Antimycobacterial Activity of Hedeoma drummondii against Mycobacterium tuberculosis and Non-Tuberculous Mycobacteria
Abstract
:1. Introduction
2. Results
2.1. Determination of MIC in M. tuberculosis
2.2. Determination of MIC in NTM
2.3. Pearson Correlation
3. Discussion
4. Materials and Methods
4.1. Extraction and Isolation
4.2. Mycobacterial Strains and Culture Conditions
4.3. Determination of the Minimum Inhibitory Concentration (MIC)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, H.S.; Baker, D.H.A. Recent Challenges in Tuberculosis Treatments: A Review. Plant Arch. 2020, 20, 3539–3547. [Google Scholar]
- Baptista, R.; Bhowmick, S.; Shen, J.; Mur, L.A.J. Molecular Docking Suggests the Targets of Anti-Mycobacterial Natural Products. Molecules 2021, 26, 475. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, M.C.; Clavera, I.; Michel de la Rosa, F.J.; Marín, B. Epidemiología de La Tuberculosis. An. Sist. Sanit. Navar. 2007, 30, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Mazlun, M.H.; Sabran, S.F.; Mohamed, M.; Abu Bakar, M.F.; Abdullah, Z. Phenolic Compounds as Promising Drug Candidates in Tuberculosis Therapy. Molecules 2019, 24, 2449. [Google Scholar] [CrossRef]
- To, K.; Cao, R.; Yegiazaryan, A.; Owens, J.; Venketaraman, V. General Overview of Nontuberculous Mycobacteria Opportunistic Pathogens: Mycobacterium avium and Mycobacterium abscessus. J. Clin. Med. 2020, 9, 2541. [Google Scholar] [CrossRef] [PubMed]
- Loddenkemper, R.; Lipman, M.; Zumla, A. Clinical Aspects of Adult Tuberculosis. Cold Spring Harb. Perspect. Med. 2016, 6, 17848. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An Official ATS/IDSA Statement: Diagnosis, Treatment, and Prevention of Nontuberculous Mycobacterial Diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef]
- Bento, C.M.; Gomes, M.S.; Silva, T. Looking beyond Typical Treatments for Atypical Mycobacteria. Antibiotics 2020, 9, 18. [Google Scholar] [CrossRef]
- Zambrano-Intriago, L.F.; Buenaño-Allauca, M.P.; Mancera-Rodríguez, N.J.; Jiménez-Romero, E. Estudio Etnobotánico de Plantas Medicinales Utilizadas Por Los Habitantes Del Área Rural de La Parroquia San Carlos, Quevedo, Ecuador. Univ. Y Salud 2015, 17, 97–111. [Google Scholar]
- Gallegos-Zurita, M. Las Plantas Medicinales: Principal Alternativa Para El Cuidado de La Salud, En La Población Rural de Babahoyo, Ecuador. An. Fac. Med. 2016, 77, 327. [Google Scholar] [CrossRef]
- Macouzet, M.V.; Estrada, E.; Jiménez, J.; José Angel, V.; Herrera, M.C. Plantas Medicinales de Miquihuana, Tamaulipas, 1st ed.; Universidad Autónoma de Nuevo León: Monterrey, Mexico, 2013; pp. 11–13. [Google Scholar]
- Vestal, P.A. The Ethnobotany of the Ramah Navaho, 4th ed.; Papers of the Peabody Museum of American Archeology and Ethnology: Cambridge, MA, USA, 1952; p. 94. [Google Scholar]
- Estrada, E.; Villarreal, J.A.; Cantú, C.; Cabral, I.; Scout, L.; Yen, C. Ethnobotany in the Cumbres de Monterrey National Park, Nuevo León, Mexico. J. Ethnobiol. Ethnomed. 2007, 3, 8. [Google Scholar] [CrossRef] [PubMed]
- Tovar, J.C. Composición Química, Actividad Antibacteriana y Tóxica de Aceites Esenciales de Seis Especies Medicinales de Lamiaceae en El Estado de Hidalgo. Licentiate Thesis, Universidad Autónoma del Estado de Hidalgo, Pachuca, Mexico, 2007. [Google Scholar]
