Dietary Palygorskite-Based Antibacterial Agent Supplementation as an Alternative to Antibiotics Improves Growth Performance, Blood Parameters, and Rumen Microbiota in Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pal
2.2. Animal Experimental Design
2.3. Growth Performance
2.4. Sample Collection and Measurement
2.5. Microbiome Sequencing and Bioinformatics Analysis
2.6. Statistical Analysis
3. Results
3.1. Animal Growth Performance
3.2. Blood Parameters
3.3. Rumen Fermentation Parameters
3.4. Microbiome Structure
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dibner, J.; Richards, J.D. Antibiotic growth promoters in agriculture: History and mode of action. Poult. Sci. 2005, 84, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Durso, L.M.; Cook, K.L. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014, 19, 37–44. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Gothwal, R.; Shashidhar, T. Antibiotic pollution in the environment: A review. Clean-Soil Air Water 2015, 43, 479–489. [Google Scholar] [CrossRef]
- Zha, P.; Chen, Y.; Wang, S.; Wang, A.; Zhou, Y. Dietary palygorskite-based antibacterial agent supplementation as an alternative to antibiotic improves growth performance, intestinal mucosal barrier function, and immunity in broiler chickens. Poult. Sci. 2022, 101, 101640. [Google Scholar] [CrossRef]
- Cervantes, H.M. Antibiotic-free poultry production: Is it sustainable? J. Appl. Poult. Res. 2015, 24, 91–97. [Google Scholar] [CrossRef]
- Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [Google Scholar] [CrossRef]
- Fang, J.; Gong, G.; Yuan, J.; Sun, X. Antibiotic use in pig farming and its associated factors in l county in yunnan, china. Vet. Med. Sci. 2021, 7, 440–454. [Google Scholar] [CrossRef]
- Chalvatzi, S.; Kalamaki, M.S.; Arsenos, G.; Fortomaris, P. Dietary supplementation with the clay mineral palygorskite affects performance and beneficially modulates caecal microbiota in laying pullets. J. Appl. Microbiol. 2016, 120, 1033–1040. [Google Scholar] [CrossRef] [Green Version]
- Jin, R.; Chen, Y.; Kang, Y.; Gu, Y.; Wen, C.; Wang, A.; Zhou, Y. Effects of dietary palygorskite supplementation on cecal microbial community structure and the abundance of antibiotic-resistant genes in broiler chickens fed with chlortetracycline. Clays Clay Miner. 2021, 69, 205–216. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Liu, J.H.; Cai, W.K.; Khatoon, N.; Yu, W.H.; Zhou, C.H. On how montmorillonite as an ingredient in animal feed functions. Appl. Clay Sci. 2021, 202, 105963. [Google Scholar] [CrossRef]
- Yan, R.; Hui, A.; Kang, Y.; Zhou, Y.; Wang, A. Effects of palygorskite composites on growth performance and antioxidant status in broiler chickens. Poult. Sci. 2019, 98, 2781–2789. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.F.; Lin, L.J.; Xi, Y.M.; Han, Z.Y. Effects of raw and heated palygorskite on rumen fermentation in vitro. Appl. Clay Sci. 2017, 138, 125–130. [Google Scholar] [CrossRef]
- Sun, W.; Liu, Q.; Liu, Y.; Zhang, S. Inhibition effect of zinc-loaded palygorskite on thre especies of common swine pathogenic bacteria in vitro. J. Anhui Agric. Sci. 2019, 47, 85–88. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. Qiime allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. Vsearch: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Liu, J.; Mao, J.; Peng, Z.; Zhong, Z.; Wang, H.; Dong, L. Dietary palygorskite clay-adsorbed nano-zno supplementation improves the intestinal barrier function of weanling pigs. Front. Nutr. 2022, 9, 857898. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Liu, Q.; Fan, C.; Li, J.; Zhou, Y.; Zhuang, S. Palygorskite supplementation improves growth performance, oxidative status, and intestinal barrier function in cherry valley ducks. J. Poult. Sci. 2019, 56, 186–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Z.G.; Wen, C.; Wang, L.C.; Wang, T.; Zhou, Y.M. Effects of zinc-bearing clinoptilolite on growth performance, cecal microflora and intestinal mucosal function of broiler chickens. Anim. Feed. Sci. Technol. 2014, 189, 98–106. [Google Scholar] [CrossRef]
- Kanoulas, V.; Papadopoulos, G.A.; Tassis, P.; Koutouzidou, G.; Arsenos, G.; Fortomaris, P. Dietary supplementation of attapulgite improves growth performance in pigs from weaning to slaughter. Vet. Sci. 2022, 9, 557. [Google Scholar] [CrossRef]
- Cheng, H.; Chen, J.F.; Tang, S.G.; Guo, S.C.; He, C.Q.; Qu, X.Y. Effects of essential oil/palygorskite composite on performance, egg quality, plasma biochemistry, oxidation status, immune response and intestinal morphology of laying hens. Poult. Sci. 2022, 101, 101632. [Google Scholar] [CrossRef] [PubMed]
- Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N.H.M.; Ann, L.C.; Bakhori, S.K.M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cheng, Y.; Wang, W.; Wang, A.; Zhou, Y. Protective effects of dietary supplementation with a silicate clay mineral (palygorskite) in lipopolysaccharide-challenged broiler chickens at an early age. Anim. Feed. Sci. Technol. 2020, 263, 114459. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Y.; Yang, W.; Li, X.; Wen, C.; Wang, W.; Wang, A.; Zhou, Y. An evaluation of palygorskite inclusion on the growth performance and digestive function of broilers. Appl. Clay Sci. 2016, 129, 1–6. [Google Scholar] [CrossRef]
- Liu, S.; Song, M.; Yun, W.; Lee, J.; Lee, C.; Kwak, W.; Han, N.; Kim, H.; Cho, J. Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1257–1265. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Yan, F.; Yang, C.; Yang, X. Effects of encapsulated organic acids and essential oils on intestinal barrier, microbial count, and bacterial metabolites in broiler chickens. Poult. Sci. 2019, 98, 2858–2865. [Google Scholar] [CrossRef]
- Ibrahim, D.; Abdelfattah-Hassan, A.; Badawi, M.; Ismail, T.A.; Bendary, M.M.; Abdelaziz, A.M.; Mosbah, R.A.; Mohamed, D.I.; Arisha, A.H.; El-Hamid, M.I.A. Thymol nanoemulsion promoted broiler chicken’s growth, gastrointestinal barrier and bacterial community and conferred protection against salmonella typhimurium. Sci. Rep. 2021, 11, 7742. [Google Scholar] [CrossRef]
- Zhong, H.; Mu, B.; Yan, P.; Jing, Y.; Hui, A.; Wang, A. A comparative study on surface/interface mechanism and antibacterial properties of different hybrid materials prepared with essential oils active ingredients and palygorskite. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126455. [Google Scholar] [CrossRef]
- Wang, H.; Yu, Z.; Gao, Z.; Li, Q.; Qiu, X.; Wu, F.; Guan, T.; Cao, B.; Su, H. Effects of compound probiotics on growth performance, rumen fermentation, blood parameters, and health status of neonatal holstein calves. J. Dairy Sci. 2022, 105, 2190–2200. [Google Scholar] [CrossRef] [PubMed]
