H.; Jiang, M.S.; Lin, J.Y.; He, W.M. Influence of enterococci on human sperm membrane in vitro. Asian J. Androl. 2007, 9, 77–81. [Google Scholar] [CrossRef]
- Zhu, X.; Shi, D.; Li, X.; Gong, W.; Wu, F.; Guo, X.; Xiao, H.; Liu, L.; Zhou, H. TLR signalling affects sperm mitochondrial function and motility via phosphatidylinositol 3-kinase and glycogen synthase kinase-3α. Cell. Signal. 2016, 28, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Song, T.; Shi, Y.; Wang, Y.; Qazi, I.H.; Angel, C.; Zhang, M. Implication of polyhistidine, a novel apoptosis inhibitor, in inhibiting lipopolysaccharide-induced apoptosis in boar sperm. Animals 2019, 9, 719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, E.J.R.; Ribeiro, C.M.; Mirim, A.F.M.; Silva, A.A.S.; Romano, R.M.; Hallak, J.; Avellar, M.C.W. Lipopolysaccharide and lipotheicoic acid differentially modulate epididymal cytokine and chemokine profiles and sperm parameters in experimental acute epididymitis. Sci. Rep. 2018, 8, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesniak, W.; Pecoraro, V.L.; Schacht, J. Ternary complexes of gentamicin with iron and lipid catalyze formation of reactive oxygen species. Chem. Res. Toxicol. 2005, 18, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.J. Signal transduction by the JNK group of MAP kinases. Cell 2000, 103, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Moreno, J.; Esteso, M.C.; Villaverde-Morcillo, S.; Toledano-Déaz, A.; Castaño, C.; Velázquez, R.; López-Sebastián, A.; Goya, A.L.; Martínez, J.G. Recent advances in bird sperm morphometric analysis and its role in male gamete characterization and reproduction technologies. Asian J. Androl. 2016, 18, 882–888. [Google Scholar] [CrossRef]
- Cerolini, S.; Zaniboni, L.; Maldjian, A.; Gliozzi, T. Effect of docosahexaenoic acid and alpha-tocopherol enrichment in chicken sperm on semen quality, sperm lipid composition and susceptibility to peroxidation. Theriogenology 2006, 66, 877–886. [Google Scholar] [CrossRef]
- Tvrdá, E.; Benko, F.; Ďuračka, M. Oxidative Stress as an Underlying Mechanism of Bacteria-Inflicted Damage to Male Gametes. Oxygen 2022, 2, 547–569. [Google Scholar] [CrossRef]
- Barbonetti, A.; Vassallo, M.R.; Costanzo, M.; Battista, N.; Maccarrone, M.; Francavilla, S.; Francavilla, F. Involvement of cannabinoid receptor-1 activation in mitochondrial depolarizing effect of lipopolysaccharide in human spermatozoa. Andrology 2014, 2, 502–509. [Google Scholar] [CrossRef]
- Moskovtsev, S.I.; Mullen, J.B.M.; Lecker, I.; Jarvi, K.; White, J.; Roberts, M.; Lo, K.G. Frequency and severity of sperm DNA damage in patients with confirmed cases of male infertility of different aetiologies. Reprod. Biomed. Online 2010, 20, 759–763. [Google Scholar] [CrossRef] [Green Version]
