Non-Adherence in Adult Male Patients with Community-Acquired Pneumonia: Relative Forgiveness of Amoxicillin versus Respiratory Fluoroquinolones
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Probability of Target Attainment Related to Clinical Efficacy with AMOX and FQ in NAT
2.2. RF of AMOX and FQ in NAT
2.3. RF of Respiratory Fluoroquinolones versus AMOX in NAT Scenarios
3. Discussion
4. Materials and Methods
4.1. Imperfect Adherence Scenarios and Virtual Patients
4.2. PK/PD Simulations to Obtain the Probability of Reaching the Target Related to the Antimicrobial Efficacy of AMOX in NAT
4.3. PK/PD Simulations to Obtain the Probability of Reaching the Target Related the Antimicrobial Efficacy of Respiratory FQ in NAT
4.4. RF of AMOX and Respiratory FQ in NAT
4.5. RF between Respiratory FQ and AMOX in NAT Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Amoxicillin: Outline of NONMEM® Control Stream
- $PROBLEM AMOXICILLIN
- $INPUT ID TIME DV MDV AMT DOSE CMT RATE
- $DATA CONTROL.csv IGNORE=I
- $SUBROUTINES ADVAN2
- $PK
- TVKA= THETA(1)
- KA = THETA(1)*EXP (ETA(1))
- SIMAGE=45*EXP (ETA(6))
- SIMWT=70*EXP (ETA(5))
- CLcr=((140-SIMAGE)*SIMWT)/(Cr*72)
- TVCL = THETA(2)*(CLcr)/(102)
- CL/F = TVCL *EXP (ETA(2))
- TVV = THETA(3)*SIMWT
- V/F = TVV *EXP (ETA(3))
- ALAG1 = THETA(4)
- TVKD = THETA(8)
- KD = THETA(8)*EXP(ETA(4))
- F1 = 1-1/(1+THETA(5))
- DF = 1-DOSE/(KD+DOSE)
- F2 = 1-F1
- F2 = F2*DF
- D2 = THETA(6)
- ALAG2 = ALAG1+THETA(7)
- K = CL/V
- SC = V
- REPI = IREP
- $THETA
- 0.635 ;1.KA (1/hr)
- 15.5 ;2.CL (1/hr)
- 0.33 ; 3.V2
- (0 FIXED) ; 4.ALAG1
- 0.177 ; 5.TH5
- 1.44 ; 6.D2
- 0.190 ; 7.ALAG2 (+ALAG1)
- 1300 ; 8.KD
- $OMEGA ; 004 0.036 0.01 0.04 0.001 0.025
- $ERROR
- IPRE = F
- W = IPRE+.001
- Y = F+W*EPS(1)
- $SIGMA 0.4
- $SIMUL (657326795) ONLYSIM
Appendix B. Levofloxacin: Outline of NONMEM® Control Stream
- ; PROBLEM LEVOFLOXACIN
- $INPUT ID TIME AMT DV
- $DATA LEVO.csv IGNORE=I
- $SUBROUTINES ADVAN4 TRANS 1
- $PK
- SIMIBW=70.11*EXP(ETA(1))
- SIMAGE=45*EXP(ETA(2))
- CLcr=((140-SIMAGE)*SIMIBW/(0.9*72)
- TVCL=THETA(2)-1.486+0.07*CLcr-0.032*SIMAGE
- CL/F=TVCL*EXP(ETA(3))
- ;TVCL
- ;model
- TVV2=THETA(3)-0.332*SIMAGE+16.51
- V2/F=YVV2*EXP(ETA(4))
- S2=V2
- K=CL/V2
- TVK23=THETA(4)+0.083
- K23=TVK23*EXP(ETA(5))
- TVK32=THETA (5) +SIMAGE*0.005-0.066
- K32=TVK32*EXP(ETA(6))
- KA=THETA(6)
- S2=V2
- REPI=IREP
- $ERROR
- IPRED=F
- Y=F+F*EPS(1)
- $THETA
- 0.7 ;THETA(1) Blood creatine mean value
- 5.94 ;THETA(2) Constant for prediction of CL
- 72.096 ;THETA(3) Regression coefficient for V
- 0.308 ;THETA(4) Regression coefficient for K23
- 0.430 ;THETA(5) Regression coefficient for K32
- 2.38 ; THETA(6) Ka
- $OMEGA 0.0003 0.006 0.001 0.04 0.04 0.04
- $SIGMA 0.029
- $SIMUL (657326795) ONLYSIM
Appendix C. Moxifloxacin: Outline of NONMEM® Control Stream
- ; PROBLEM MOXIFLOXACIN
- $INPUT ID TIME AMT DV
- $DATA MOXI.csv IGNORE=I
- $SUBROUTINES ADVAN4 TRANS4
