Surveys on Pet-Reptile-Associated Multi-Drug-Resistant Salmonella spp. in the Timișoara Metropolitan Region—Western Romania
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection
4.2. Bacterial Isolation
4.3. Molecular Detection of invA Gene
4.4. Serotyping via Slide Agglutination (Kauffmann–White–Le-Minor Scheme)
4.5. Antimicrobial Susceptibility Testing
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marin, C.; Laso, O.; Vega, S. Pet Reptiles: A Potential Source of Transmission of Multidrug-Resistant Salmonella. Front. Vet. Sci. 2021, 7, 613718. [Google Scholar] [CrossRef] [PubMed]
- EFSA; ECDC. The European Union One Health 2018 zoonoses report. EFSA J. 2019, 17, 5926. [Google Scholar]
- Whiley, H.; Gardner, M.G.; Ross, K. A Review of Salmonella and Squamates (Lizards, Snakes and Amphisbians): Implications for Public Health. Pathogens 2017, 6, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Shamim, S. Understanding the Mechanism of Antimicrobial Resistance and Pathogenesis of Salmonella enterica Serovar Typhi. Microorganisms 2022, 10, 2006. [Google Scholar] [CrossRef]
- Song, D.; He, X.; Chi, Y.; Zhang, Z.; Shuai, J.; Wang, H.; Li, Q.; Du, M. Cytotoxicity and Antimicrobial Resistance of Salmonella enterica Subspecies Isolated from Raised Reptiles in Beijing, China. Animals 2023, 13, 315. [Google Scholar] [CrossRef] [PubMed]
- Cristina, R.T.; Kocsis, R.; Dégi, J.; Muselin, F.; Dumitrescu, E.; Tirziu, E.; Herman, V.; Darău, A.P.; Oprescu, I. Pathology and Prevalence of Antibiotic-Resistant Bacteria: A Study of 398 Pet Reptiles. Animals 2022, 12, 1279. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, A.; Virlogeux-Payant, I.; Chaussé, A.M.; Schikora, A.; Velge, P. Interactions of Salmonella with animals and plants. Front. Microbiol. 2015, 5, 791. [Google Scholar] [CrossRef]
- Dégi, J.; Imre, K.; Herman, V.; Bucur, I.; Radulov, I.; Petrec, O.C.; Cristina, R.T. Antimicrobial Drug-Resistant Salmonella in Urban Cats: Is There an Actual Risk to Public Health? Antibiotics 2021, 10, 1404. [Google Scholar] [CrossRef]
- Rohilla, R.; Bhatia, M.; Gupta, P.; Singh, A.; Shankar, R.; Omar, B.J. Salmonella osteomyelitis: A rare extraintestinal manifestation of an endemic pathogen. J. Lab. Physicians 2019, 11, 164–170. [Google Scholar] [CrossRef]
- Zha, L.; Garrett, S.; Sun, J. Salmonella Infection in Chronic Inflammation and Gastrointestinal Cancer. Diseases 2019, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Qazi, I.H.; Wang, L.; Zhou, G.; Han, H. Salmonella Virulence and Immune Escape. Microorganisms 2020, 8, 407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruning, A.H.L.; Beld, M.V.D.; Laverge, J.; Welkers, M.R.A.; Kuil, S.D.; Bruisten, S.M.; van Dam, A.P.; Stam, A.J. Reptile-associated Salmonella urinary tract infection: A case report. Diagn. Microbiol. Infect. Dis. 2023, 105, 115889. [Google Scholar] [CrossRef] [PubMed]
- Castlemain, B.M.; Castlemain, B.D. Case report: Post-salmonellosis abscess positive for Salmonella Oranienburg. BMC Infect. Dis. 2022, 22, 337. [Google Scholar] [CrossRef] [PubMed]