- Anel-Lopez, L.; Riesco, M.F.; Montes-Garrido, R.; Neila-Montero, M.; Boixo, J.C.; Chamorro, C.; Ortega-Ferrusola, C.; Carvajal, A.; Altonaga, J.R.; de Paz, P.; et al. Comparing the Effect of Different Antibiotics in Frozen-Thawed Ram Sperm: Is It Possible to Avoid Their Addition? Front. Vet. Sci. 2021, 2, 656937. [Google Scholar] [CrossRef] [PubMed]
- Tímermans, A.; Vázquez, R.; Otero, F.; Gosálvez, J.; Johnston, S.; Fernández, J.L. Antibiotic toxicity on human spermatozoa assessed using the sperm DNA fragmentation dynamic assay. Andrologia 2022, 54, e14328. [Google Scholar] [CrossRef] [PubMed]
- Al-Kass, Z.; Eriksson, E.; Bagge, E.; Wallgren, M.; Morrell, J.M. Microbiota of semen from stallions in Sweden identified by MALDI-TOF. Vet. Anim. Sci. 2020, 10, 100143. [Google Scholar] [CrossRef]
- Burrows, W.H.; Quinn, J.P. The collection of spermatozoa from the domestic fowl and turkey. Poultry Sci. 1937, 16, 19–24. [Google Scholar] [CrossRef]
- Kačániová, M.; Terentjeva, M.; Štefániková, J.; Žiarovská, J.; Savitskaya, T.; Grinshpan, D.; Kowalczewski, P.Ł.; Vukovic, N.; Tvrdá, E. Chemical Composition and Antimicrobial Activity of Selected Essential Oils against Staphylococcus spp. Isolated from Human Semen. Antibiotics 2020, 9, 765. [Google Scholar] [CrossRef]
Parameter | Value (Mean ± S.D.) |
---|---|
Sperm motility [%] | 77.16 ± 6.91 |
Sperm viability [%] | 88.44 ± 6.39 |
Acrosome integrity [%] | 90.41 ± 6.23 |
ROS production [RLU/s/106 sperm] | 7.62 ± 2.61 |
MMP [green/red ratio] | 0.79 ± 0.11 |
Sperm DNA fragmentation [%] | 19.87 ± 6.96 |
Bacterial load [log CFU/mL] and sample positivity | 9.13 ± 3.54 |
Escherichia coli (E. coli) (52/63) Enterococcus faecalis (E. faecalis) (45/63) Citrobacter braakii (C. braakii) (25/63) Corynebacterium glutamicum (C. glutamicum) (18/63) Pseudomonas aeruginosa (P. aeruginosa) (15/63) Pseudomonas putida (P. putida) (13/63) Enterococcus faecium (E. faecium) (12/63) Micrococcus luteus (M. luteus) (11/63) Staphylococcus epidermidis (S. epidermidis) (11/63) Serratia liquefaciens (S. liquefaciens) (9/63) Streptococcus alactolyticus (S. alactolyticus) (8/63) Proteus vulgaris (P. vulgaris) (7/63) Acinetobacter baumannii (A. baumannii) (6/63) Macrococcus caseolyticus (M. caseolyticus) (5/63) Enterococcus avium (E. avium) (4/63) Klebsiella pneumoniae (K. pneumoniae) (3/63) Staphylococcus aureus (S. aureus) (3/63) |
Control (PBS) | PBS + KAN | PM | PM + KAN | EM | EM + KAN | |
---|---|---|---|---|---|---|
Sperm motility [%] | 35.10 ± 3.55 | 45.19 ± 2.21 + | 51.43 ± 4.63 ** | 60.00 ± 3.31 ***,++ | 58.86 ± 1.87 *** | 69.33 ± 2.13 ***,++ |
Sperm viability [%] | 72.40 ± 2.89 | 78.51 ± 2.25 | 82.62 ± 1.27 ** | 85.42 ± 1.40 ** | 84.17 ± 1.34 ** | 86.34 ± 1.93 ** |
Acrosome integrity [%] | 79.51 ± 1.87 | 82.29 ± 3.03 | 82.97 ± 1.80 | 85.06 ± 3.13 * | 86.55 ± 1.53 * | 89.52 ± 2.62 ** |
MMP [red/green ratio] | 0.38 ± 0.01 | 0.43 ± 0.02 | 0.45 ± 0.01 * | 0.54 ± 0.01 ** | 0.62 ± 0.03 *** | 0.68 ± 0.03 *** |