- ;TRANS4 CL,V2,Q,V3,KA
- $PK
- SIMLBM=57.5*EXP(ETA(1))
- TVCL/F=THETA(1)*((SIMLBM/60)**0.75))
- CL/F=TVCL/F*(EXP(ETA(2))
- TV2/F=THETA(2)*(SIMLBM/(60))
- V2/F=TV2/F*EXP(ETA(3))
- TVV3/F=THETA(3)*SIMLBM/(60)
- V3/F=TVV3/F
- TVQ=THETA(4)* ((SIMLBM/(60)**0.75)
- Q=TVQ*EXP(ETA(4))
- KA=THETA(5)
- K=CL/V2
- K23=Q/V2
- K32= Q/V3
- S2=V2
- REPI=IREP
- $THETA
- 10 ……………………..;1.CL L/h
- 131 ; 2.V2 L
- 44.2 ; 3.V3 L
- 4.91 ; 4. Q
- 5.97 ; 6.KA 1/h
- $OMEGA 0.00035 0.045 0.021 0 .25
- $ERROR
- IPRED=F
- Y=F+F*EPS(1)
- $SIGMA 0.029
- $SIMUL (657326795) ONLYSIM
References
- Llor, C.; Sierra, N.; Hernández, S.; Moragas, A.; Hernández, M.; Bayona, C.; Miravitlles, M. The higher the number of daily doses of antibiotic treatment in lower respiratory tract infection the worse the compliance. J. Antimicrob. Chemother. 2009, 63, 396–399. [Google Scholar] [CrossRef] [PubMed]
- Pechere, J.C.; Hughes, D.; Kardas, P.; Cornaglia, G. Non-compliance with antibiotic therapy for acute community infections: A global survey. Int. J. Antimicrob. Agents 2007, 29, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Cals, J.W.; Hopstaken, R.M.; Le Doux, P.H.; Driessen, G.A.; Nelemans, P.J.; Dinant, G.J. Dose timing and patient compliance with two antibiotic treatment regimens for lower respiratory tract infections in primary care. Int. J. Antimicrob. Agents 2008, 31, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Onufrak, N.J.; Forrest, A.; Gonzalez, D. Pharmacokinetic and Pharmacodynamic Principles of Anti-infective Dosing. Clin. Ther. 2016, 38, 1930–1947. [Google Scholar] [CrossRef]
- Rizk, M.L.; Bhavnani, S.M.; Drusano, G.; Dane, A.; Eakin, A.E.; Guina, T.; Jang, S.H.; Tomayko, J.F.; Wang, J.; Zhuang, L.; et al. Considerations for Dose Selection and Clinical Pharmacokinetics/Pharmacodynamics for the Development of Antibacterial Agents. Antimicrob. Agents Chemother. 2019, 63, e02309-18. [Google Scholar] [CrossRef]
- Kolditz, M.; Ewig, S. Community-Acquired Pneumonia in Adults. Dtsch. Ärztebl. Int. 2017, 114, 838–848. [Google Scholar] [CrossRef]
- Modi, A.R.; Kovacs, C.S. Community-acquired pneumonia: Strategies for triage and treatment. Clevel. Clin. J. Med. 2020, 87, 145–151. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W. Treatment of Community-Acquired Pneumonia During the Coronavirus Disease 2019 (COVID-19) Pandemic. Ann. Intern. Med. 2020, 173, 304–305. [Google Scholar] [CrossRef]
- European Center for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2020 (accessed on 1 February 2023).
- European Medicines Agency. Fluoroquinolone and Quinolone Antibiotics: PRAC Recommends Restrictions on Use New Restrictions Follow Review of Disabling and Potentially Long-Lasting Side Effects. 2018. Available online: https://www.ema.europa.eu/en/news/fluoroquinolone-quinolone-antibiotics-prac-recommends-new-restrictions-use-following-review (accessed on 1 February 2023).
