Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania
Abstract
:1. Introduction
2. Results
2.1. Physico-Chemical Analysis
2.2. The Phyto-Inhibitory Activity of Propolis
2.3. Antimicrobial Activity of Propolis
2.4. Statistical Analysis
3. Discussion
4. Materials and Methods
4.1. Propolis Samples
4.2. Physico-Chemical Analysis
4.2.1. Water Activity
4.2.2. Water Solubility
4.2.3. Determination of Total Phenolic Content (TPC)
4.2.4. Total Flavonoid Content (TFC)
4.2.5. Ferric-Reducing Antioxidant Power (FRAP)
4.2.6. The Antioxidant Activity of Propolis
4.3. The Phyto-Inhibitory Activity of Propolis
4.4. Antimicrobial Activity of Propolis
4.4.1. Cultures of Microorganisms
4.4.2. Determination of the Antimicrobial Properties of the Aqueous Propolis Extracts–Agar Disk Diffusion Method
4.5. Statistical Analysis
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuropatnicki, A.K.; Szliszka, E.; Krol, W. Historical aspects of propolis research in modern times. Evid. Based Complement. Altern. Med. 2013, 2013, 964149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kocot, J.; Kiełczykowska, M.; Luchowska-Kocot, D.; Kurzepa, J.; Musik, I. Antioxidant Potential of Propolis, Bee Pollen, and Royal Jelly: Possible Medical Application. Oxid. Med. Cell. Longev. 2018, 2018, 7074209. [Google Scholar] [CrossRef]
- Nagai, T.; Inoue, R.; Kanamori, N.; Suzuki, N.; Nagashima, T. Characterization of honey from different floral sources. Its functional properties and effect of honey species on storage of meat. Food Chem. 2006, 97, 256–262. [Google Scholar] [CrossRef]
- Osés, S.M.; Marcos, P.; Azofra, P.; de Pablo, A.; Fernández-Muíño, M.Á.; Sancho, M.T. Phenolic Profile, Antioxidant Capacities and Enzymatic Inhibitory Activities of Propolis from Different Geographical Areas: Needs for Analytical Harmonization. Antioxidants 2020, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Galeotti, F.; Maccari, F.; Fachini, A.; Volpi, N. Chemical Composition and Antioxidant Activity of Propolis Prepared in Different Forms and in Different Solvents Useful for Finished Products. Foods 2018, 7, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aso, K.; Kanno, S.; Tadano, T.; Satoh, S.; Ishikawa, M. Inhibitory effect of propolis on the growth of human leukemia U937. Biol. Pharm. Bull. 2004, 27, 727–730. [Google Scholar] [CrossRef] [Green Version]
- Gogacz, M.; Peszke, J.; Natorska-Chomicka, D.; Makuch-Kocka, A.; Dos Santos Szewczyk, K. Anticancer Effects of Propolis Extracts Obtained with the Cold Separation Method on PC-3 and DU-145 Prostate Cancer Cell Lines. Molecules 2022, 27, 8245. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Yañez, N.; Rivera-Yañez, C.R.; Pozo-Molina, G.; Méndez-Catalá, C.F.; Reyes-Reali, J.; Mendoza-Ramos, M.I.; Méndez-Cruz, A.R.; Nieto-Yañez, O. Effects of Propolis on Infectious Diseases of Medical Relevance. Biology 2021, 10, 428. [Google Scholar] [CrossRef]
- Da Rosa, C.; Bueno, I.L.; Quaresma, A.C.M.; Longato, G.B. Healing Potential of Propolis in Skin Wounds Evidenced by Clinical Studies. Pharmaceuticals 2022, 15, 1143. [Google Scholar] [CrossRef]