- Ehuwa, O.; Jaiswal, A.K.; Jaiswal, S. Salmonella, Food Safety and Food Handling Practices. Foods 2021, 10, 907. [Google Scholar] [CrossRef]
- Zając, M.; Skarżyńska, M.; Lalak, A.; Kwit, R.; Śmiałowska-Węglińska, A.; Pasim, P.; Szulowski, K.; Wasyl, D. Salmonella in Captive Reptiles and Their Environment—Can We Tame the Dragon? Microorganisms 2021, 9, 1012. [Google Scholar] [CrossRef]
- Popa, G.L.; Papa, M.I. Salmonella spp. infection—A continuous threat worldwide. Germs 2021, 11, 88–96. [Google Scholar] [CrossRef]
- Mihalca, A.D. Ticks imported to Europe with exotic reptiles. Vet. Parasitol. 2015, 213, 67–71. [Google Scholar] [CrossRef]
- Green, J.; Coulthard, E.; Norrey, J.; Megson, D.; D’Cruze, N. Risky Business: Live Non-CITES Wildlife UK Imports and the Potential for Infectious Diseases. Animals 2020, 10, 1632. [Google Scholar] [CrossRef]
- Can, Ö.E.; D’Cruze, N.; Macdonald, D.W. Dealing in deadly pathogens: Taking stock of the legal trade in live wildlife and potential risks to human health. Glob. Ecol. Conserv. 2019, 17, e00515. [Google Scholar] [CrossRef]
- Altherr, S.; Lameter, K. The Rush for the Rare: Reptiles and Amphibians in the European Pet Trade. Animals 2020, 10, 2085. [Google Scholar] [CrossRef]
- Corrente, M.; Sangiorgio, G.; Grandolfo, E.; Bodnar, L.; Catella, C.; Trotta, A.; Martella, V.; Buonavoglia, D. Risk for zoonotic Salmonella transmission from pet reptiles: A survey on knowledge, attitudes and practices of reptile-owners related to reptile husbandry. Prev. Vet. Med. 2017, 146, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Meletiadis, A.; Biolatti, C.; Mugetti, D.; Zaccaria, T.; Cipriani, R.; Pitti, M.; Decastelli, L.; Cimino, F.; Dondo, A.; Maurella, C.; et al. Surveys on Exposure to Reptile-Associated Salmonellosis (RAS) in the Piedmont Region-Italy. Animals 2022, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Aljahdali, N.H.; Sanad, Y.M.; Han, J.; Foley, S.L. Current knowledge and perspectives of potential impacts of Salmonella enterica on the profile of the gut microbiota. BMC Microbiol. 2020, 20, 353. [Google Scholar] [CrossRef] [PubMed]
- Li, Q. Mechanisms for the Invasion and Dissemination of Salmonella. Can. J. Infect. Dis. Med. Microbiol. 2022, 2022, 2655801. [Google Scholar] [CrossRef]
- Merkevičienė, L.; Butrimaitė-Ambrozevičienė, Č.; Paškevičius, G.; Pikūnienė, A.; Virgailis, M.; Dailidavičienė, J.; Daukšienė, A.; Šiugždinienė, R.; Ruzauskas, M. Serological Variety and Antimicrobial Resistance in Salmonella Isolated from Reptiles. Biology 2022, 11, 836. [Google Scholar] [CrossRef]
- Monte, D.F.; Lincopan, N.; Fedorka-Cray, P.J.; Landgraf, M. Current insights on high priority antibiotic-resistant Salmonella enterica in food and foodstuffs: A review. Curr. Opin. Food Sci. 2019, 26, 35–46. [Google Scholar] [CrossRef]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Teklemariam, A.D.; Al-Hindi, R.R.; Albiheyri, R.S.; Alharbi, M.G.; Alghamdi, M.A.; Filimban, A.A.R.; Al Mutiri, A.S.; Al-Alyani, A.M.; Alseghayer, M.S.; Almaneea, A.M.; et al. Human Salmonellosis: A Continuous Global Threat in the Farm-to-Fork Food Safety Continuum. Foods 2023, 12, 1756. [Google Scholar] [CrossRef]