Sperm DNA fragmentation [%] | 32.47 ± 9.58 | 30.25 ± 8.52 | 29.04 ± 8.62 | 22.44 ± 7.57 **,+ | 27.45 ± 8.13 * | 21.22 ± 7.66 **,+ |
ROS [RLU/s/106 sperm] | 17.83 ± 0.22 | 16.33 ± 0.10 | 13.07 ± 0.10 ** | 11.63 ± 0.04 *** | 11.93 ± 0.14 *** | 8.23 ± 0.15 ***,++ |
Bacterial load [log CFU/mL] | 9.00 ± 0.39 | 3.13 ± 0.33 *** | 9.63 ± 0.30 | 2.55 ± 0.30 +++ | 9.88 ± 0.99 | 2.94 ± 0.30 +++ |
Control (PBS) | PBS + KAN | PM | PM + KAN | EM | EM + KAN | |
---|---|---|---|---|---|---|
Bacterial profile and sample positivity | E. coli (52/63) | E. coli (25/63) | E. coli (52/63) | E. coli (10/63) | E. coli (52/63) | E. coli (3/63) |
E. faecalis (45/63) | E. faecalis (22/63) | E. faecalis (45/63) | E. faecalis (45/63) | E. faecalis (8/63) | ||
C. braakii (25/63) | C. braakii (9/63) | C. braakii (25/63) | C. braakii (25/63) | |||
C. glutamicum (18/63) | C. glutamicum (18/63) | C. glutamicum (18/63) | ||||
P. aeruginosa (15/63) | P. aeruginosa (3/63) | P. aeruginosa (15/63) | P. aeruginosa (15/63) | |||
P. putida (13/63) | P. putida (13/63) | P. putida (13/63) | ||||
E. faecium (12/63) | E. faecium (6/63) | E. faecium (12/63) | E. faecium (3/63) | E. faecium (12/63) | E. faecium (4/63) | |
M. luteus (11/63) | M. luteus (7/63) | M. luteus (11/63) | M. luteus (5/63) | M. luteus (11/63) | M. luteus (6/63) | |
S. epidermidis (11/63) | S. epidermidis (5/63) | S. epidermidis (11/63) | S. epidermidis (11/63) | S. epidermidis (3/63) | ||
S. liquefaciens (9/63) | S. liquefaciens (9/63) | S. liquefaciens (9/63) | ||||
S. alactolyticus (8/63) | S. alactolyticus (8/63) | S. alactolyticus (8/63) | ||||
P. vulgaris (7/63) | P. vulgaris (7/63) | P. vulgaris (7/63) | ||||
A. baumannii (6/63) | A. baumannii (6/63) | A. baumannii (6/63) | ||||
M. caseolyticus (5/63) | M. caseolyticus (5/63) | M. caseolyticus (5/63) | ||||
E. avium (4/63) | E. avium (4/63) | E. avium (4/63) | ||||
K. pneumoniae (3/63) | K. pneumoniae (3/63) | K. pneumoniae (3/63) | ||||
S. aureus (3/36) | S. aureus (3/36) | S. aureus (3/36) |
Control (PBS) | PBS + KAN | PM | PM + KAN | EM | EM + KAN | |
---|---|---|---|---|---|---|
Sperm motility [%] | 12.91 ± 2.42 | 17.33 ± 3.06 + | 21.71 ± 1.16 * | 30.71 ± 0.49 **,+ | 42.29 ± 2.09 *** | 50.71 ± 1.58 ***,+ |
Sperm viability [%] | 50.54 ± 4.58 | 51.47 ± 3.28 | 70.30 ± 3.67 *** | 72.40 ± 3.39 *** | 76.59 ± 3.20 *** | 78.67 ± 2.81 *** |
Acrosome integrity [%] | 77.27 ± 2.51 | 77.78 ± 2.03 | 79.84 ± 3.50 | 81.25 ± 1.64 * | 81.91 ± 1.84 * | 87.51 ± 1.36 **,+ |
MMP [red/green ratio] | 0.17 ± 0.01 | 0.24 ± 0.01 + | 0.23 ± 0.01 | 0.33 ± 0.01 **,+ | 0.38 ± 0.01 ** | 0.53 ± 0.03 ***,+++ |
Sperm DNA fragmentation [%] | 52.16 ± 7.88 | 49.01 ± 8.63 | 39.88 ± 7.18 ** | 30.31 ± 8.57 **,+ | 35.15 ± 9.22 *** | 27.09 ± 6.29 ***,+ |
ROS [RLU/s/106 sperm] | 33.48 ± 0.55 | 29.15 ± 0.97 * | 26.89 ± 0.53 * | 25.15 ± 0.52 ** | 19.08 ± 0.21 *** | 16.60 ± 0.37 ***,+ |