- Sforcin, J.M. Propolis and the immune system: A review. J. Ethnopharmacol. 2007, 113, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Easton-Calabria, A.; Demary, K.C.; Oner, N.J. Beyond Pollination: Honey Bees (Apis mellifera) as Zootherapy Keystone Species. Front. Ecol. Evol. 2019, 6, 161. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent advances in the chemical composition of propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salatino, A.; Salatino, M.L.F. Scientific note: Often quoted, but not factual data about propolis composition. Apidologie 2021, 52, 312–314. [Google Scholar] [CrossRef]
- Ecem Bayram, N.; Gerçek, Y.C.; Öz, G.C. Screening for antioxidant capacity, pollen types and phytochemical profile by GC/MS and UHPLC from propolis. Prog. Nutr. 2020, 22, e2020011. [Google Scholar] [CrossRef]
- Escriche, I.; Juan-Borrás, M. Standardizing the analysis of phenolic profile in propolis. Food Res. Int. 2018, 106, 834–841. [Google Scholar] [CrossRef]
- Bankova, V.S.; De Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Attia, Y.A.; Giorgio, G.M.; Addeo, N.F.; Asiry, K.A.; Piccolo, G.; Nizza, A.; Di Meo, C.; Alanazi, N.A.; Al-Qurashi, A.D.; El-Hack, M.E.A.; et al. COVID-19 pandemic: Impacts on bees, beekeeping, and potential role of bee products as antiviral agents and immune enhancers. Environ. Sci. Pollut. Res. 2022, 29, 9592–9605. [Google Scholar] [CrossRef]
- Devequi-Nunes, D.; Machado, B.A.S.; Barreto, G.A.; Rebouças Silva, J.; da Silva, D.F.; da Rocha, J.L.C.; Brandão, H.N.; Borges, V.M.; Umsza-Guez, M.A. Chemical characterization and biological activity of six different extracts of propolis through conventional methods and supercritical extraction. PLoS ONE 2018, 13, e0207676. [Google Scholar] [CrossRef]
- Lagouri, V.; Prasianaki, D.; Krysta, F.l. Antioxidant Properties and Phenolic Composition of Greek Propolis Extracts. Int. J. Food Prop. 2014, 17, 511–522. [Google Scholar] [CrossRef]
- Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Sulaiman, S.A.; Baig, A.A.; Ibrahim, M.; Liaqat, S.; Fatima, S.; Jabeen, S.; Shamim, N.; Othman, N.H. Honey as a potential natural antioxidant medicine: An insight into its molecular mechanisms of action. Oxid. Med. Cell. Longev. 2018, 2018, 8367846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishio, E.K.; Ribeiro, J.M.; Oliveira, A.G.; Andrade, C.G.T.J.; Proni, A.E.; Kobayashi, R.K.T.; Nakazato, G. Antibacterial synergic effect of honey from two stingless bees: Scaptotrigona bipunctata Lepeletier, 1836, and S. postica Latreille, 1807. Sci. Rep. 2016, 6, 21641. [Google Scholar] [CrossRef] [Green Version]
- Vică, M.L.; Glevitzky, M.; Heghedus-Mîndru, R.C.; Glevitzky, I.; Matei, H.V.; Bâlici, Ș.; Popa, M.; Teodoru, C.A. Potential Effects of Romanian Propolis Extracts against Pathogen Strains. Int. J. Environ. Res. Public Health 2022, 19, 2640. [Google Scholar] [CrossRef] [PubMed]
- Vică, M.L.; Glevitzky, M.; Dumitrel, G.-A.; Bostan, R.; Matei, H.V.; Kartalska, Y.; Popa, M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics 2022, 11, 1552. [Google Scholar] [CrossRef]
- Pereira, A.d.S.; Seixas, F.R.M.S.; Aquino Neto, F.R. Própolis: 100 anos de pesquisa e suas perspectivas futuras. Quím. Nova 2002, 25, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.S.; Maia, L.F.P.; Paula, F.S. Aplicação de extrato etanólico de própolis no crescimento e produtividade do feijoeiro comum. Rev. Ceres 2014, 61, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Pereira, C.S.; Matte, W.D.; Venâncio, P.H.B. Aplicação de extrato de própolis na agricultura. Rev. Ciências Agroambientais 2016, 14, 143–156. [Google Scholar] [CrossRef]