- Dec, M.; Zając, M.; Puchalski, A.; Szczepaniak, K.; Urban-Chmiel, R. Pet Reptiles in Poland as a Potential Source of Transmission of Salmonella. Pathogens 2022, 11, 1125. [Google Scholar] [CrossRef]
- Pasmans, F.; Blahak, S.; Martel, A.; Pantchev, N. Introducing reptiles into a captive collection: The role of the veterinarian. Vet. J. 2008, 175, 53–68. [Google Scholar] [CrossRef]
- Ostović, M.; Sabolek, I.; Piplica, A.; Žaja, I.Ž.; Menčik, S.; Nejedli, S.; Mesić, Ž. A Survey Study of Veterinary Student Opinions and Knowledge about Pet Reptiles and Their Welfare. Animals 2021, 11, 3185. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.; Weill, F.X. Antigenic Formulae of the Salmonella serovars; WHO Collaborating Centre for Reference and Research on Salmonella: Geneva, Switzerland, 2007; Volume 9, pp. 1–166. [Google Scholar]
- Bjelland, A.M.; Sandvik, L.M.; Skarstein, M.M.; Svendal, L.; Debenham, J.J. Prevalence of Salmonella serovars isolated from reptiles in Norwegian zoos. Acta Vet. Scand. 2020, 62, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ebani, V.V. Domestic reptiles as source of zoonotic bacteria: A mini review. Asian Pac. J. Trop. Med. 2017, 10, 723–728. [Google Scholar] [CrossRef]
- Bertelloni, F.; Chemaly, M.; Cerri, D.; Gall, F.L.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waltenburg, M.A.; Perez, A.; Salah, Z.; Karp, B.E.; Whichard, J.; Tolar, B.; Gollarza, L.; Koski, L.; Blackstock, A.; Basler, C.; et al. Multistate reptile- and amphibian-associated salmonellosis outbreaks in humans, United States, 2009–2018. Zoonoses Public Health 2022, 69, 925–937. [Google Scholar] [CrossRef]
- Kanagarajah, S.; Waldram, A.; Dolan, G.; Jenkins, C.; Ashton, P.M.; Martin, A.I.C.; Davies, R.; Frost, A.; Dallman, T.J.; De Pinna, E.M.; et al. Whole genome sequencing reveals an outbreak of Salmonella Enteritidis associated with reptile feeder mice in the United Kingdom, 2012–2015. Food Microbiol. 2018, 71, 32–38. [Google Scholar] [CrossRef]
- Cartwright, E.J.; Nguyen, T.; Melluso, C.; Ayers, T.; Lane, C.; Hodges, A.; Li, X.; Quammen, J.; Yendell, S.J.; Adams, J.; et al. A multistate investigation of antibiotic-resistant Salmonella enterica serotype I 4,[5],12:i:-Infections as part of an International Outbreak Associated with Frozen Feeder Rodents. Zoonoses Public Health 2016, 63, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Marin, C.; Martelli, F.; Rabie, A.; Davies, R. Commercial frozen mice used by owners to feed reptiles are highly externally contaminated with Salmonella Enteritidis PT8. Vector-Borne Zoonotic Dis. 2018, 18, 453–457. [Google Scholar] [CrossRef]
- Marin, C.; Martín-Maldonado, B.; Cerdà-Cuéllar, M.; Sevilla-Navarro, S.; Lorenzo-Rebenaque, L.; Montoro-Dasi, L.; Manzanares, A.; Ayats, T.; Mencía-Gutiérrez, A.; Jordá, J.; et al. Antimicrobial Resistant Salmonella in Chelonians: Assessing Its Potential Risk in Zoological Institutions in Spain. Vet. Sci. 2022, 9, 264. [Google Scholar] [CrossRef]
