New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA)
Abstract
:1. Introduction
2. Cephalosporins
2.1. Ceftobiprole
2.2. Ceftaroline
3. Glycopeptides
4. Oxazolidinones
5. Tetracyclines
6. Quinolones
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sivaraman, K.; Venkataraman, N.; Cole, A.M. Staphylococcus aureus nasal carriage and its contributing factors. Future Microbiol. 2009, 4, 999–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, S.; Terranova, L.; Zampiero, A.; Ierardi, V.; Rios, W.P.; Pelucchi, C.; Principi, N. Oropharyngeal and nasal Staphylococcus aureus carriage by healthy children. BMC Infect. Dis. 2014, 14, 723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, A.M.; Tahk, S.; Oren, A.; Yoshioka, D.; YH, K.; Park, A.; Ganz, T. Determinants of Staphylococcus aureus nasal carriage. Clin. Diagn. Lab. Immunol. 2001, 8, 1064–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nouwen, J.; Boelens, H.; van Belkum, A.; Verbrugh, H. Human factor in Staphylococcus aureus nasal carriage. Infect. Immun. 2004, 72, 6685–6688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G., Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.E.; Dancer, S.J. Dynamic Transmission of Staphylococcus Aureus in the Intensive Care Unit. Int. J. Environ. Res. Public Health 2020, 17, 2109. [Google Scholar] [CrossRef] [Green Version]
- Rammelkamp, M. Resistances of Staphylococcus aureus to the action of penicillin. Proc. Soc. Exp. Biol. Med. 1942, 51, 386–389. [Google Scholar] [CrossRef]
- Finland, M. Emergence of antibiotic-resistant bacteria. N. Engl. J. Med. 1955, 253, 909–922. [Google Scholar] [CrossRef]
- Barber, M.; Rozwadowska-Dowzenko, M. Infection by penicillin-resistant staphylococci. Lancet 1948, 2, 641–644. [Google Scholar] [CrossRef]
- Jessen, O.; Rosendal, K.; Bulow, P.; Faber, V.; Eriksen, K.R. Changing staphylococci and staphylococcal infections. A ten-year study of bacteria and cases of bacteremia. N. Engl. J. Med. 1969, 281, 627–635. [Google Scholar] [CrossRef]
- Brumfitt, W.; Hamilton-Miller, J. Methicillin-resistant Staphylococcus aureus. N. Engl. J. Med. 1989, 320, 1188–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enright, M.C.; Robinson, D.A.; Randle, G.; Feil, E.J.; Grundmann, H.; Spratt, B.G. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 2002, 99, 7687–7692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, N.A.; Sharma-Kuinkel, B.K.; Maskarinec, S.A.; Eichenberger, E.M.; Shah, P.P.; Carugati, M.; Holland, T.L.; Fowler, V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019, 17, 203–218. [Google Scholar] [CrossRef]
- Deurenburg, R.H.; Vink, C.; Kalenic, S.; Friedrich, A.W.; Bruggeman, C.A.; Stobberingh, E.E. The molecular evolution of methicillin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2006, 13, 222–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, J.M.; Turnidge, J.D.; SENTRY APAC. High prevalence of oxacillin-resistant Staphylococcus aureus isolates from hospitalized patients in Asia-Pacific and South Africa: Results from SENTRY antimicrobial surveillance program, 1998–1999. Antimicrob. Agents Chemother. 2002, 46, 879–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M.; SENTRY Partcipants Group. Survey of infections due to Staphylococcus species: Frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997–1999. Clin. Infect. Dis. 2001, 32 (Suppl. 2), S114–S132. [Google Scholar] [PubMed] [Green Version]