- Marini, D.; Mensch, R.; Freiberger, M.B.; Dartora, J.; Franzener, G.; Garcia, R.C.; Stangarlin, J.R. Efeito antifúngico de extratos alcoólicos de própolis sobre patógenos da videira. Arq. Inst. Biol. 2012, 79, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Guginski-Piva, C.A.; Santos, I.; Wagner, A.J.; Heck, D.; Flores, M.F.; Pazolini, K. Propolis for the control of powdery mildew and the induction of phytoalexins in cucumber. Idesia 2015, 33, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Abo-Elyousr, K.A.M.; Seleim, M.E.A.; El-Sharkawy, R.M.; Bagy, H.M.M.K. Effectiveness of Egyptian propolis on control of tomato bacterial wilt caused by Ralstonia solanacearum. J. Plant Dis. Prot. 2017, 124, 467–472. [Google Scholar] [CrossRef]
- Silva-Castro, I.; Barreto, R.W.; Rodriguez, M.C.H.; Matei, P.M.; Martín-Gil, J. Control of Coffee Leaf Rust by Chitosan Oligomers and Propolis. Agric. Life Life Agric. Conf. Proc. 2018, 1, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-García, P.F.; Ventura-Aguilar, R.I.; Del Río-García, J.C.; Hernández-López, M.; Guillén-Sánchez, D.; Salazar-Piña, D.A.; Ramos-García, M.L.; Bautista-Baños, S. Edible Chitosan/Propolis Coatings and Their Effect on Ripening, Development of Aspergillus flavus, and Sensory Quality in Fig Fruit, during Controlled Storage. Plants 2021, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Dudoit, A.; Mertz, C.; Chillet, M.; Cardinault, N.; Brat, P. Antifungal activity of Brazilian red propolis extract and isolation of bioactive fractions by thin-layer chromatography-bioautography. Food Chem. 2020, 327, 127060. [Google Scholar] [CrossRef]
- Noweer, E.M.; Dawood, M.G. Efficiency of propolis extract on faba bean plants and its role against nematode infection. Commun. Agric. Appl. Biol. Sci. 2009, 74, 593–603. [Google Scholar]
- Wuaden, C.R.; Gaio, I.; Sperhacke, T.P.; Barro, J.P.; Milanesi, P.M. Antifungal activity of propolis alcoholic extract and basil essential oil on Botrytis Cinerea. Colloq. Agrariae 2018, 14, 48–55. [Google Scholar] [CrossRef] [Green Version]
- Gonnet, M. Propriétés phytoinhibitrices de quelques substances extraites de la colonie d’abeilles (Apis mellifica L.) I. Action sur la crosissance de Lactuca sativa. Ann. Abeille 1968, 11, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Marcucci, M.C.; Ferreres, F.; García-Viguera, C.; Bankova, V.S.; de Castro, S.L.; Dantas, A.P. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001, 74, 105–112. [Google Scholar] [CrossRef]
- Bankova, V. Recent trends and important developments in propolis research. eCAM 2005, 2, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Pant, K.; Thakur, M.; Chopra, H.K.; Nanda, V.; Ansari, M.J.; Pietramellara, G.; Pathan, S.I.; Alharbi, S.A.; Almoallim, H.S.; Datta, R. Characterization and discrimination of Indian propolis based on physico-chemical, techno-functional, thermal and textural properties: A multivariate approach. J. King Saud. Univ. Sci. 2021, 33, 101405. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Petrus, J.C.C.; Hubinger, M.D. Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J. Food Process. Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