- Marin, C.; Vega, S.; Marco-Jiménez, F. Tiny turtles purchased at pet stores are a potential high risk for Salmonella human infection in the Valencian Region, Eastern Spain. Vector-Borne Zoonotic Dis. 2016, 16, 455–460. [Google Scholar] [CrossRef]
- Clancy, M.M.; Davis, M.; Valitutto, M.T.; Nelson, K.; Sykes, J.M., 4th. Salmonella infection and carriage in reptiles in a zoological collection. J. Am. Vet. Med. Assoc. 2016, 248, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Pulford, C.V.; Wenner, N.; Redway, M.L.; Rodwell, E.V.; Webster, H.J.; Escudero, R.; Kröger, C.; Canals, R.; Rowe, W.; Lopez, J.; et al. The diversity, evolution and ecology of Salmonella in venomous snakes. PLoS Negl. Trop. Dis. 2019, 13, e0007169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramos, C.P.; Santana, J.A.; Morcatti Coura, F.; Xavier, R.G.C.; Leal, C.A.G.; Oliveira, C.A., Jr.; Heinemann, M.B.; Lage, A.P.; Lobato, F.C.F.; Silva, R.O.S. Identification and characterization of Escherichia coli, Salmonella spp., Clostridium perfringens, and C. difficile isolates from reptiles in brazil. BioMed Res. Int. 2019, 2019, 9530732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caneschi, A.; Bardhi, A.; Barbarossa, A.; Zaghini, A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics 2023, 12, 487. [Google Scholar] [CrossRef]
- Wu-Wu, J.W.F.; Guadamuz-Mayorga, C.; Oviedo-Cerdas, D.; Zamora, W.J. Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics 2023, 12, 550. [Google Scholar] [CrossRef]
- Fernández, J.; Guerra, B.; Rodicio, M.R. Resistance to Carbapenems in Non-Typhoidal Salmonella enterica Serovars from Humans, Animals and Food. Vet. Sci. 2018, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- CLSI Document M40-A2; Quality Control of Microbiological Transport Systems. Approved Standard—Second Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2014.
- 32005R2073; Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs. Special Edition in Romanian; European Commission: Brussels, Belgium, 2005; Chapter 13. Volume 51, pp. 141–166.
- ISO 6579:2002; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection of Salmonella spp. Revised by ISO 6579-1:2017; International Organization for Standardization: Geneva, Switzerland, 2002.
- Wibisono, F.M.; Faridah, H.D.; Wibisono, F.J.; Tyasningsih, W.; Effendi, M.H.; Witaningrum, A.M.; Ugbo, E.N. Detection of invA virulence gene of multidrug-resistant Salmonella species isolated from the cloacal swab of broiler chickens in Blitar district, East Java, Indonesia. Vet. World 2021, 14, 3126–3131. [Google Scholar] [CrossRef]
- Mujahid, S.; Hansen, M.; Miranda, R.; Newsom-Stewart, K.; Rogers, J.E. Prevalence and Antibiotic Resistance of Salmonella and Campylobacter Isolates from Raw Chicken Breasts in Retail Markets in the United States and Comparison to Data from the Plant Level. Life 2023, 13, 642. [Google Scholar] [CrossRef]
