Do Patients’ Psychosocial Characteristics Impact Antibiotic Prescription Rates?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO Ten Threats to Global Health in 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 28 March 2023).
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- King, L.C.M.; Fleming-Dutra, K.E.; Hicks, L.A. Advances in Optimizing the Prescription of Antibiotics in Outpatient Settings. BMJ 2018, 363, k3047. [Google Scholar] [CrossRef] [PubMed]
- Van Der Zande, M.M.; Dembinsky, M.; Aresi, G.; Van Staa, T.P. General Practitioners’ Accounts of Negotiating Antibiotic Prescribing Decisions with Patients: A Qualitative Study on What Influences Antibiotic Prescribing in Low, Medium and High Prescribing Practices. BMC Fam. Pract. 2019, 20, 172. [Google Scholar] [CrossRef] [PubMed]
- Macfarlane, J.; Holmes, W.; Macfarlane, R.; Britten, N. Influence of Patients’ Expectations on Antibiotic Management of Acute Lower Respiratory Tract Illness in General Practice: Questionnaire Study. Br. Med. J. 1997, 315, 1211–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teixeira Rodrigues, A.; Roque, F.; Falcão, A.; Figueiras, A.; Herdeiro, M.T. Understanding Physician Antibiotic Prescribing Behaviour: A Systematic Review of Qualitative Studies. Int. J. Antimicrob. Agents 2013, 41, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Vazquez, P.; Vazquez-Lago, J.M.; Figueiras, A. Misprescription of Antibiotics in Primary Care: A Critical Systematic Review of Its Determinants. J. Eval. Clin. Pract. 2012, 18, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Pinder, R.; Sallis, A.; Berry, D.; Chadborn, T. Behaviour Change and Antibiotic Prescribing in Healthcare Settings; Public Health England: London, UK, 2015.
- Colliers, A.; Bombeke, K.; Philips, H.; Remmen, R.; Coenen, S.; Anthierens, S. Antibiotic Prescribing and Doctor-Patient Communication during Consultations for Respiratory Tract Infections: A Video Observation Study in Out-of-Hours Primary Care. Front. Med. 2021, 8, 735276. [Google Scholar] [CrossRef]
- Rodrigues, A.T.; Ferreira, M.; Piñeiro-Lamas, M.; Falcão, A.; Figueiras, A.; Herdeiro, M.T. Determinants of Physician Antibiotic Prescribing Behavior: A 3 Year Cohort Study in Portugal. Curr. Med. Res. Opin. 2016, 32, 949–957. [Google Scholar] [CrossRef]
- McKay, R.; Mah, A.; Law, M.R.; McGrail, K.; Patrick, D.M. Systematic Review of Factors Associated with Antibiotic Prescribing for Respiratory Tract Infections. Antimicrob. Agents Chemother. 2016, 60, 4106–4118. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.Y.; Seed, P.; Schofield, P.; Ibrahim, S.; Ashworth, M. Which Practices Are High Antibiotic Prescribers? A Cross-Sectional Analysis. Br. J. Gen. Pract. 2009, 59, 724–727. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, G.V.; Roberts, R.M.; Albert, A.P.; Johnson, D.D.; Hicks, L.A. Effects of Knowledge, Attitudes, and Practices of Primary Care Providers on Antibiotic Selection, United States. Emerg. Infect. Dis. 2014, 20, 2041–2047. [Google Scholar] [CrossRef] [PubMed]