- Kubiliene, L.; Laugaliene, V.; Pavilonis, A.; Maruska, A.; Majiene, D.; Barcauskaite, K.; Kubilius, R.; Kasparaviciene, G.; Savickas, A. Alternative preparation of propolis extracts: Comparison of their composition and biological activities. BMC Complement. Altern. Med. 2015, 15, 156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desoky, S.M.; Elrys, A.S.; Mansour, E.; Eid, R.S.M.; Selem, E.; Rady, M.M.; Ali, E.F.; Mersal, G.A.M.; Semida, W.M. Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Sci. Hortic. 2021, 288, 110340. [Google Scholar] [CrossRef]
- Derevici, A.; Popesco, A.; Popesco, N. Research on Certain Biological Properties of Propolis. Annals Abeille 1964, 7, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Semida, W.; Rady, M. Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.). Sci. Hortic. 2014, 168, 210–217. [Google Scholar] [CrossRef]
- King-Díaz, B.; Granados-Pineda, J.; Bah, M.; Rivero-Cruz, J.F.; Lotina-Hennsen, B. Mexican propolis flavonoids affect photosynthesis and seedling growth. J. Photochem. Photobiol. B Biol. 2015, 151, 213–220. [Google Scholar] [CrossRef]
- Sorkun, K.; Bozcuk, S.; Gömürgen, A.N.; Tekin, F. An Inhibitory Effect of Propolis on Germination and Cell Division in the Root Tips of Wheat Seedlings. In Bee Products; Mizrahi, A., Lensky, Y., Eds.; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Dadgostar, S.; Nozari, J. Evaluation of propolis extract in preventing weed seed germination. Proc. Int. Acad. Ecol. Environ. Sci. 2020, 10, 125–130. [Google Scholar]
- Veiga, R.S.; De Mendonça, S.; Mendes, P.B.; Paulino, N.; Mimica, M.J.; Lagareiro Netto, A.A.; Lira, I.S.; López, B.G.; Negrão, V.; Marcucci, M.C. Artepillin C and phenolic compounds responsible for antimicrobial and antioxidant activity of green propolis and Baccharis dracunculifolia DC. J. Appl. Microbiol. 2017, 122, 911–920. [Google Scholar] [CrossRef]
- De Castro, S.L. Propolis: Biological and pharmacological activities. Therapeutic uses of this bee-product. Annu. Rev. Biomed. Sci. 2001, 3, 49–83. [Google Scholar] [CrossRef]
- Cornara, L.; Biagi, M.; Xiao, J.; Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 2017, 8, 412. [Google Scholar] [CrossRef] [Green Version]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, propolis, and royal jelly: A comprehensive review of their biological actions and health benefits. Oxid. Med. Cell. Longev. 2017, 2017, 1259510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gniewosz, M.; Pobiega, K.; Kraśniewska, K.; Synowiec, A.; Chaberek, M.; Galus, S. Characterization and Antifungal Activity of Pullulan Edible Films Enriched with Propolis Extract for Active Packaging. Foods 2022, 11, 2319. [Google Scholar] [CrossRef] [PubMed]
- Hassanien, A.A.; Shaker, E.M.; El-Sharkawy, E.E.; Elsherif, W.M. Antifungal and antitoxin effects of propolis and its nanoemulsion formulation against Aspergillus flavus isolated from human sputum and milk powder samples. Vet. World 2021, 14, 2306–2312. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.R.; Kunimasa, K.; Ohta, T.; Kumazawa, S.; Kamihira, M.; Kaji, K.; Uto, Y.; Hori, H.; Nagasawa, H.; Nakayama, T. Suppression of tumor-induced angiogenesis by Brazilian propolis: Major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation. Cancer Lett. 2007, 252, 235–243. [Google Scholar] [CrossRef]