- Kadry, M.; Nader, S.M.; Dorgham, S.M.; Kandil, M.M. Molecular diversity of the invA gene obtained from human and egg samples. Vet. World 2019, 12, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Diep, B.; Barretto, C.; Portmann, A.C.; Fournier, C.; Karczmarek, A.; Voets, G.; Li, S.; Deng, X.; Klijn, A. Salmonella Serotyping; Comparison of the Traditional Method to a Microarray-Based Method and an in silico Platform Using Whole Genome Sequencing Data. Front. Microbiol. 2019, 10, 2554. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2018. [Google Scholar]
Reptiles’ Classification | Type of Samples | Salmonella spp. Carriage |
---|---|---|
Order Squamata (lizards) | Cloaca (n = 28) | 9/28 (32.14%) |
Skin (n = 43) | 8/43 (18.6%) | |
Oral cavity (n = 23) | 3/23 (13.04%) | |
Order Squamata/Serpentes (snakes) | Cloaca (n = 9) | 5/9 (55.56%) |
Skin (n = 9) | 4/9 (44.45%) | |
Oral cavity (5) | 2/5 (40.0%) | |
Order Chelonia/Testudines (chelonians) | Cloaca (n = 15) | 4/15 (26.67%) |
Skin (n = 15) | 4/15 (26.67%) | |
Oral cavity (n = 15) | 2/15 (13.34%) |
Factor | Number of Positive-Salmonella Samples (%) |
---|---|
Type of reptiles | |
| 7 (77.76%) |
| 19 (44.18%) |
| 3 (20.0%) |
The keeping places | |
| 9 (23.68%) |
| 20 (68.96%) |
Type of cohabitation | |
| 6 (12.24%) |
| 2 (16.67%) |
| 4 (44.45%) |
| 23 (46.94%) |
| 15 (88.23%) |
| 8 (72.73%) |
Type of diet | |
| 19 (46.34%) |
| 7 (41.17%) |
| 3 (33.33%) |
Common Name of Reptiles | Type of Diet | Number of Reptiles Examined | Positive Samples for Salmonella spp. (%) |
---|---|---|---|
Western girdled lizard | Carnivores (insectivores) | 4 | 1 (25.0) |
African fat-tailed gecko | Carnivores | 9 | 4 (44.45) |
Crested gecko | Carnivores (insectivores) | 4 | 2 (50.0) |
Leopard gecko | Carnivores (insectivores) | 1 | 1 (100) |
Tokay gecko | Carnivores | 2 | 1 (50.0) |
Chinese water dragon | Omnivorous | 1 | 1 (100) |
Green iguana | Herbivorous | 7 | 2 (28.58) |
Veiled chameleon | Carnivores (insectivores) | 5 | 2 (40.0) |
Ocelot gecko | Carnivores (insectivores) | 3 | 1 (33.34) |
Baja blue rock lizard | Omnivorous | 1 | 1 (100) |
Gold tegus | Omnivorous | 2 | 1 (50.0) |
Rock monitor | Carnivores | 4 | 2 (50.0) |
Central American boa | Carnivores | 1 | 1 (100) |
Eastern Kingsnake | Carnivores | 2 | 1 (50.0) |
Diadem snake | Carnivores | 1 | 1 (100) |
Boid snake | Carnivores | 1 | 1 (100) |
Sand boa | Carnivores | 2 | 1 (50.0) |
Corn snake | Carnivores | 1 | 1 (100) |
Ball python | Carnivores | 1 | 1 (100) |
Horsfield tortoise | Herbivorous | 2 | 1 (50.0) |
Greek tortoise | Herbivorous | 5 | 1 (20.0) |
Hermann’s tortoise | Herbivorous | 1 | - |
Marginated tortoise | Herbivorous | 2 | - |
Chinese pond turtle | Omnivorous | 1 | 1 (100) |
Red-eared terrapin | Omnivorous | 2 | - |
African helmeted turtle | Omnivorous | 2 | - |
Total | 67 | 29 (43.28) |
Sample Origin | Salmonella Subspecies | Serovars |
---|---|---|
Pet shops | Salmonella enterica | Hadar 6.8:z10:e,n,x (n = 1) |
Newport 6.8:e,h:1,2 (n = 2) | ||
Panama 9.12:l,v:1,5 (n = 1) | ||
Pomona 28:y:1,7 (n = 1) | ||
Sandiego 4.12:e,h:e,n,z15 (n = 1) | ||
Cotham 28:i:1,5 (n = 1) | ||
Salmonella houtenae | 16:z4.z32 (n = 1) | |
16: z36 (n = 1) | ||