- Boissel, J.P.; Nony, P. Using pharmacokinetic-pharmacodynamic relationships to predict the effect of poor compliance. Clin. Pharmacokinet. 2002, 41, 1–6. [Google Scholar] [CrossRef]
- Assawasuwannakit, P.; Braund, R.; Duffull, S.B. Quantification of the Forgiveness of Drugs to Imperfect Adherence. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, e00004. [Google Scholar] [CrossRef]
- Assawasuwannakit, P.; Braund, R.; Duffull, S.B. A framework for quantifying the influence of adherence and dose individualization. Clin. Pharmacol. Ther. 2016, 99, 452–459. [Google Scholar] [CrossRef] [PubMed]
- Osterberg, L.G.; Urquhart, J.; Blaschke, T.F. Understanding forgiveness: Minding and mining the gaps between pharmacokinetics and therapeutics. Clin. Pharmacol. Ther. 2010, 88, 457–459. [Google Scholar] [CrossRef] [PubMed]
- Paintaud, G.; Alvan, G.; Dahl, M.L.; Grahnen, A.; Sjovall, J.; Svensson, J.O. Nonlinearity of amoxicillin absorption kinetics in human. Eur. J. Clin. Pharmacol. 1992, 43, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, A.; Drouguett, M.T.; Fuentes, G.; Gonzalez, G.; Gonzalez, C.; Thambo, S.; Palombo, G. Pharmacokinetics of amoxicillin in subjects with normal and impaired renal function. Int. J. Clin. Pharmacol. Ther. Toxicol. 1982, 20, 447–453. [Google Scholar]
- Zhanel, G.G.; Ennis, K.; Vercaigne, L.; Walkty, A.; Gin, A.S.; Embil, J.; Smith, H.; Hoban, D.J. A critical review of the fluoroquinolones: Focus on respiratory infections. Drugs 2002, 62, 13–59. [Google Scholar] [CrossRef]
- Sjovall, J.; Alvan, G.; Huitfeldt, B. Intra- and inter-individual variation in pharmacokinetics of intravenously infused amoxycillin and ampicillin to elderly volunteers. Br. J. Clin. Pharmacol. 1986, 21, 171–181. [Google Scholar] [CrossRef]
- Preston, S.L.; Drusano, G.L.; Berman, A.L.; Fowler, C.L.; Chow, A.T.; Dornseif, B.; Reichl, V.; Natarajan, J.; Wong, F.A.; Corrado, M. Levofloxacin population pharmacokinetics and creation of a demographic model for prediction of individual drug clearance in patients with serious community-acquired infection. Antimicrob. Agents Chemother. 1998, 42, 1098–1104. [Google Scholar] [CrossRef]
- Grosjean, P.; Urien, S. Reevaluation of moxifloxacin pharmacokinetics and their direct effect on the QT interval. J. Clin. Pharmacol. 2012, 52, 329–338. [Google Scholar] [CrossRef]
- Wright, D.F.B.; Pavan Kumar, V.V.; Al-Sallami, H.S.; Duffull, S.B. The influence of dosing time, variable compliance and circadian low-density lipoprotein production on the effect of simvastatin: Simulations from a pharmacokinetic-pharmacodynamic model. Basic Clin. Pharmacol. Toxicol. 2011, 109, 494–498. [Google Scholar] [CrossRef]
- Hill-McManus, D.; Soto, E.; Marshall, S.; Lane, S.; Hughes, D. Impact of non-adherence on the safety and efficacy of uric acid-lowering therapies in the treatment of gout. Br. J. Clin. Pharmacol. 2018, 84, 142–152. [Google Scholar] [CrossRef]
- Kardas, P. Patient compliance with antibiotic treatment for respiratory tract infections. J. Antimicrob. Chemother. 2002, 49, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Sumi, C.D.; Heffernan, A.J.; Lipman, J.; Roberts, J.A.; Sime, F.B. What Antibiotic Exposures Are Required to Suppress the Emergence of Resistance for Gram-Negative Bacteria? A Systematic Review. Clin. Pharmacokinet. 2019, 58, 1407–1443. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.Q.; Guo, Y.P.; Jiao, Z.; Ding, J.J.; Li, G.F. How to Handle Delayed or Missed Doses: A Population Pharmacokinetic Perspective. Eur. J. Drug Metab. Pharmacokinet. 2020, 45, 163–172. [Google Scholar] [CrossRef]