- Viveros-Valdez, E.; Rivas-Morales, C.; Oranday-Cárdenas, A.; Verde-Star, M.J.; Carranza-Rosales, P. Antimicrobial Activity of Hedeoma drummondii against Opportunistic Pathogens. Pakistan J. Biol. Sci. 2011, 14, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Stéphane, F.F.; Jules, B.K.; Batiha, G.E.; Ali, I.; Bruno, L.N. Extraction of Bioactive Compounds from Medicinal Plants and Herbs. In Natural Medicine Plants, 1st ed.; El-Shemy, H., Ed.; IntechOpen: London, UK, 2021; Volume 1, p. 147. [Google Scholar]
- Kahaliw, W.; Aseffa, A.; Abebe, M.; Teferi, M.; Engidawork, E. Evaluation of the Antimycobacterial Activity of Crude Extracts and Solvent Fractions of Selected Ethiopian Medicinal Plants. BMC Complement. Altern. Med. 2017, 17, 143. [Google Scholar] [CrossRef] [PubMed]
- Chae, H.; Shin, S.J. Importance of Differential Identification of Mycobacterium Tuberculosis Strains for Understanding Differences in Their Prevalence, Treatment Efficacy, and Vaccine Development. J. Microbiol. 2018, 56, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Viveros-Valdez, E.; Rivas-Morales, C.; Carranza-Rosales, P.; Mendoza, S.; Schmeda-Hirschmann, G. Free Radical Scavengers from the Mexican Herbal Tea “Poleo” (Hedeoma drummondii). Z. Für Naturforsch. C 2008, 63, 341–346. [Google Scholar] [CrossRef]
- Viveros-Valdez, E.; Rivas-Morales, C.; Oranday-Cárdenas, A.; Castro-Garza, J.; Carranza-Rosales, P. Antiproliferative Effect from the Mexican Poleo (Hedeoma drummondii). J. Med. Food 2010, 13, 740–742. [Google Scholar] [CrossRef] [PubMed]
- Getahun, M.; Blumberg, H.M.; Ameni, G.; Beyene, D.; Kempker, R.R. Minimum Inhibitory Concentrations of Rifampin and Isoniazid among Multidrug and Isoniazid Resistant Mycobacterium tuberculosis in Ethiopia. PLoS ONE 2022, 17, e0274426. [Google Scholar] [CrossRef] [PubMed]
- Rabaan, A.A.; Alhumaid, S.; Albayat, H.; Alsaeed, M.; Alofi, F.S.; Al-Howaidi, M.H.; Turkistani, S.A.; Alhajri, S.M.; Alahmed, H.E.; Alzahrani, A.B.; et al. Promising Antimycobacterial Activities of Flavonoids against Mycobacterium sp. Drug Targets: A Comprehensive Review. Molecules 2022, 27, 5335. [Google Scholar] [CrossRef]
- Dey, D.; Ray, R.; Hazra, B. Antimicrobial Activity of Pomegranate Fruit Constituents against Drug-Resistant Mycobacterium tuberculosis and β -Lactamase Producing Klebsiella pneumoniae. Pharm. Biol. 2015, 53, 1474–1480. [Google Scholar] [CrossRef]
- Fu, J.; He, Z.; Fu, H.; Xia, Y.; N’Go, I.; Lou, H.; Wu, J.; Pan, W.; Vincent, S.P. Synthesis and Evaluation of Inhibitors of Mycobacterium tuberculosis UGM Using Bioisosteric Replacement. Bioorg. Med. Chem. 2022, 69, 116896. [Google Scholar] [CrossRef]
- Razaviamri, S.; Wang, K.; Liu, B.; Lee, B.P. Catechol-Based Antimicrobial Polymers. Molecules 2021, 26, 559. [Google Scholar] [CrossRef] [PubMed]
- Peruč, D.; Gobin, I.; Abram, M.; Broznić, D.; Svalina, T.; Štifter, S.; Staver, M.M.; Tićac, B. Antimycobacterial Potential of the Juniper Berry Essential Oil in Tap Water. Arh. Hig. Rada Toksikol. 2018, 69, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Arellanes, A.; Luna-Herrera, J.; Ruiz-Nicolás, R.; Cornejo-Garrido, J.; Tapia, A.; Yépez-Mulia, L. Antiprotozoal and Antimycobacterial Activities of Persea americana Seeds. BMC Complement. Altern. Med. 2013, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Gordien, A.Y.; Gray, A.I.; Franzblau, S.G.; Seidel, V. Antimycobacterial Terpenoids from Juniperus communis L. (Cuppressaceae). J. Ethnopharmacol. 2009, 126, 500–505. [Google Scholar] [CrossRef]