Salmonella diarizonae | 42: k: z35 (n = 1) | |
Private owner | Salmonella enterica | Newport 6.8:e,h:1,2 1 (n = 2) |
Lattenkamp 45: z35:1,5 3 (n = 1) | ||
Paratyphi 4.12: b:1,2 (n = 1) | ||
Salmonella arizonae | 44: z4.z23 (n = 3) | |
Salmonella diarizonae | 60:r:e,n,x,z15 (n = 1) | |
47:z10:z35 (n = 1) | ||
50:z52:z35 (n = 2) | ||
Salmonella houtenae | 11:z4.z23 (n = 2) |
Antimicrobial Categories | Antimicrobial Agents | Number of Isolated Salmonella (%) | ||
---|---|---|---|---|
S | I | R | ||
Aminoglycosides | Amikacin (AN) | 20/32; 62.5% | 3/32; 9.37% | 9/32; 28.12% |
Gentamicin (GM) | 4/32; 12.55% | 1/32; 3.12% | 27/32; 84.37% | |
Tobramycin I | 10/32; 31.25% | 4/32; 12.55% | 18/32; 56.25% | |
Penicillin | Ampicillin (AM) | 22/32; 68.75% | 3/32; 9.37% | 7/32; 21.87% |
Penicillin with beta lactamase inhibitor | Piperacillin/tazobactam (TZP) | 32/32; 100% | 0/32 | 0/32 |
Ampicillin/sulbactam (SAM) | 32/32; 100% | 0/32 | 0/32 | |
First-generation cephalosporin | Cefazolin (CZ) | 32/32; 100% | 0/32 | 0/32 |
Third-generation cephalosporin | Ceftazidime (CAZ) | 32/32; 100% | 0/32 | 0/32 |
Ceftriaxone (CRO) | 26/32; 81.25% | 4/32; 12.55% | 2/32; 6.25% | |
Fourth-generation cephalosporin | Cefepime (FEP) | 32/32; 100% | 0/32 | 0/32 |
Fluoroquinolones | Ciprofloxacin (CIP) | 25/32; 78.12% | 3/32; 9.37% | 4/32; 12.5% |
Levofloxacin (LEV) | 32/32; 100% | 0/32 | 0/32 | |
Carbapenem agents | Ertapenem (ETP) | 30/32; 93.75% | 0/32 | 2/32; 6.25% |
Imipenem (IPM) | 30/32; 93.75% | 0/32 | 2/32; 6.25% | |
Nitrofuran derivative | Nitrofurantoin (FT) | 18/32; 56.25% | 3/32; 9.37% | 11/32; 34.38% |
Diaminopyrimidine with sulfonamide | Trimethoprim/Sulfamethoxazole (SXT) | 5/32; 15.62% | 4/32; 12.55% | 23/32; 71.87% |
Salmonella Subspecies | Serovars (n = 23) | AMC Patterns | Number of Antibiotics/MDR (Yes or Not) |
---|---|---|---|
Salmonella enterica | Hadar 6.8.:z10:e,n,x (n = 1) | GM-SXT-TM-FT | 4/yes |
Newport 6.8:e,h:1,2 (n = 2) | GM-SXT | 2/not | |
GM-SXT-FT | 3/yes | ||
Panama 9.12:l,v:1,5 (n = 1) | GM-TM | 2/not | |
Pomona 28:y:1,7 (n = 1) | GM-SXT-FT | 3/yes | |
Sandiego 4.12:e,h:e,n,z15 (n = 1) | GM-SXT-CIP | 3/yes | |
Cotham 28:i:1,5 (n = 1) | GM-SXT | 2/not | |
Salmonella houtenae | 16:z4.z32 (n = 1) | TM-FT-CRO | 3/yes |
16:z36 (n = 1) | GM-SXT-TM | 3/yes | |
Salmonella diarizonae | 42:k: z35 (n = 1) | GM-SXT-TM-FT | 4/yes |
Salmonella enterica | Newport 6.8:e,h:1,2 1 (n = 2) | GM-SXT | 2/not |
GM-SXT-FT | 3/yes | ||
Lattenkamp 45:z35:1,5 3 (n = 1) | GM-SXT | 2/not | |
Paratyphi 4.12:b:1,2 (n = 1) | GM-SXT-IPM | 3/yes | |
Salmonella arizonae | 44:z4.z23 (n = 3) | GM-TM-FT | 3/yes |
GM-SXT | 2/not | ||
GM-TM-ETP | 3/yes | ||
Salmonella diarizonae | 60:r:e,n,x,z15 (n = 1) | SXT-TM | 2/not |
47:z10:z35 (n = 1) | GM-SXT-CIP | 3/yes | |
50:z52:z35 (n = 2) | GM-TM-FT | 3/yes | |
GM-SXT | 2/not | ||
Salmonella houtenae | 11:z4.z23 (n = 2) | GM-TM | 2/not |
GM-SXT-TM | 3/yes |
Order | Family | Species | Common Name | Type of Feeding |
---|---|---|---|---|
Squamata(lizards) | Gerrhosauridae | Zonosaurus laticaudatuis | Western girdled lizard | Carnivores (insectivores) |