- Appelbaum, P.C. The emergence of vancomycin-intermediate and vancomycin-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2006, 12 (Suppl. 1), 16–23. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Cabral, S.M.; Harris, A.D.; Cosgrove, S.E.; Magder, L.S.; Tamma, P.D.; Goodman, K.E. Adherence to Antimicrobial Prophylaxis Guidelines for Elective Surgeries across 825 United States Hospitals, 2019–2020. Clin. Infect. Dis. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Shariati, A.; Dadashi, M.; Chegini, Z.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; -Sarokhalil, D.D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase-negative staphylococci strains: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control. 2020, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiseo, G.; Brigante, G.; Giacobbe, D.R.; Maraolo, A.E.; Gona, F.; Falcone, M.; Giannella, M.; Grossi, P.; Pea, F.; Rossolini, G.M.; et al. Diagnosis and management of infections caused by multidrug-resistant bacteria: Guideline endorsed by the Italian Society of Infection and Tropical Diseases (SIMIT), the Italian Society of Anti-Infective Therapy (SITA), the Italian Group for Antimicrobial Stewardship (GISA), the Italian Association of Clinical Microbiologists (AMCLI) and the Italian Society of Microbiology (SIM). Int. J. Antimicrob. Agents. 2022, 60, 106611. [Google Scholar]
- Koulenti, D.; Xu, E.; Mok, I.Y.S.; Song, A.; Karageorgopoulos, D.E.; Armaganidis, A.; Lipman, J.; Tsiodras, S. Novel Antibiotics for Multidrug-Resistant Gram-Positive Microorganisms. Microorganisms 2019, 7, 270. [Google Scholar] [CrossRef] [Green Version]
- Ruffin, F.; Dagher, M.; Park, L.P.; Wanda, L.; Hill-Rorie, J.; Mohnasky, M.; Marshall, J.; Souli, M.; Lantos, P.; Sharma-Kuinkel, B.K. Black and White Patients With Staphylococcus aureus Bacteremia Have Similar Outcomes but Different Risk Factors. Clin. Infect. Dis. 2023, 76, 1260–1265. [Google Scholar] [CrossRef]
- Martellosio, J.P.; Lemaigre, C.; Moal, G.L. Staphylococcus aureus Bacteremia: Towards Oral Step-Down Therapy in Selected Cases. Am. J. Med. 2023, 36, e76. [Google Scholar] [CrossRef] [PubMed]
- Nicolau, D.P.; Silberg, B.N. Cefazolin potency against methicillin-resistant Staphylococcus aureus: A microbiologic assessment in support of a novel drug delivery system for skin and skin structure infections. Infect. Drug Resist. 2017, 10, 227–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Ceftobiprole activity against over 60,000 clinical bacterial pathogens isolated in Europe, Turkey, and Israel from 2005 to 2010. Antimicrob. Agents Chemother. 2014, 58, 3882–3888. [Google Scholar] [CrossRef] [Green Version]
- Pfaller, M.A.; Flamm, R.K.; Mendes, R.E.; Streit, J.M.; Smart, J.I.; Hamed, K.A.; Duncan, L.R.; Sader, H.S. Ceftobiprole activity against Gram-positive and -negative pathogens collected from the United States in 2006 and 2016. Antimicrob. Agents Chemother. 2019, 63, 1. [Google Scholar] [CrossRef] [Green Version]
- Santerre Henriksen, A.; Smart, J.I.; Hamed, K. Susceptibility to ceftobiprole of respiratory-tract pathogens collected in the United Kingdom and Ireland during 2014–2015. Infect. Drug Resist. 2018, 11, 1309–1320. [Google Scholar] [CrossRef] [Green Version]
- Walkty, A.; Adam, H.J.; Laverdiere, M.; Karlowsky, J.A.; Hoban, D.J.; Zhanel, G.G. In vitro activity of ceftobiprole against frequently encountered aerobic and facultative Gram-positive and Gram-negative bacterial pathogens: Results of the CANWARD 2007–2009 study. Diagn. Microbiol. Infect Dis. 2011, 69, 348–355. [Google Scholar] [CrossRef]
- Murthy, B.; Schmitt-Hoffmann, A. Pharmacokinetics and pharmacodynamics of ceftobiprole, an anti-MRSA cephalosporin with broad-spectrum activity. Clin. Pharmacokinet. 2008, 47, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. FDA Issues Complete Response Letter for Ceftobiprole for Treatment of Complicated Skin Infections. Available online: https://johnsonandjohnson.gcs-web.com/news-releases/news-release-details/fda-issues-complete-response-letter-ceftobiprole-treatment/ (accessed on 15 February 2023).
- European Medicines Agency. Zeftera. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zeftera-previously-zevtera (accessed on 15 February 2023).