- Tran, T.; Bonham, A.J.; Chan, E.D.; Honda, J.R. A Paucity of Knowledge Regarding Nontuberculous Mycobacterial Lipids Compared to the Tubercle Bacillus. Tuberculosis 2019, 115, 96–107. [Google Scholar] [CrossRef]
- Schorey, J.S.; Sweet, L. The Mycobacterial Glycopeptidolipids: Structure, Function, and Their Role in Pathogenesis. Glycobiology 2008, 18, 832–841. [Google Scholar] [CrossRef] [PubMed]
- Polyudova, T.V.; Eroshenko, D.V.; Pimenova, E.V. The Biofilm Formation of Nontuberculous Mycobacteria and Its Inhibition by Essential Oils. Int. J. Mycobacteriol. 2021, 10, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Di Giulio, M.; Ginestra, G.; Magi, G.; Di Lodovico, S.; Marino, A.; Facinelli, B.; Cellini, L.; Nostro, A. Efficacy of Carvacrol against Resistant Rapidly Growing Mycobacteria in the Planktonic and Biofilm Growth Mode. PLoS ONE 2019, 14, e0219038. [Google Scholar] [CrossRef]
- Almeida, A.L.; Caleffi-Ferracioli, K.R.; de L Scodro, R.B.; Baldin, V.P.; Montaholi, D.C.; Spricigo, L.F.; Nakamura-Vasconcelos, S.S.; Hegeto, L.A.; Sampiron, E.G.; Costacurta, G.F.; et al. Eugenol and Derivatives Activity against Mycobacterium tuberculosis, Nontuberculous Mycobacteria and Other Bacteria. Future Microbiol. 2019, 14, 331–344. [Google Scholar] [CrossRef]
- Bueno-Sánchez, J.G.; Martínez-Morales, J.R.; Stashenko, E. Actividad Antimicobacteriana de Terpenos. Rev. La Univ. Ind. Santander. Salud 2009, 41, 231–235. [Google Scholar]
- Wang, D.; Le, X.H.; Luque, A.E. Identifying Effective Approaches for Dissemination of Clinical Evidence--Correlation Analyses on Promotional Activities and Usage of a Guideline-Driven Interactive Case Simulation Tool in a Statewide HIV-HCV-STD Clinical Education Program. Stud. Health Technol. Inform. 2015, 216, 515–519. [Google Scholar]
- Muflihah, Y.M.; Gollavelli, G.; Ling, Y.-C. Correlation Study of Antioxidant Activity with Phenolic and Flavonoid Compounds in 12 Indonesian Indigenous Herbs. Antioxidants 2021, 10, 1530. [Google Scholar] [CrossRef]
- Skrypnik, L.; Golovin, A.; Savina, T. Effect of Salicylic Acid on Phenolic Compounds, Antioxidant and Antihyperglycemic Activity of Lamiaceae Plants Grown in a Temperate Climate. Front. Biosci. 2022, 14, 3. [Google Scholar] [CrossRef]
- Willcox, M.L.; Graz, B.; Falquet, J.; Diakite, C.; Giani, S.; Diallo, D. A “Reverse Pharmacology” Approach for Developing an Anti-Malarial Phytomedicine. Malar. J. 2011, 10, S8. [Google Scholar] [CrossRef] [PubMed]
- Clinical & Laboratory Standards Institute. Susceptibility Testing of Mycobacteria, Nocardia Spp., and Other Aerobic Actinomycetes, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; pp. 13–40. [Google Scholar]
- Martin, A.; Portaels, F.; Palomino, J.C. Colorimetric Redox-Indicator Methods for the Rapid Detection of Multidrug Resistance in Mycobacterium tuberculosis: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2007, 59, 175–183. [Google Scholar] [CrossRef]