- Moreno, N.M.; Isla, M.I.; Sampietro, A.R.; Vattuone, M. Comparison of the free radical scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 2000, 71, 109–114. [Google Scholar] [CrossRef]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- AOAC. 978.18 Water Activity: Official Methods of Analysis of the Association of Official Analytical Chemist, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Cano-Chauca, M.; Stringheta, P.C.; Ramos, A.M.; Cal-Vidal, J. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innov. Food Sci. Emerg. Technol. 2005, 6, 420–428. [Google Scholar] [CrossRef]
- Bogdanov, S. Harmonised Methods of the International Honey Commission; Swiss Bee Research Centre, FAM: Liebefeld, Switzeland, 2009; p. 63. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 29, 10–18. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.K. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Ahmed, M.; Imtiaz Shafiq, M.; Khaleeq, A.; Huma, R.; Abdul Qadir, M.; Khalid, A.; Ali, A.; Samad, A. Physiochemical, biochemical, minerals content analysis, and antioxidant potential of national and international honeys in Pakistan. J. Chem. 2016, 2016, 8072305. [Google Scholar] [CrossRef] [Green Version]
- ALaerjani, W.M.A.; Khan, K.A.; Al-Shehri, B.M.; Ghramh, H.A.; Hussain, A.; Mohammed, M.E.A.; Imran, M.; Ahmad, I.; Ahmad, S.; Al-Awadi, A.S. Chemical Profiling, Antioxidant, and Antimicrobial Activity of Saudi Propolis Collected by Arabian Honey Bee (Apis mellifera jemenitica) Colonies. Antioxidants 2022, 11, 1413. [Google Scholar] [CrossRef] [PubMed]
- Mărghitas, L.A.; Dezmirean, D.; Moise, A.; Mihai, C.; Laslo, L. DPPH method for evaluation of propolis antioxidant activity. Bull. Univ. Agric. Sci. 2009, 66, 253–258. [Google Scholar]
- Popova, M.; Bankova, V.; Butovska, D.; Petkov, V.; Nikolova-Damyanova, B.; Sabatini, A.G.; Marcazzan, G.L.; Bogdanov, S. Validated methods for the quantification of biologically active constituents of poplar type propolis. Phytochem. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Biron, R.C.; Heghedűş-Mîndru, G.; Hădărugă, N.G.; Jianu, C.; Ştef, D.; Jianu, I. The phytoinhibitory activity of propolis harvested from the western area of Romania—Part I. University of Agricultural Sciences and Veterinary Medicine Iasi. Sci. Work. Agron. Ser. 2007, 50, 462–467. (In Romanian) [Google Scholar]
- Kirby, L.T.; Styles, E.D. Flavonoids associated with specific gene action in maize and the role of light in substituting for the action of a gene. Can. J. Genet. Cytol. 1970, 12, 934–940. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, M.; Tit, D.M.; Behl, T.; Heghedus-Mîndru, R.C.; Zaha, D.C.; Ursu, F.; Popa, M.; Glevitzky, I.; Bungau, S. The antimicrobial activity of honey and propolis extracts from the central region of Romania. Food Biosci. 2021, 41, 101014. [Google Scholar] [CrossRef]
- Vică, M.L.; Glevitzky, I.; Glevitzky, M.; Siserman, C.V.; Matei, H.V.; Teodoru, C.A. Antibacterial Activity of Propolis Extracts from the Central Region of Romania against Neisseria gonorrhoeae. Antibiotics 2021, 10, 689. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute. Performance Standards for Antimicrobial Susceptibility Testing. 2020. Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 27 November 2022).