- Nicholson, S.C.; Welte, T.; File, T.M., Jr.; Strauss, R.S.; Michiels, B.; Kaul, P.; Balis, D.; Arbit, D.; Amsler, K.; Noel, G.J. A randomised, double-blind trial comparing ceftobiprole medocaril with ceftriaxone with or without linezolid for the treatment of patients with community-acquired pneumonia requiring hospitalisation. Int. J. Antimicrob. Agents 2012, 39, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Awad, S.S.; Rodriguez, A.H.; Chuang, Y.C.; Marjanek, Z.; Pareigis, A.J.; Reis, G. A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin. Infect. Dis. 2014, 59, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Noel, G.J.; Strauss, R.S.; Amsler, K.; Heep, M.; Pypstra, R.; Solomkin, J.S. Results of a double-blind, randomized trial of ceftobiprole treatment of complicated skin and skin structure infections caused by gram-positive bacteria. Antimicrob. Agents Chemother. 2008, 52, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Noel, G.J.; Bush, K.; Bagchi, P.; Ianus, J.; Strauss, R.S. A randomized, double-blind trial comparing ceftobiprole medocaril to vancomycin plus ceftazidime in the treatment of patients with complicated skin and skin structure infection. Clin. Infect. Dis. 2008, 46, 647–655. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. Zinforo. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zinforo (accessed on 6 September 2021).
- Allergan. TEFLARO. Available online: https://media.allergan.com/actavis/actavis/media/allergan-pdf-documents/product-prescribing/Teflaro-USPI-09_2019-2 (accessed on 6 September 2021).
- Parish, D.; Scheinfeld, N. Ceftaroline fosamil, a cephalosporin derivative for the potential treatment of MRSA infection. Curr. Opin. Investig. Drugs 2008, 9, 201–209. [Google Scholar]
- Ge, Y.; Biek, D.; Talbot, G.; Sahm, D. In vitro profiling of ceftaroline against a collection of recent bacterial clinical isolates from across the United States. Antimicrob. Agents Chemother. 2008, 52, 3398–3407. [Google Scholar] [CrossRef] [Green Version]
- Morrissey, I.; Ge, Y.; Janes, R. Activityof the newcephalosporin ceftaroline against bacteraemia isolates from patients with community-acquired pneumonia. Int. J. Antimicrob. Agents 2009, 33, 515–519. [Google Scholar] [CrossRef]
- Corey, G.R.; Wilcox, M.H.; Talbot, G.H.; Baculik, T.; Thye, D.A. CANVAS 1: The first phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65 (Suppl. 4), 41–51. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, M.H.; Corey, G.R.; Talbot, G.H.; Baculik, T.; Thye, D.A. CANVAS 2: The second phase III, randomized, double-blind study evaluating ceftaroline fosamil for the treatment of patients with complicated skin and skin structure infections. J. Antimicrob. Chemother. 2010, 65 (Suppl. 4), 53–65. [Google Scholar] [CrossRef] [Green Version]
- File, T.M., Jr.; Low, D.E.; Eckburg, P.B.; Talbot, G.H.; Friedland, H.D.; Lee, J.; Llorens, L.; Critchley, I.; Thye, D. Integrated analysis of FOCUS 1 and FOCUS 2: Randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin. Infect. Dis. 2010, 51, 1395–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flamm, R.K.; Sader, H.S.; Jones, R.N. Ceftaroline activity tested against contemporary Latin American bacterial pathogens. Braz. J. Infect. Dis. 2014, 18, 187–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biedenbach, D.J.; Alm, R.A.; Lahiri, S.D.; Reiszner, E.; Hoban, D.J.; Sahm, D.F.; Bouchillon, S.K.; Ambler, J.F. In Vitro Activity of Ceftaroline against Staphylococcus aureus Isolated in 2012 from Asia-Pacific Countries as Part of the AWARE Surveillance Program. Antimicrob. Agents Chemother. 2015, 60, 343–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.N.; Mendes, R.E.; Sader, H.S. Ceftaroline activity against pathogens associated with complicated skin and skin structure infections: Results from an international surveillance study. J. Antimicrob. Chemother. 2010, 65 (Suppl. 4), 17–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosimi, R.A.; Beik, N.; Kubiak, D.W.; Johnson, J.A. Ceftaroline for Severe Methicillin-Resistant Staphylococcus aureus Infections: A Systematic Review. Open Forum Infect. Dis. 2017, 4, ofx084. [Google Scholar] [CrossRef] [Green Version]
- Esposito, S.; Carrothers, T.J.; Riccobene, T.; Stone, G.G.; Kantecki, M. Ceftaroline Fosamil for Treatment of Pediatric Complicated Skin and Soft Tissue Infections and Community-Acquired Pneumonia. Paediatr. Drugs 2021. ahead of print. [Google Scholar] [CrossRef]
- Butler, M.S.; Hansford, K.A.; Blaskovich, M.A.; Halai, R.; Cooper, M.A. Glycopeptide antibiotics: Back to the future. J. Antibiot. 2014, 67, 631–644. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Infectious Diseases Society of America. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- VANCOCIN® (Vancomycin Hydrochloride). Prescribing Information. ANI Pharmaceuticals, Inc. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/060180s047lbl.pdf (accessed on 6 September 2021).