- Kianmehr, H.; Sabounchi, N.S.; Sabounchi, S.S.; Cosler, L.E. A System Dynamics Model of Infection Risk, Expectations, and Perceptions on Antibiotic Prescribing in the United States. J. Eval. Clin. Pract. 2020, 26, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Huh, K.; Chung, D.R.; Kim, S.H.; Cho, S.Y.; Ha, Y.E.; Kang, C.I.; Peck, K.R.; Song, J.H. Factors Affecting the Public Awareness and Behavior on Antibiotic Use. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Gaarslev, C.; Yee, M.; Chan, G.; Fletcher-Lartey, S.; Khan, R. A Mixed Methods Study to Understand Patient Expectations for Antibiotics for an Upper Respiratory Tract Infection. Antimicrob. Resist. Infect. Control 2016, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kianmehr, H.; Sabounchi, N.S.; Seyedzadeh Sabounchi, S.; Cosler, L.E. Patient Expectation Trends on Receiving Antibiotic Prescriptions for Respiratory Tract Infections: A Systematic Review and Meta-Regression Analysis. Int. J. Clin. Pract. 2019, 73, e13360. [Google Scholar] [CrossRef] [PubMed]
- Barefoot, J.; Dodge, K.; Peterson, B.; Dahlstrom, W.; Williams, R.J. The Cook-Medley Hostility Scale: Item Content and Ability to Predict Survival. Psychosom Med. 1989, 51, 46–57. [Google Scholar] [CrossRef]
- Everson, S.A.; Kauhanen, J.; Kaplan, G.A.; Goldberg, D.E.; Julkunen, J.; Tuomilehto, J.; Salonen, J.T. Hostility and Increased Risk of Mortality and Acute Myocardial Infarction: The Mediating Role of Behavioral Risk Factors. Am. J. Epidemiol. 1997, 146, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Koivumaa-Honkanen, H.; Honkanen, R.; Viinamäki, H.; Heikkilä, K.; Kaprio, J.; Koskenvuo, M. Self-Reported Life Satisfaction and 20-Year Mortality in Healthy Finnish Adults. Am. J. Epidemiol. 2000, 152, 983–991. [Google Scholar] [CrossRef] [Green Version]
- Allardt, E. Dimensions of Welfare in a Comparative Scandinavian study. Acta Sociol. 1976, 19, 227–239. [Google Scholar] [CrossRef]
- Scheier, M.F.; Carver, C.S.; Bridges, M.W. Distinguishing Optimism from Neuroticism (and Trait Anxiety, Self-Mastery, and Self-Esteem): A Re-Evaluation of the Life Orientation Test. J. Pers. Soc. Psychol. 1994, 67, 1063–1078. [Google Scholar] [CrossRef]
- Antonovsky, A. Unraveling the Mystery of Health. How People Manage Stress and Stay Well; Jossey-Bass: San Francisco, CA, USA, 1987. [Google Scholar]
- Eriksson, M.; Lindström, B. Validity of Antonovsky’s Sense of Coherence Scale: A Systematic Review. J. Epidemiol. Community Health 2005, 59, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, C.; Smith, G.D.; Wadsworth, E.; Sterne, J.A.C.; Heslop, P.; Macleod, J.; Smith, A. A Contemporary Validation of the Reeder Stress Inventory. Br. J. Health Psychol. 2003, 8, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Stenlund, S.; Koivumaa-Honkanen, H.; Sillanmäki, L.; Lagström, H.; Rautava, P.; Suominen, S. Health Behavior of Working-Aged Finns Predicts Self-Reported Life Satisfaction in a Population-Based 9-Years Follow-Up. BMC Public Health 2021, 21, 1815. [Google Scholar] [CrossRef] [PubMed]
- Muthén, L.; Muthén, B. Mplus User’s Guide, 7th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2012; ISBN 4065562481. [Google Scholar]
- Hu, L.T.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Bentler, P.M.; Bonett, D.G. Significance Tests an Goodness of Fit in the Analysis of Covariance Structures. Psychol. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Kohut, M.R.; Keller, S.C.; Linder, J.A.; Tamma, P.D.; Cosgrove, S.E.; Speck, K.; Ahn, R.; Dullabh, P.; Miller, M.A.; Szymczak, J.E. The Inconvincible Patient: How Clinicians Perceive Demand for Antibiotics in the Outpatient Setting. Fam. Pract. 2020, 37, 276–282. [Google Scholar] [CrossRef]
- FINLEX Act on the Status and Rights of Patients. Available online: https://finlex.fi/en/laki/kaannokset/1992/en19920785 (accessed on 1 March 2023).