- Collins, L.; Franzblau, S.G. Microplate Alamar Blue Assay versus BACTEC 460 System for High-Throughput Screening of Compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob. Agents Chemother. 1997, 41, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, X.; Jin, J.; Wu, J.; Zhang, X.; Chen, J.; Zhang, W. In vitro Susceptibility of Mycobacterium abscessus and Mycobacterium fortuitum Isolates to 30 Antibiotics. Biomed. Res. Int. 2018, 2018, 4902941. [Google Scholar] [CrossRef] [PubMed]
M. tuberculosis Strains | HexEx | MetEx | Pulegone | RosAc | CafAc | * Rifampicin |
---|---|---|---|---|---|---|
HU-LIID 159 | 312.5 | 625 | 500 | 500 | 500 | 16 |
HU-LIID 386-98 | 625 | 1250 | >500 | >500 | >500 | 32 |
HU-LIID 41-99 | >2500 | >2500 | 500 | >500 | >500 | 16 |
HU-LIID 90-99 | 2500 | 156.25 | 125 | 250 | 125 | 8 |
HU-LIID C-131 | >2500 | 625 | 500 | 500 | 500 | 16 |
HU-LIID 428-98 | 1250 | >2500 | 125 | >500 | >500 | 32 |
HU-LIID F-353 | 1250 | 312.5 | 250 | 250 | 250 | 16 |
HU-LIID 434-98 | 2500 | 1250 | 500 | 125 | 125 | 8 |
HU-LIID 168-99 | 1250 | 19.53 | 250 | 125 | 125 | 8 |
HU-LIID 142-99 | 1250 | 19.53 | 500 | 125 | 125 | 8 |
HU-LIID 376-98 | 1250 | 39.06 | 500 | 125 | 250 | 4 |
ATCC H37Rv | 156.25 | 625 | 500 | 500 | 250 | 2 |
Mycobacterium Strains | HexEx | MetEx | Pulegone | RosAc | CafAc | * Linezolid | * Imipenem |
---|---|---|---|---|---|---|---|
M. abscessus 139-10 | 312.5 | 78.125 | 15.625 | 250 | 250 | 4 | 4 |
M. abscessus LMMP | 39.06 | 312.5 | 15.625 | 250 | 125 | 4 | 4 |
M. abscessus MNT2 | 625 | >2500 | 62.5 | 250 | > 500 | 2 | 16 |
M. fortuitum 430R | >2500 | 312.5 | 500 | >500 | >500 | 32 | 4 |
M. fortuitum MLIID1 | >2500 | 312.5 | >500 | >500 | >500 | 32 | 8 |
M. intracellulare 989-3 | 78.125 | 625 | 250 | 250 | 250 | 8 | 8 |
M. intracellulare 142-09 | 156.25 | >2500 | 250 | 250 | 125 | 16 | 32 |
M. intracellulare 1105-1 | 78.125 | >2500 | >500 | > 500 | 500 | 32 | 16 |
M. gordonae 621R | 312.5 | >2500 | 250 | > 500 | 250 | 8 | 16 |
M. gordonae A702 | 156.25 | 312.5 | 31.25 | 250 | 250 | 8 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molina-Torres, C.; Pedraza-Rodríguez, C.; Vera-Cabrera, L.; Ocampo-Candiani, J.; Rivas-Morales, C.; Viveros-Valdez, E. Antimycobacterial Activity of Hedeoma drummondii against Mycobacterium tuberculosis and Non-Tuberculous Mycobacteria. Antibiotics 2023, 12, 833. https://doi.org/10.3390/antibiotics12050833
Molina-Torres C, Pedraza-Rodríguez C, Vera-Cabrera L, Ocampo-Candiani J, Rivas-Morales C, Viveros-Valdez E. Antimycobacterial Activity of Hedeoma drummondii against Mycobacterium tuberculosis and Non-Tuberculous Mycobacteria. Antibiotics. 2023; 12(5):833. https://doi.org/10.3390/antibiotics12050833
Chicago/Turabian StyleMolina-Torres, Carmen, Carlos Pedraza-Rodríguez, Lucio Vera-Cabrera, Jorge Ocampo-Candiani, Catalina Rivas-Morales, and Ezequiel Viveros-Valdez. 2023. "Antimycobacterial Activity of Hedeoma drummondii against Mycobacterium tuberculosis and Non-Tuberculous Mycobacteria" Antibiotics 12, no. 5: 833. https://doi.org/10.3390/antibiotics12050833
APA StyleMolina-Torres, C., Pedraza-Rodríguez, C., Vera-Cabrera, L., Ocampo-Candiani, J., Rivas-Morales, C., & Viveros-Valdez, E. (2023). Antimycobacterial Activity of Hedeoma drummondii against Mycobacterium tuberculosis and Non-Tuberculous Mycobacteria. Antibiotics, 12(5), 833. https://doi.org/10.3390/antibiotics12050833