- McKamy, S.; Hernandez, E.; Jahng, M.; Moriwaki, T.; Deveikis, A.; Le, J. Incidence and risk factors influencing the development of vancomycin nephrotoxicity in children. J. Pediatr. 2011, 158, 422–426. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine , D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar]
- Stevens, D.L.; Bisno, A.L.; Chambers, H.F.; Goldstein, E.J.; Gorbach, S.L.; Hirschmann, J.V.; Kaplan, S.L.; Montoya, J.G.; Wade, J.C.; Infectious Diseases Society of America. Infectious Diseases Society of America. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2014, 59, e10–e52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bambeke, F. Lipoglycopeptide Antibacterial Agents in Gram-Positive Infections: A Comparative Review. Drugs 2015, 75, 2073–2095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malabarba, A.; Ciabatti, R.; Kettenring, J. Amides of deacetylglucosaminyl-deoxy teicoplanin active against highly glycopeptide-resistant enterococci. Synthesis and antibacterial activity. J. Antibiot. 1994, 47, 1493–1506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. FDA Approved Drugs. Dalvabancin Label. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/021883s000lbl.pdf (accessed on 6 September 2021).
- European Medicines Agency Xydalba, INN-dalbavancin Hydrochloride. Available online: https://www.ema.europa.eu/en/documents/product-information/xydalba-epar-product-information_en.pdf (accessed on 6 September 2021).
- Food and Drug Administration. Vibativ. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022110s012lbl.pdf (accessed on 6 September 2021).
- European Medicines Agency. Vibativ. Available online: https://www.ema.europa.eu/en/documents/overview/vibativ-epar-summary-public_en.pdf (accessed on 6 September 2021).
- Food and Drug Administration. FDA Approved Drugs. Label. Dalbavancin. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/021883s010lbl.pdf (accessed on 6 September 2021).
- Worboys, P.D.; Wong, S.L.; Barriere, S.L. Pharmacokinetics of intravenous telavancin in healthy subjects with varying degrees of renal impairment. Eur. J. Clin. Pharmacol. 2015, 71, 707–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoble, P.J.; Owens, R.C.; Puttagunta, S.; Yen, M.; Dunne, M.W. Pharmacokinetics, safety, and tolerability of a single 500-mg or 1000-mg intravenous dose of dalbavancin in healthy Japanese subjects. Clin. Drug. Investig. 2015, 35, 785–793. [Google Scholar] [CrossRef] [Green Version]
- Fetterly, G.J.; Ong, C.M.; Bhavnani, S.M.; Loutit, J.S.; Porter, S.B.; Morello, L.G.; Ambrose, P.G.; Nicolau, D.P. Pharmacokinetics of oritavancin in plasma and skin blister fluid following administration of a 200-milligram dose for 3 days or a single 800-milligram dose. Antimicrob. Agents Chemother. 2005, 49, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Kmeid, J.; Kanafani, Z.A. Oritavancin for the treatment of acute bacterial skin and skin structure infections: An evidence-based review. Core Evid. 2015, 10, 39–47. [Google Scholar]
- Scott, L.J. Dalbavancin: A review in acute bacterial skin and skin structure infections. Drugs 2015, 75, 1281–1291. [Google Scholar] [CrossRef]
- Monteagudo-Martínez, N.; Solís-García Del Pozo, J.; Nava, E.; Ikuta, I.; Galindo, M.; Jordán, J. Acute Bacterial Skin and Skin-Structure Infections, efficacy of Dalbavancin: A systematic review and meta-analysis. Expert. Rev. Anti. Infect. Ther. 2020, 21, 1477–1489. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.; Wang, R.; Li, Y.; Cai, Y. Efficacy and safety of dalbavancin in the treatment of Gram-positive bacterial infections. J. Glob. Antimicrob. Resist. 2021, 24, 72–80. [Google Scholar] [CrossRef]
- Gonzalez, D.; Bradley, J.S.; Blumer, J.; Yogev, R.; Watt, K.M.; James, L.P.; Palazzi, D.I.; Bhatt-Mehta, V.; Sullivan, J.E.; Zhang, L.; et al. Dalbavancin Pharmacokinetics and Safety in Children 3 Months to 11 Years of Age. Pediatr. Infect. Dis. J. 2017, 36, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Puttagunta, S.; Rubino, C.M.; Blumer, J.L.; Dunne, M.; Sullivan, J.E. Pharmacokinetics, Safety and Tolerability of Single Dose Dalbavancin in Children 12-17 Years of Age. Pediatr. Infect. Dis. J. 2015, 34, 748–752. [Google Scholar] [CrossRef] [PubMed]
- ABBVIE. News Center. DALVANCE® (Dalbavancin) Receives FDA Approval to Treat Acute Bacterial Skin and Skin Structure Infections in Pediatric Patients. Available online: https://news.abbvie.com/news/press-releases/dalvance-dalbavancin-receives-fda-approval-to-treat-acute-bacterial-skin-and-skin-structure-infections-in-pediatric-patients.htm (accessed on 6 September 2021).