Bacterial load [log CFU/mL] | 10.12 ± 1.13 | 2.67 ± 0.32 +++ | 10.65 ± 1.40 | 0.97 ± 0.46 ***,+++ | 10.59 ± 2.07 | 0.75 ± 0.29 ***,+++ |
Control (PBS) | PBS + KAN | PM | PM + KAN | EM | EM + KAN | |
---|---|---|---|---|---|---|
Bacterial profile and sample positivity | E. coli (52/63) | E. coli (15/63) | E. coli (52/63) | E. coli (8/63) | E. coli (52/63) | |
E. faecalis (45/63) | E. faecalis (10/63) | E. faecalis (45/63) | E. faecalis (45/63) | E. faecalis (2/63) | ||
C. braakii (25/63) | C. braakii (8/63) | C. braakii (25/63) | C. braakii (25/63) | |||
C. glutamicum (18/63) | C. glutamicum (18/63) | C. glutamicum (18/63) | ||||
P. aeruginosa (15/63) | P. aeruginosa (3/63) | P. aeruginosa (15/63) | P. aeruginosa (15/63) | |||
P. putida (13/63) | P. putida (13/63) | P. putida (13/63) | ||||
E. faecium (12/63) | E. faecium (3/63) | E. faecium (12/63) | E. faecium (3/63) | E. faecium (12/63) | E. faecium (3/63) | |
M. luteus (11/63) | M. luteus (11/63) | M. luteus (11/63) | M. luteus (3/63) | |||
S. epidermidis (11/63) | S. epidermidis (5/63) | S. epidermidis (11/63) | S. epidermidis (11/63) | |||
S. liquefaciens (9/63) | S. liquefaciens (9/63) | S. liquefaciens (9/63) | ||||
S. alactolyticus (8/63) | S. alactolyticus (8/63) | S. alactolyticus (8/63) | ||||
P. vulgaris (7/63) | P. vulgaris (7/63) | P. vulgaris (7/63) | ||||
A. baumannii (6/63) | A. baumannii (6/63) | A. baumannii (6/63) | ||||
M. caseolyticus (5/63) | M. caseolyticus (5/63) | M. caseolyticus (5/63) | ||||
E. avium (4/63) | E. avium (4/63) | E. avium (4/63) | ||||
K. pneumoniae (3/63) | K. pneumoniae (3/63) | K. pneumoniae (3/63) | ||||
S. aureus (3/36) | S. aureus (3/36) | S. aureus (3/36) |
AMP | GEN | C | TET | IMP | TOB | TGC | LEV | ||
---|---|---|---|---|---|---|---|---|---|
E. coli (181 isolates) | S | 27.7% | 93.9% | ND | ND | 88.4% | 88.9% | 100.0% | 100.0% |
I | 55.2% | 0.0% | 11.6% | 0.0% | 0.0% | 0.0% | |||
R | 17.1% | 6.1% | 0.0% | 11.1% | 0.0% | 0.0% | |||
E. faecalis (147 isolates) | S | 31.9% | ND | ND | ND | 83.6% | ND | 68.1% | 95.2% |
I | 30.0% | 11.6% | 0.0% | 0.0% | |||||
R | 40.0% | 4.8% | 31.9% | 4.8% | |||||
C. braakii (83 isolates) | S | 0.0% | 100.0% | ND | ND | 100.0% | 50.6% | 100.0% | 75.9% |
I | 51.8% | 0.0% | 0.0% | 25.3% | 0.0% | 24.1% | |||
R | 48.2% | 0.0% | 0.0% | 24.1% | 0.0% | 0.0% | |||
C. glutamicum (54 isolates) | S | ND | ND | ND | 75.9% | ND | ND | ND | ND |
I | 24.1% | ||||||||
R | 0.0% | ||||||||
P. aeruginosa (48 isolates) | S | ND | ND | ND | ND | 62.5% 0.0% 37.5% | 70.9% 29.1% 0.0% | ND | 79.2% 20.8% 0.0% |
I | |||||||||
R | |||||||||
P. putida (39 isolates) | S | ND | ND | ND | ND | 74.4% | 92.3% | ND | 77.0% |
I | 7.7% | 7.7% | 23.0% | ||||||
R | 17.9% | 0.0% | 0.0% | ||||||
E. faecium (45 isolates) | S | 33.4% | ND | ND | ND | 66.6% | ND | 100.0% | 100.0% |
I | 33.3% | 0.0% | 0.0% | 0.0% | |||||
R | 33.3% | 33.4% | 0.0% | 0.0% | |||||
M. luteus (36 isolates) | S | ND | 100.0% | ND | 55.5% | ND | 100.0% | 100.0% | 77.8% |