- Nemati, M.; Amanlou, H.; Khorvash, M.; Moshiri, B.; Mirzaei, M.; Khan, M.A.; Ghaffari, M.H. Rumen fermentation, blood metabolites, and growth performance of calves during transition from liquid to solid feed: Effects of dietary level and particle size of alfalfa hay. J. Dairy Sci. 2015, 98, 7131–7141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Ma, J.Y.; Zhou, J.; Wu, J.D.; Li, J.H.; Alugongo, G.M.; Xiao, J.X.; Wang, J.J.; Wang, Y.J.; Wang, W.; et al. Tributyrin supplementation in pasteurized waste milk: Effects on growth performance, health, and blood parameters of dairy calves. J. Dairy Sci. 2021, 104, 12496–12507. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Woyengo, T.A. Growth performance, organ weights, and blood parameters of nursery pigs fed diets containing increasing levels of cold-pressed canola cake. J. Anim. Sci. 2018, 96, 4704–4712. [Google Scholar] [CrossRef]
- Ahmadi, F.; Ebrahimnezhad, Y.; Sis, N.M.; Ghiasi, J. The effects of zinc oxide nanoparticles on performance, digestive organs and serum lipid concentrations in broiler chickens during starter period. Int. J. Biosci. 2013, 3, 23–29. [Google Scholar] [CrossRef]
- Yang, L.; Wen, S.; Qiang, L.; Gui, Y.; Heng, X.; Su, Z. Effects of zinc-bearing palygorskite on growth performance, organ index, biochemical indexes and anti-oxidative capacity in weaned piglets. J. Fujian Agric. For. Univ. 2020, 49, 505–511. [Google Scholar]
- Shi, W.; Hao, Z.; Ming, D.; Yue, C.; Chao, W.; Yan, Z. Effects of crystal-bundles disaggregated performance, serum biochemical indices palygorskite on growth antioxidant function and meat quality of broilers. Chin. J. Anim. Nutr. 2022, 34, 3570–3582. [Google Scholar]
- Szczepkowska, A.; Wójcik, M.; Tomaszewska-Zaremba, D.; Antushevich, H.; Krawczyńska, A.; Wiechetek, W.; Skipor, J.; Herman, A.P. Acute effect of caffeine on the synthesis of pro-inflammatory cytokines in the hypothalamus and choroid plexus during endotoxin-induced inflammation in a female sheep model. Int. J. Mol. Sci. 2021, 22, 13237. [Google Scholar] [CrossRef]
- Bittar, I.P.; Neves, C.A.; Araújo, C.T.; Oliveira, Y.V.R.; Silva, S.L.; Borges, N.C.; Franco, L.G. Dose-finding in the development of an lps-induced model of synovitis in sheep. Comp. Med. 2021, 71, 141–147. [Google Scholar] [CrossRef]
- Jiang, D.; Liu, L.; Chen, F.; Wang, C.; Sun, A.; Shi, Z. Effects of lps on growth performance and immune function in meat geese. China Poult. 2011, 33, 10–15. [Google Scholar]
- Yi, J.; Lu, L.; Yue, C.; Yan, Z.; Su, Z. Effects of modified attapulgite on growth performance, antioxidant capacity, immune performance and intestinal barrier function of hy-line brown laying hens before laying. Chin. J. Anim. Nutr. 2022, 34, 7024–7037. [Google Scholar]
- Zhang, J.; Lv, Y.; Tang, C.; Wang, X. Effects of dietary supplementation with palygorskite on intestinal integrity in weaned piglets. Appl. Clay Sci. 2013, 86, 185–189. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Wang, X.; Li, F.; Zhang, D.; Li, X.; Zhao, Y.; Zhao, L.; Xu, D.; Cheng, J.; et al. Association between rumen microbiota and marbling grade in hu sheep. Front. Microbiol. 2022, 13, 978263. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zeng, H.; Wang, C.; Han, Z. Effect of methionine hydroxy analog feed supplements: Significant alteration and enrichment of rumen microbiota and metabolome in hu sheep. Front. Vet. Sci. 2022, 9, 999726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.K.; Zhang, X.X.; Li, F.D.; Li, C.; Li, G.Z.; Zhang, D.Y.; Song, Q.Z.; Li, X.L.; Zhao, Y.; Wang, W.M. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Anim. Int. J. Anim. Biosci. 2021, 15, 100161. [Google Scholar] [CrossRef]
- Wang, X.; Xu, T.; Zhang, X.; Zhao, N.; Hu, L.; Liu, H.; Zhang, Q.; Geng, Y.; Kang, S.; Xu, S. The response of ruminal microbiota and metabolites to different dietary protein levels in tibetan sheep on the qinghai-tibetan plateau. Front. Vet. Sci. 2022, 9, 922817. [Google Scholar] [CrossRef]