- Boslaugh, S. Statistics in a Nutshell, 2nd ed.; O’Reilly Media, Inc.: Newton, MA, USA, 2012. [Google Scholar]
Sample No. | Water Activity (aw) | Water Solubility (%) | Phenols (mg GAE/g) | Flavonoids (mg QE/g) | FRAP 1 (mmol Fe2+/g) | DPPH 2 (mg GAE/g) |
---|---|---|---|---|---|---|
S1 | 0.71 ± 0.22 | 9.12 ± 0.27 | 189.4 ± 5.82 | 84.31 ± 0.09 | 1.44 ± 0.31 | 16.44 ± 0.2 |
S2 | 0.74 ± 0.14 | 12.07 ± 0.31 | 180.8 ± 4.54 | 78.26 ± 0.07 | 1.31 ± 0.01 | 15.21 ± 0.3 |
S3 | 0.69 ± 0.15 | 8.98 ± 0.66 | 172.9 ± 3.25 | 78.55 ± 0.08 | 0.89 ± 0.02 | 15.08 ± 0.2 |
S4 | 0.73 ± 0.13 | 14.23 ± 0.49 | 189.5 ± 4.83 | 87.84 ± 0.11 | 2.07 ± 0.08 | 16.79 ± 0.1 |
S5 | 0.74 ± 0.12 | 11.35 ± 0.57 | 193.4 ± 7.22 | 88.06 ± 0.08 | 1.52 ± 0.02 | 17.27 ± 0.4 |
S6 | 0.71 ± 0.08 | 13.10 ± 0.72 | 129.6 ± 3.58 | 65.59 ± 0.09 | 0.33 ± 0.09 | 11.75 ± 0.1 |
S7 | 0.73 ± 0.14 | 9.86 ± 0.14 | 184.3 ± 6.04 | 82.27 ± 0.25 | 1.05 ± 0.03 | 15.04 ± 0.6 |
S8 | 0.62 ± 0.17 | 8.74 ± 0.50 | 152.2 ± 6.80 | 70.10 ± 0.16 | 1.06 ± 0.06 | 13.50 ± 0.3 |
S9 | 0.67 ± 0.15 | 13.01 ± 0.34 | 157.1 ± 5.57 | 74.35 ± 0.36 | 1.08 ± 0.14 | 14.43 ± 0.2 |
S10 | 0.66 ± 0.08 | 10.56 ± 0.68 | 186.9 ± 6.88 | 77.33 ± 0.21 | 1.94 ± 0.07 | 16.28 ± 0.2 |
S11 | 0.72 ± 0.11 | 15.61 ± 0.63 | 144.2 ± 5.51 | 67.41 ± 0.14 | 0.27 ± 0.01 | 12.66 ± 0.1 |
S12 | 0.65 ± 0.07 | 11.00 ± 0.19 | 153.5 ± 4.78 | 82.38 ± 0.27 | 0.76 ± 0.05 | 14.57 ± 0.4 |
S13 | 0.74 ± 0.09 | 9.52 ± 0.27 | 144.0 ± 2.09 | 81.09 ± 0.98 | 1.29 ± 0.06 | 13.92 ± 0.5 |
S14 | 0.69 ± 0.11 | 15.23 ± 0.71 | 192.2 ± 1.18 | 97.65 ± 0.73 | 2.14 ± 0.09 | 18.11 ± 0.1 |
S15 | 0.68 ± 0.12 | 13.09 ± 0.28 | 108.2 ± 4.78 | 53.72 ± 0.12 | 0.25 ± 0.03 | 12.72 ± 0.6 |
S16 | 0.70 ± 0.16 | 14.55 ± 0.67 | 141.7 ± 2.07 | 68.15 ± 0.42 | 0.48 ± 0.04 | 11.20 ± 0.2 |
Day | 1% APE 1 | 5% APE | 10% APE | M 2 |
---|---|---|---|---|
Wheat | ||||
3 | 19 ± 1 | 8 ± 1 | 2 ± 0.5 | 24 ± 6 |
5 | 36 ± 2 | 24 ± 1 | 11 ± 1.5 | 39 ± 4 |
7 | 79 ± 3 | 58 ± 4 | 23 ± 3 | 82 ± 5 |
9 | 95 ± 5 | 81 ± 4 | 41 ± 8 | 101 ± 7 |
11 | 115 ± 7 | 102 ± 6 | 52 ± 7 | 123 ± 9 |
13 | 150 ± 8 | 137 ± 7 | 64 ± 8 | 145 ± 17 |
Maize | ||||
3 | 10 ± 2 | 3 ± 1 | 0 ± 0 | 15 ± 1 |
5 | 21 ± 3 | 6 ± 2 | 4 ± 1 | 23 ± 1 |
7 | 34 ± 6 | 20 ± 3 | 9 ± 3 | 37 ± 3 |
9 | 44 ± 9 | 31 ± 5 | 16 ± 3 | 54 ± 6 |
11 | 53 ± 7 | 42 ± 6 | 20 ± 5 | 65 ± 7 |
13 | 65 ± 11 | 58 ± 9 | 30 ± 8 | 83 ± 7 |