I | 0.0% | 44.5% | 0.0% | 0.0% | 22.2% | ||||
R | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||||
S. epidermidis (38 isolates) | S | ND | 100.0% | ND | 0.0% | ND | 52.6% | 100.0% | 100.0% |
I | 0.0% | 47.4% | 21.1% | 0.0% | 0.0% | ||||
R | 0.0% | 52.6% | 26.3% | 0.0% | 0.0% | ||||
S. liquefaciens (27 isolates) | S | 33.3% | 55.6% | ND | ND | 84.2% | 100.0% | 88.9% | 100.0% |
I | 33.3% | 18.5% | 15.8% | 0.0% | 0.0% | 0.0% | |||
R | 33.4% | 25.9% | 0.0% | 0.0% | 11.1% | 0.0% | |||
S. alactolyticus (24 isolates) | S | ND | ND | ND | 100.0% | ND | ND | 100.0% | 100.0% |
I | 0.0% | 0.0% | 0.0% | ||||||
R | 0.0% | 0.0% | 0.0% | ||||||
P. vulgaris (21 isolates) | S | 66.7% | 100.0% | ND | ND | 100.0% | 100.0% | 100.0% | 100.0% |
I | 33.3% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |||
R | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |||
A. baumannii (18 isolates) | S | ND | 100.0% | ND | ND | 100.0% | 100.0% | ND | 100.0% |
I | 0.0% | 0.0% | 0.0% | 0.0% | |||||
R | 0.0% | 0.0% | 0.0% | 0.0% | |||||
M. caseolyticus (15 isolates) | S | ND | 100.0% | ND | 100.0% | ND | 100.0% | 100.0% | 100.0% |
I | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||||
R | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||||
E. avium (12 isolates) | S | 83.4% | ND | ND | ND | 75.0% | ND | 91.6% | 91.6% |
I | 16.6% | 25.0% | 8.4% | 0.0% | |||||
R | 0.0% | 0.0% | 0.0% | 8.4% | |||||
K. pneumoniae (9 isolates) | S | 100.0% | 100.0% | ND | ND | 100.0% | 100.0% | 100.0% | 100.0% |
I | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |||
R | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |||
S. aureus (9 isolates) | S | ND | 77.8% | ND | 33.3% | ND | 44.4% | 100.0% | 100.0% |
I | 22.2% | 44.4% | 22.3% | 0.0% | 0.0% | ||||
R | 0.0% | 22.3% | 33.3% | 0.0% | 0.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tvrdá, E.; Petrovičová, M.; Ďuračka, M.; Benko, F.; Slanina, T.; Galovičová, L.; Kačániová, M. Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders. Antibiotics 2023, 12, 1284. https://doi.org/10.3390/antibiotics12081284
Tvrdá E, Petrovičová M, Ďuračka M, Benko F, Slanina T, Galovičová L, Kačániová M. Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders. Antibiotics. 2023; 12(8):1284. https://doi.org/10.3390/antibiotics12081284
Chicago/Turabian StyleTvrdá, Eva, Michaela Petrovičová, Michal Ďuračka, Filip Benko, Tomáš Slanina, Lucia Galovičová, and Miroslava Kačániová. 2023. "Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders" Antibiotics 12, no. 8: 1284. https://doi.org/10.3390/antibiotics12081284
APA StyleTvrdá, E., Petrovičová, M., Ďuračka, M., Benko, F., Slanina, T., Galovičová, L., & Kačániová, M. (2023). Short-Term Storage of Rooster Ejaculates: Sperm Quality and Bacterial Profile Differences in Selected Commercial Extenders. Antibiotics, 12(8), 1284. https://doi.org/10.3390/antibiotics12081284