- Chen, M.; Tuo, S.; Xi, Y.; Zhang, L.; Zeng, H.; Han, Z. Effect of zinc-bearing palygorskite on rumen bacterial diversity in vitro. Acta Microbiol. Sin. 2018, 58, 346–358. [Google Scholar]
- Lin, L. Effect of Attapulgite on Rumen Fermentation and Lactation Performance of mid-Lactation Cows. Master Thesis, Nanjing Agricutural University, Nanjing, China, 2014. [Google Scholar]
- Xie, X.; Yang, C.; Guan, L.L.; Wang, J.; Xue, M.; Liu, J.X. Persistence of cellulolytic bacteria fibrobacter and treponema after short-term corn stover-based dietary intervention reveals the potential to improve rumen fibrolytic function. Front. Microbiol. 2018, 9, 1363. [Google Scholar] [CrossRef]
- Weimer, P.J. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Front. Microbiol. 2015, 6, 296. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, C.; Gu, X.; Zhao, J.; Nie, C.; Zhang, W.; Ma, X. Dietary montmorillonite improves the intestinal mucosal barrier and optimizes the intestinal microbial community of weaned piglets. Front. Microbiol. 2020, 11, 593056. [Google Scholar] [CrossRef]
- Zhang, R.; Zhong, Z.; Ma, H.; Lin, L.; Xie, F.; Mao, S.; Irwin, D.M.; Wang, Z.; Zhang, S. Mucosal microbiota and metabolome in the ileum of hu sheep offered a low-grain, pelleted or non-pelleted high-grain diet. Front. Microbiol. 2021, 12, 718884. [Google Scholar] [CrossRef]
- Yan, B.; Jia, T.; Wang, Z.; Zhu, W. Comparative research of intestinal microbiota diversity and body mass regulation in eothenomys miletus from different areas of hengduan mountain regions. Front. Microbiol. 2022, 13, 1026841. [Google Scholar] [CrossRef] [PubMed]
- Wen, K.; Liu, L.; Zhao, M.; Geng, T.; Gong, D. The changes in microbiotic composition of different intestinal tracts and the effects of supplemented lactobacillus during the formation of goose fatty liver. Front. Microbiol. 2022, 13, 906895. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, K.; Lin, Y.; Li, M.; Wang, X.; Yu, Q.; Sun, H.; Cheng, Q.; Xie, Y.; Wang, C.; et al. Effect of cellulase and lactic acid bacteria on the fermentation quality, carbohydrate conversion, and microbial community of ensiling oat with different moisture contents. Front. Microbiol. 2022, 13, 1013258. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Ding, L.; Jiang, C.; Ma, C.; Liu, B.; Li, D.; Degen, A.A. Effects of management, dietary intake, and genotype on rumen morphology, fermentation, and microbiota, and on meat quality in yaks and cattle. Front. Nutr. 2021, 8, 755255. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Han, P.; Ma, S.; Peng, R.; Wang, C.; Kong, W.; Cong, L.; Fu, J.; Zhang, Z.; Yu, H.; et al. Abnormal metabolism of gut microbiota reveals the possible molecular mechanism of nephropathy induced by hyperuricemia. Acta Pharm. Sin. B 2020, 10, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Biswas, K.; Hoggard, M.; Jain, R.; Taylor, M.W.; Douglas, R.G. The nasal microbiota in health and disease: Variation within and between subjects. Front. Microbiol. 2015, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Xiao, L.; Yu, Z.; Zhou, Y. Zinc desorption and antibacterial activity on e. Coli k88of zinc-bearing palygorskite. Non-Met. Mines 2015, 38, 9–12. [Google Scholar]