Barley | ||||
3 | 19 ± 1 | 12 ± 1 | 2 ± 0 | 23 ± 4 |
5 | 34 ± 2 | 23 ± 3 | 17 ± 1 | 40 ± 6 |
7 | 45 ± 5 | 31 ± 2 | 24 ± 1 | 55 ± 9 |
9 | 70 ± 4 | 44 ± 3 | 52 ± 3 | 90 ± 7 |
11 | 92 ± 8 | 82 ± 6 | 69 ± 5 | 101 ± 8 |
13 | 107 ± 13 | 96 ± 7 | 83 ± 6 | 132 ± 11 |
Oat | ||||
3 | 21 ± 3 | 9 ± 2 | 1 ± 0 | 25 ± 6 |
5 | 30 ± 5 | 18 ± 5 | 10 ± 1 | 30 ± 3 |
7 | 43 ± 5 | 28 ± 4 | 17 ± 2 | 44 ± 5 |
9 | 50 ± 6 | 42 ± 4 | 28 ± 2 | 65 ± 9 |
11 | 70 ± 5 | 51 ± 6 | 45 ± 4 | 102 ± 11 |
13 | 81 ± 8 | 62 ± 9 | 53 ± 7 | 123 ± 13 |
Sample No. | Strain | ||||
---|---|---|---|---|---|
P. fluorescens | B. subtilis | B. cereus | E. coli | P. mirabilis | |
S1 | 32 | 28 | 25 | 32 | 29 |
S2 | 28 | 26 | 27 | 24 | 21 |
S3 | 30 | 25 | 26 | 21 | 24 |
S4 | 28 | 24 | 27 | 26 | 28 |
S5 | 29 | 28 | 28 | 24 | 23 |
S6 | 32 | 27 | 29 | 28 | 31 |
S7 | 31 | 29 | 28 | 27 | 29 |
S8 | 29 | 26 | 27 | 23 | 25 |
S9 | 27 | 24 | 26 | 25 | 27 |
S10 | 30 | 27 | 25 | 29 | 26 |
S11 | 30 | 25 | 27 | 22 | 22 |
S12 | 28 | 27 | 26 | 29 | 21 |
S13 | 29 | 26 | 26 | 26 | 27 |
S14 | 33 | 29 | 29 | 31 | 31 |
S15 | 27 | 25 | 27 | 18 | 23 |
S16 | 29 | 23 | 24 | 22 | 19 |
Ciprofloxacin | 24 | 30 | 30 | 29 | 28 |
Sample No. | Strain | ||||
---|---|---|---|---|---|
A. alternata | C. cladosporioides | F. oxysporum | M. racemosus | A. niger | |
S1 | 25 | 23 | 28 | 27 | 24 |
S2 | 16 | 20 | 23 | 22 | 21 |
S3 | 19 | 23 | 24 | 24 | 19 |
S4 | 21 | 19 | 25 | 24 | 23 |
S5 | 20 | 21 | 26 | 21 | 26 |
S6 | 23 | 26 | 23 | 25 | 17 |
S7 | 26 | 24 | 22 | 28 | 18 |
S8 | 22 | 19 | 27 | 23 | 16 |
S9 | 24 | 22 | 21 | 20 | 22 |
S10 | 16 | 24 | 25 | 22 | 15 |
S11 | 18 | 18 | 23 | 25 | 19 |
S12 | 20 | 23 | 26 | 26 | 18 |
S13 | 21 | 20 | 22 | 26 | 16 |
S14 | 25 | 25 | 27 | 23 | 25 |
S15 | 19 | 17 | 23 | 22 | 15 |
S16 | 17 | 20 | 24 | 22 | 18 |
Grain | Equation | σ2 | σ | r2 | r |
---|---|---|---|---|---|
Wheat | y = 13.688 + 9.383·x1 − 4.836·x2 | 228.928 | 15.130 | 0.896 | 0.947 |
Maize | y = 7.022 + 4.038·x1 − 2.348·x2 | 48.808 | 6.466 | 0.902 | 0.950 |
Barley | y = 0.432 + 7.659·x1 − 1.875·x2 | 68.590 | 8.280 | 0.944 | 0.971 |
Oat | y = 7.770 + 5.164·x1 − 2.212·x2 | 24.85 | 4.98 | 0.958 | 0.979 |
Dispersion Sum of the Diameters of Inhibition Zones | Quadratic Sum | Degrees of Freedom (ν) | Variance | Fcomputed | F0.05 | |||
---|---|---|---|---|---|---|---|---|