Eublepharidae | Hemitheconyx caudicinctus | African fat-tailed gecko | Carnivores | |
Diplodactylidae | Correlophus ciliatus | Crested gecko | Carnivores (insectivores) | |
Eublepharidae | Eublepharis macularius | Leopard gecko | Carnivores (insectivores) | |
Gekkonidae | Gecko gecko | Tokay gecko | Carnivores | |
Agamidae | Physignathus cocincinus | Chinese water dragon | Omnivorous | |
Iguanidae | Iguana iguana | Green iguana | Herbivorous | |
Chamaeleonidae | Chamaleo calyptratus | Veiled chameleon | Carnivores (insectivores) | |
Gekkonidae | Paroedura picta | Ocelot gecko | Carnivores (insectivores) | |
Phrynosomatidae | Petrosaurus thalassinus | Baja blue rock lizard | Omnivorous | |
Tupinambinae | Tupinambis teguixin | Gold tegus | Omnivorous | |
Varanidae | Varanus albigularis | Rock monitor | Carnivores | |
Serpentes | Boidae | Boa constrictor imperator | Central American boa | Carnivores |
Squamata(snakes) | Colubridae | Lampropeltis getula | Eastern Kingsnake | Carnivores |
Colubridae | Spalerosophis diadema | Diadem snake | Carnivores | |
Sanziniidae | Acrantophis madagascariensis | Boid snake | Carnivores | |
Boidae | Gongylophis colubrinus | Sand boa | Carnivores | |
Colubridae | Elaphe guttata | Corn snake | Carnivores | |
Pithonidae | Python regius | Ball python | Carnivores | |
Chelonia | Testudinidae | Testudo horsfieldii | Horsfield tortoise | Herbivorous |
Testudinidae | Testudo graeca | Greek tortoise | Herbivorous | |
Testudinidae | Testudo hermanni | Hermann’s tortoise | Herbivorous | |
Testudinidae | Testudo marginata | Marginated tortoise | Herbivorous | |
Testudinidae | Mauremys reevesii | Chinese pond turtle | Omnivorous | |
Eminidae | Trachemys scripta elegans | Red-eared terrapin | Omnivorous | |
Testudines | Pelomedusidae | Pelomedusa subrufa | African helmeted turtle | Omnivorous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dégi, J.; Herman, V.; Radulov, I.; Morariu, F.; Florea, T.; Imre, K. Surveys on Pet-Reptile-Associated Multi-Drug-Resistant Salmonella spp. in the Timișoara Metropolitan Region—Western Romania. Antibiotics 2023, 12, 1203. https://doi.org/10.3390/antibiotics12071203
Dégi J, Herman V, Radulov I, Morariu F, Florea T, Imre K. Surveys on Pet-Reptile-Associated Multi-Drug-Resistant Salmonella spp. in the Timișoara Metropolitan Region—Western Romania. Antibiotics. 2023; 12(7):1203. https://doi.org/10.3390/antibiotics12071203
Chicago/Turabian StyleDégi, János, Viorel Herman, Isidora Radulov, Florica Morariu, Tiana Florea, and Kálmán Imre. 2023. "Surveys on Pet-Reptile-Associated Multi-Drug-Resistant Salmonella spp. in the Timișoara Metropolitan Region—Western Romania" Antibiotics 12, no. 7: 1203. https://doi.org/10.3390/antibiotics12071203
APA StyleDégi, J., Herman, V., Radulov, I., Morariu, F., Florea, T., & Imre, K. (2023). Surveys on Pet-Reptile-Associated Multi-Drug-Resistant Salmonella spp. in the Timișoara Metropolitan Region—Western Romania. Antibiotics, 12(7), 1203. https://doi.org/10.3390/antibiotics12071203