- Wang, L.C.; Zhang, T.T.; Wen, C.; Jiang, Z.Y.; Wang, T.; Zhou, Y.M. Protective effects of zinc-bearing clinoptilolite on broilers challenged with salmonella pullorum. Poult. Sci. 2012, 91, 1838–1845. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, C.; Li, Y.; Han, X.; Luo, X.; Chen, L.; Zhang, T.; Wang, N.; Wang, W. Alginate oligosaccharides ameliorate dss-induced colitis through modulation of ampk/nf-κb pathway and intestinal microbiota. Nutrients 2022, 14, 2864. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, Y.; Huang, K.; Yang, B.; Zhang, Y.; Yu, Z.; Wang, J. Fecal microbiota dynamics and its relationship to diarrhea and health in dairy calves. J. Anim. Sci. Biotechnol. 2022, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, M.P.; Diao, Q.Y.; Tu, Y. Saponin-induced shifts in the rumen microbiome and metabolome of young cattle. Front. Microbiol. 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredients | Content, % of DM | Chemical Composition, % of DM | Content, % of DM |
---|---|---|---|
Corn | 30.8 | Dry matter | 87.19 |
Soybean meal | 5.8 | Metabolic energy (MJ/kg) | 16.91 |
Peanut meal | 3.0 | Crude protein | 14.61 |
Bean straw | 24.0 | Neutral detergent fibre | 49.71 |
Corn germ meal | 15.0 | Acid detergent fibre | 13.04 |
Rice husk | 5.0 | Ether extract | 4.71 |
Wheat middling | 2.0 | Ash | 10.06 |
Molasses | 1.0 | Ca | 1.08 |
Malt root | 6.0 | P | 0.62 |
Limestone | 2.0 | ||
Premix | 5.0 | ||
Total | 100 |
Items | CON | PAA 500 | PAA 1000 | PAA 2000 | CTC 500 | SEM | p-Value |
---|---|---|---|---|---|---|---|
pH | 6.43 | 6.53 | 6.46 | 6.43 | 6.44 | 0.02 | 0.67 |
Total VFA (mmol/L) | 54.08 | 51.19 | 60.74 | 37.74 | 59.55 | 5.04 | 0.643 |
Acetate | 39.03 | 34.45 | 37.99 | 29.72 | 36.71 | 2.95 | 0.903 |
Propionate | 14.23 | 10.28 | 14.38 | 7.14 | 12.98 | 1.25 | 0.357 |
Butyrate | 6.43 | 3.28 | 4.76 | 4.27 | 4.9 | 0.48 | 0.378 |
Valerate | 0.85 | 0.49 | 0.71 | 0.61 | 0.74 | 0.07 | 0.696 |
Isobutyrate | 1.57 | 1.01 | 1.12 | 1.44 | 1.46 | 0.12 | 0.604 |
Isovalerate | 2.76 | 1.65 | 1.76 | 2.08 | 2.68 | 0.23 | 0.438 |
Acetate/propionate (A:P) | 2.82 | 4.29 | 2.84 | 4.44 | 2.89 | 0.69 | 0.468 |
Items | CON | PAA 500 | PAA1000 | PAA 2000 | CTC 500 | SEM | p-Value |
---|---|---|---|---|---|---|---|
Simpson | 0.9816 b | 0.9808 b | 0.9644 b | 0.9373 a | 0.9660 b | 0.004 | 0.002 |
Chao1 | 2797.4 b | 2831.3 b | 2628.8 b | 2330.7 a | 2577.4 ab | 57.8 | 0.014 |
Observed species | 2214.2 b | 2243.8 b | 2037.9 ab | 1771.1 a | 2005.1 ab | 55.3 | 0.016 |
Shannon | 7.5 b | 7.4 b | 6.9 b | 6.4 a | 7.1 b | 0.12 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, Y.; Zeng, H.; Wang, C.; Han, Z. Dietary Palygorskite-Based Antibacterial Agent Supplementation as an Alternative to Antibiotics Improves Growth Performance, Blood Parameters, and Rumen Microbiota in Sheep. Antibiotics 2023, 12, 1144. https://doi.org/10.3390/antibiotics12071144
Li S, Liu Y, Zeng H, Wang C, Han Z. Dietary Palygorskite-Based Antibacterial Agent Supplementation as an Alternative to Antibiotics Improves Growth Performance, Blood Parameters, and Rumen Microbiota in Sheep. Antibiotics. 2023; 12(7):1144. https://doi.org/10.3390/antibiotics12071144
Chicago/Turabian StyleLi, Shujie, Yue Liu, Hanfang Zeng, Chanjian Wang, and Zhaoyu Han. 2023. "Dietary Palygorskite-Based Antibacterial Agent Supplementation as an Alternative to Antibiotics Improves Growth Performance, Blood Parameters, and Rumen Microbiota in Sheep" Antibiotics 12, no. 7: 1144. https://doi.org/10.3390/antibiotics12071144
APA StyleLi, S., Liu, Y., Zeng, H., Wang, C., & Han, Z. (2023). Dietary Palygorskite-Based Antibacterial Agent Supplementation as an Alternative to Antibiotics Improves Growth Performance, Blood Parameters, and Rumen Microbiota in Sheep. Antibiotics, 12(7), 1144. https://doi.org/10.3390/antibiotics12071144