Bacteria | Fungi | Bacteria | Fungi | Bacteria | Fungi | |||
Between propolis extracts | 177.25 | 273.50 | 15 | 11.82 | 18.23 | 2.82 | 3.05 | 1.84 |
Between strains | 258.35 | 200.69 | 4 | 64.59 | 50.17 | 15.43 | 8.40 | 2.53 |
Residual | 251.15 | 358.50 | 60 | 4.19 | 5.98 | - | - |
Microbial Strains | Flavonoids | Phenols |
---|---|---|
P. fluorescence | 0.41 | 0.34 |
B. subtilis | 0.45 | 0.47 |
B. cereus | 0.49 | 0.32 |
E. coli | 0.68 | 0.54 |
P. mirabilis | 0.34 | 0.28 |
A. alternate | 0.32 | 0.19 |
C. cladosporioides | 0.49 | 0.38 |
F. oxysporum | 0.39 | 0.44 |
M. racemosus | 0.21 | 0.05 |
A. niger | 0.64 | 0.66 |
Sample | County of Origin | Landforms |
---|---|---|
S1 | Alba | Mountainous |
S2 | Arad | Plain |
S3 | Bihor | Hilly |
S4 | Bistrița-Năsăud | Mountainous |
S5 | Caraș-Severin | Hilly |
S6 | Cluj | Hilly |
S7 | Hunedoara | Sub-mountainous |
S8 | Maramureș | Mountainous |
S9 | Mureș | Hilly |
S10 | Satu Mare | Hilly |
S11 | Sălaj | Sub-mountainous |
S12 | Sibiu | Sub-mountainous |
S13 | Timiș | Plain |
S14 | Brașov | Sub-mountainous |
S15 | Covasna | Mountainous |
S16 | Harghita | Mountainous |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vică, M.L.; Glevitzky, M.; Heghedűş-Mîndru, R.C.; Dumitrel, G.-A.; Heghedűş-Mîndru, G.; Popa, M.; Faur, D.M.; Bâlici, Ș.; Teodoru, C.A. Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania. Antibiotics 2023, 12, 1015. https://doi.org/10.3390/antibiotics12061015
Vică ML, Glevitzky M, Heghedűş-Mîndru RC, Dumitrel G-A, Heghedűş-Mîndru G, Popa M, Faur DM, Bâlici Ș, Teodoru CA. Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania. Antibiotics. 2023; 12(6):1015. https://doi.org/10.3390/antibiotics12061015
Chicago/Turabian StyleVică, Mihaela Laura, Mirel Glevitzky, Ramona Cristina Heghedűş-Mîndru, Gabriela-Alina Dumitrel, Gabriel Heghedűş-Mîndru, Maria Popa, Doriana Maria Faur, Ștefana Bâlici, and Cosmin Adrian Teodoru. 2023. "Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania" Antibiotics 12, no. 6: 1015. https://doi.org/10.3390/antibiotics12061015
APA StyleVică, M. L., Glevitzky, M., Heghedűş-Mîndru, R. C., Dumitrel, G. -A., Heghedűş-Mîndru, G., Popa, M., Faur, D. M., Bâlici, Ș., & Teodoru, C. A. (2023). Phyto-Inhibitory and Antimicrobial Activity of Brown Propolis from Romania. Antibiotics, 12(6), 1015. https://doi.org/10.3390/antibiotics12061015