- Morrison, A.; Stauffer, M.E.; Kaufman, A.S. Relationship Between Adherence Rate Threshold and Drug ‘Forgiveness’. Clin. Pharmacokinet. 2017, 56, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- García, M.T.; Valenzuela, M.V.; Ferrándiz, M.J.; de la Campa, A.G. Reactive Oxygen Species Production Is a Major Factor Directing the Postantibiotic Effect of Fluoroquinolones in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 2019, 63, e00737-19. [Google Scholar] [CrossRef]
- Tandan, M.; Cormican, M.; Vellinga, A. Adverse events of fluoroquinolones vs. other antimicrobials prescribed in primary care: A systematic review and meta-analysis of randomized controlled trials. Int. J. Antimicrob. Agents 2018, 52, 529–540. [Google Scholar] [CrossRef] [PubMed]
- Alves, C.; Mendes, D.; Marques, F.B. Fluoroquinolones and the risk of tendon injury: A systematic review and meta-analysis. Eur. J. Clin. Pharmacol. 2019, 75, 1431–1443. [Google Scholar] [CrossRef]
- de Velde, F.; de Winter, B.C.; Koch, B.C.; van Gelder, T.; Mouton, J.W. COMBACTE-NET Consortium. Non-linear absorption pharmacokinetics of amoxicillin: Consequences for dosing regimens and clinical breakpoints. J. Antimicrob. Chemother. 2016, 71, 2909–2917. [Google Scholar] [CrossRef]
- McAllister, N.P.; Lawley, S.D. A pharmacokinetic and pharmacodynamic analysis of drug forgiveness. J. Pharmacokinet. Pharmacodyn. 2022, 49, 363–379. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. Antimicrobial Wild Type Distribution of Microorganism. Available online: https://www.eucast.org/mic_distributions_and_ecoffs/ (accessed on 1 February 2023).
- Suarez, E.; Carral, N.; Estrade, O.; Jauregizar, N.; Lukas, J.C. How Delayed or Missed Doses Influence Efficacy of Amoxicillin in Outpatients with Community-Acquired Pneumonia: A Pharmacokinet-ic/Pharmacodynamic Simulation Analysis. PAGE 25 (2016) Abstr 5735. Available online: www.page-meeting.org/?abstract=5735 (accessed on 1 February 2022).
- Piotrovskij, V.K.; Paintaud, G.; Alvan, G.; Trnovec, T. Modeling of the saturable time-constrained amoxicillin absorption in humans. Pharm. Res. 1994, 11, 1346–1351. [Google Scholar] [CrossRef]
- Carlier, M.; Noe, M.; De Waele, J.J.; Stove, V.; Verstraete, A.G.; Lipman, J.; Roberts, J.A. Population pharmacokinetics and dosing simulations of amoxicillin/clavulanic acid in critically ill patients. J. Antimicrob. Chemother. 2013, 68, 600–2608. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, A.; Guttmann, J.; Gonzalez, G.; Gonzalez, C. Absorption and disposition kinetics of amoxicillin in normal human subjects. Antimicrob. Agents Chemother. 1980, 17, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Weitschies, W.; Friedrich, C.; Wedemeyer, R.S.; Schmidtmann, M.; Kosch, O.; Kinzig, M.; Trahms, L.; Sörgel, F.; Siegmund, W.; Horkovics-Kovats, S.; et al. Bioavailability of amoxicillin and clavulanic acid from extended release tablets depends on intragastric tablet deposition and gastric emptying. Eur. J. Pharm. Biopharm. 2008, 70, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Asin-Prieto, E.; Rodriguez-Gascon, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Carral, N.; Lukas, J.C.; Oteo, I.; Suarez, E. Impact of poor compliance with levofloxacin and moxifloxacin on respiratory tract infection antimicrobial efficacy: A pharmacokinetic/pharmacodynamic simulation study. Int. J. Antimicrob. Agents 2015, 45, 79–83. [Google Scholar] [CrossRef]