- Gong, C.L.; Zangwill, K.M.; Hay, J.W.; Meeker, D.; Doctor, J.N. Behavioral Economics Interventions to Improve Outpatient Antibiotic Prescribing for Acute Respiratory Infections: A Cost-Effectiveness Analysis. J. Gen. Intern. Med. 2019, 34, 846–854. [Google Scholar] [CrossRef] [Green Version]
- Davey, P.; Scott, C.L.; Brown, E.; Charani, E.; Michie, S.; Ramsay, C.R.; Marwick, C.A. Interventions to Improve Antibiotic Prescribing Practices for Hospital Inpatients (Updated Protocol). Cochrane Database Syst. Rev. 2017, 2017, 1–326. [Google Scholar] [CrossRef]
- Cummings, P.L.; Alajajian, R.; May, L.S.; Grant, R.; Greer, H.; Sontz, J.; Dezfuli, M. Utilizing Behavioral Science to Improve Antibiotic Prescribing in Rural Urgent Care Settings. Open Forum Infect. Dis. 2020, 7, ofaa174. [Google Scholar] [CrossRef]
- Rautakorpi, U.-M.; Nyberg, S.; Honkanen, P.; Klaukka, T.; Liira, H.; Makela, M.; Palva, E.; Roine, R.; Sarkkinen, H.; Huovinen, P. Management of Infection in Patients in Health Centres—Final Report of the MIKSTRA Programme; National Institute for Health and Welfare: Helsinki, Finland, 2009; ISBN 9789522453730. [Google Scholar]
- WHO. Global Action Plan on Antimicrobial Resistance; World Health Organization (WHO): Geneva, Switzerland, 2015. [Google Scholar]
- Korkeila, K.; Suominen, S.; Ahvenainen, J.; Ojanlatva, A.; Rautava, P.; Helenius, H.; Koskenvuo, M. Non-Response and Related Factors in a Nation-Wide Health Survey. Eur. J. Epidemiol. 2001, 17, 991–999. [Google Scholar] [CrossRef]
- Suominen, S.; Koskenvuo, K.; Sillanmäki, L.; Vahtera, J.; Korkeila, K.; Kivimäki, M.; Mattila, K.J.; Virtanen, P.; Sumanen, M.; Ivi Rautava, P.; et al. Non-Response in a Nationwide Follow-up Postal Survey in Finland: A Register-Based Mortality Analysis of Respondents and Non-Respondents of the Health and Social Support (HeSSup) Study. BMJ Open 2012, 2, e000657. [Google Scholar] [CrossRef] [PubMed]
- Boiko, O.; Gulliford, M.C.; Burgess, C. Revisiting Patient Expectations and Experiences of Antibiotics in an Era of Antimicrobial Resistance: Qualitative Study. Health Expect. 2020, 23, 1250–1258. [Google Scholar] [CrossRef] [PubMed]
Variable | Categories | Share of the Study Population, % (n) | Number of Antibiotic Prescriptions 2004–2006, Mean (SD) | Tendency to Use Healthcare (SD) |
---|---|---|---|---|
Whole sample | 19,626 (100%) | 2.48 (2.3) | 1.74 (1.0) | |
Age (2003) | 25–29 | 4889 (24.9%) | 2.38 (1.93) | 1.69 (0.99) |
35–39 | 4437 (22.6%) | 2.51 (2.28) | 1.71 (1.00) | |
45–49 | 4889 (24.9%) | 2.48 (2.21) | 1.72 (1.00) | |
55–59 | 5411 (27.6%) | 2.56 (2.72) | 1.83 (1.00) | |
Gender | Male | 7568 (38.6%) | 2.25 (2.13) | 1.58 (1.03) |
Female | 12,058 (61.4%) | 2.59 (2.39) | 1.84 (0.95) | |
Educational level (2003) | No professional education | 2431 (12.4%) | 2.50 (2.35) | 1.83 (0.99) |
Vocational school | 5944 (30.3%) | 2.47 (2.35) | 1.75 (1.00) | |
College | 7497 (38.2%) | 2.51 (2.29) | 1.74 (0.98) | |
University | 3635 (18.5%) | 2.37 (2.20) | 1.66 (0.97) | |
Number of chronic diseases (2003) | 0 | 3720 (19.0%) | 2.01 (1.59) | 1.29 (0.98) |
1 | 4637 (23.6%) | 2.19 (1.91) | 1.51 (0.97) | |
2 | 3953 (20.1%) | 2.39 (2.01) | 1.73 (0.95) | |
3 more | 7194 (36.6%) | 2.82 (2.73) | 2.13 (0.87) | |
Number of regular medications (2003) | 0 | 13,566 (69.1%) | 2.26 (1.88) | 1.58 (1.00) |
1 | 3757 (19.1%) | 2.71 (2.46) | 2.00 (0.88) | |
2 or more | 2223 (11.3%) | 3.11 (3.41) | 2.30 (0.78) | |
NYHA classification | 0 | 12,951 (66.0%) | 2.33 (2.02) | 1.64 (0.99) |
1 | 4913 (25.0%) | 2.46 (2.34) | 1.87 (0.96) | |
2 | 1207 (6.1%) | 2.98 (3.17) | 2.19 (0.88) | |
3 | 176 (0.9%) | 3.55 (4.00) | 2.26 (0.90) | |
4 | 230 (1.2%) | 3.82 (4.11) | 2.26 (0.86) | |
Life satisfaction (2003) | Satisfied (score 4–6) | 4732 (24.1%) | 2.45 (2.14) | 1.61 (0.97) |
Intermediate (7–11) | 11,026 (56.2%) | 2.44 (2.29) | 1.73 (0.98) | |
Dissatisfied (12–20) | 3674 (18.7%) | 2.60 (2.50) | 1.90 (1.00) | |
Sense of coherence | High coherence | 4763 (24.3%) | 2.37 (2.12) | 1.56 (0.98) |
Intermediate | 9904 (50.5%) | 2.47 (2.37) | 1.73 (0.98) | |
Low coherence | 4875 (24.8%) | 2.59 (2.31) | 1.92 (0.98) | |
Experienced stress | Little stress (score > 16) | 5309 (27.0%) | 2.43 (2.18) | 1.63 (0.99) |
Intermediate (13–16) | 9635 (49.1%) | 2.43 (2.30) | 1.72 (0.98) | |
Much stress (score < 13) | 4419 (22.5%) | 2.60 (2.41) | 1.93 (0.97) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stenlund, S.; Mâsse, L.C.; Stenlund, D.; Sillanmäki, L.; Appelt, K.C.; Koivumaa-Honkanen, H.; Rautava, P.; Suominen, S.; Patrick, D.M. Do Patients’ Psychosocial Characteristics Impact Antibiotic Prescription Rates? Antibiotics 2023, 12, 1022. https://doi.org/10.3390/antibiotics12061022
Stenlund S, Mâsse LC, Stenlund D, Sillanmäki L, Appelt KC, Koivumaa-Honkanen H, Rautava P, Suominen S, Patrick DM. Do Patients’ Psychosocial Characteristics Impact Antibiotic Prescription Rates? Antibiotics. 2023; 12(6):1022. https://doi.org/10.3390/antibiotics12061022
Chicago/Turabian StyleStenlund, Säde, Louise C. Mâsse, David Stenlund, Lauri Sillanmäki, Kirstin C. Appelt, Heli Koivumaa-Honkanen, Päivi Rautava, Sakari Suominen, and David M. Patrick. 2023. "Do Patients’ Psychosocial Characteristics Impact Antibiotic Prescription Rates?" Antibiotics 12, no. 6: 1022. https://doi.org/10.3390/antibiotics12061022
APA StyleStenlund, S., Mâsse, L. C., Stenlund, D., Sillanmäki, L., Appelt, K. C., Koivumaa-Honkanen, H., Rautava, P., Suominen, S., & Patrick, D. M. (2023). Do Patients’ Psychosocial Characteristics Impact Antibiotic Prescription Rates? Antibiotics, 12(6), 1022. https://doi.org/10.3390/antibiotics12061022