- Bhavnani, S.M.; Forrest, A.; Hammel, J.P.; Drusano, G.L.; Rubino, C.M.; Ambrose, P.G. Pharmacokinetics-pharmacodynamics of quinolones against Streptococcus pneumoniae in patients with community-acquired pneumonia. Diagn. Microbiol. Infect. Dis. 2008, 62, 99–101. [Google Scholar] [CrossRef]
AMOX | Subgroups of adults patients according CLCR (mL/min) | % PTA of fT50% ≥ MIC0.064mg/mL in PHS subgroup with delayed dose | % PTA of fT50% ≥ MIC1mg/mL in PLS subgroup with delayed dose | |||||||||
Adhe rence | Delayed time | A missed dose (8 h) | Adhe rence | Delayed time | A missed dose (8 h) | |||||||
6 h | 7 h | 1 h | 2 h | 3 h | 4 h | 5 h | ||||||
CLCR = 131 | 100 | 99 | 89 | 66 | 86 | 59 | 30 | 20 | 7 | 3 | 0 | |
CLCR = 100 | 100 | 100 | 99 | 98 | 99 | 93 | 76 | 52 | 41 | 23 | 6 | |
CLCR = 70 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 93 | 86 | 53 | |
LFX | Subgroups of adults patients according CLCR (mL/min) | % PTA of fAUC0–24h/MIC0.064mg/mL in PHS subgroup with delayed dose | % PTA of fAUC0–24h/MIC1mg/mL in PLS subgroup with delayed dose | |||||||||
Adhe rence | Delayed time | A missed dose (24 h) | Adhe rence | Delayed time | A missed dose (24 h) | |||||||
≥12 h | ≥6 h | 8 h | 12 h | 14 h | ||||||||
CLCR = 131 | 100 | 100 | 100 | 100 | 100 | 76 | 62 | 53 | 0 | |||
CLCR = 100 | 100 | 100 | 100 | 100 | 100 | 100 | 93 | 71 | 0 | |||
CLCR = 70 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | |||
MOX | Subgroups of adults patients according CLCR (mL/min) | % PTA of fAUC0–24h/MIC0.064mg/mL in PHS subgroup with delayed dose | % PTA of fAUC0–24h/MIC0.25mg/mL in PLS subgroup with delayed dose | |||||||||
Adhe rence | Delayed time | A missed dose (24 h) | Adhe rence | Delayed time | A missed dose (24 h) | |||||||
≥12 h | 1 h | 4 h | 6 h | 12 h | 14 h | |||||||
CLCR = 70–131 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carral, N.; Lukas, J.C.; Estradé, O.; Jauregizar, N.; Morillas, H.; Suárez, E. Non-Adherence in Adult Male Patients with Community-Acquired Pneumonia: Relative Forgiveness of Amoxicillin versus Respiratory Fluoroquinolones. Antibiotics 2023, 12, 838. https://doi.org/10.3390/antibiotics12050838
Carral N, Lukas JC, Estradé O, Jauregizar N, Morillas H, Suárez E. Non-Adherence in Adult Male Patients with Community-Acquired Pneumonia: Relative Forgiveness of Amoxicillin versus Respiratory Fluoroquinolones. Antibiotics. 2023; 12(5):838. https://doi.org/10.3390/antibiotics12050838
Chicago/Turabian StyleCarral, Nerea, John C. Lukas, Oskar Estradé, Nerea Jauregizar, Héctor Morillas, and Elena Suárez. 2023. "Non-Adherence in Adult Male Patients with Community-Acquired Pneumonia: Relative Forgiveness of Amoxicillin versus Respiratory Fluoroquinolones" Antibiotics 12, no. 5: 838. https://doi.org/10.3390/antibiotics12050838
APA StyleCarral, N., Lukas, J. C., Estradé, O., Jauregizar, N., Morillas, H., & Suárez, E. (2023). Non-Adherence in Adult Male Patients with Community-Acquired Pneumonia: Relative Forgiveness of Amoxicillin versus Respiratory Fluoroquinolones. Antibiotics, 12(5), 838. https://doi.org/10.3390/antibiotics12050838