- Food and Drug Administration. Orbactiv. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/206334s003lbl.pdf (accessed on 6 September 2021).
- European Medicines Agency. Orbactiv. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/orbactiv (accessed on 6 September 2021).
- Corey, G.R.; Arhin, F.F.; Wikler, M.A.; Sahm, D.F.; Kreiswirth, B.N.; Mediavilla, J.R.; Good, S.; Fiset, C.; Jiang, H.; Moeck, G.; et al. Pooled analysis of single-dose oritavancin in the treatment of acute bacterial skin and skin-structure infections caused by Gram-positive pathogens, including a large patient subset with methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2016, 48, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Krsak, M.; Morrisette, T.; Miller, M.; Molina, K.; Huang, M.; Damioli, L.; Pisney, L.; Wong, M.; Poeschla, E. Advantages of Outpatient Treatment with Long-Acting Lipoglycopeptides for Serious Gram-Positive Infections: A Review. Pharmacotherapy 2020, 40, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Cardona, A.F.; Wilson, S.E. Skin and soft-tissue infections: A critical review and the role of telavancin in their treatment. Clin. Infect. Dis. 2015, 61 (Suppl. 2), S69–S78. [Google Scholar] [CrossRef] [Green Version]
- Rubinstein, E.; Lalani, T.; Corey, G.R.; Kanafani, Z.A.; Nannini, E.C.; Rocha, M.G.; Rahav, G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; et al. Telavancin versus vancomycin for hospital-acquired pneumonia due to gram-positive pathogens. Clin. Infect. Dis. 2011, 52, 31–40. [Google Scholar] [CrossRef]
- Corey, G.R.; Kollef, M.H.; Shorr, A.F.; Rubinstein, E.; Stryjewski, M.E.; Hopkins, A.; Barriere, S.L. Telavancin for hospital-acquired pneumonia: Clinical response and 28-day survival. Antimicrob. Agents Chemother. 2014, 58, 2030–2037. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Rubinstein, E.; Corey, G.R.; Stryjewski, M.E.; Barriere, S.L. Analysis of Phase 3 telavancin nosocomial pneumonia data excluding patients with severe renal impairment and acute renal failure. J. Antimicrob. Chemother. 2014, 69, 1119–1126. [Google Scholar] [CrossRef] [Green Version]
- Diekema, D.J.; Jones, R.N. Oxazolidinone antibiotics. Lancet 2001, 358, 1975–1982. [Google Scholar] [CrossRef]
- Jiang, J.; Hou, Y.; Duan, M.; Wang, B.; Wu, Y.; Ding, X.; Zhao, Y. Design, synthesis and antibacterial evaluation of novel oxazolidinone derivatives nitrogen-containing fused heterocyclic moiety. Bioorg. Med. Chem. Lett. 2021, 32, 127660. [Google Scholar] [CrossRef]
- Li, Y.; Xu, W. Efficacy and safety of linezolid compared with other treatments for skin and soft tissue infections: A meta-analysis. Biosci Rep. 2018, 38, BSR20171125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. Drug. Des. Devel. Ther. 2018, 12, 1759–1767. [Google Scholar] [CrossRef] [PubMed]
- Agyeman, A.A.; Ofori-Asenso, R. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.G.; Yuan, X.L.; He, D.D.; Hu, G.Z.; Miao, M.S.; Xu, E.P. Research progress on the oxazolidinone drug linezolid resistance. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 9274–9281. [Google Scholar] [PubMed]
- Jungbluth, G.L.; Welshman, I.R.; Hopkins, N.K. Linezolid pharmacokinetics in pediatric patients: An overview. Pediatr. Infect. Dis. J. 2003, 22 (Suppl. 9), S153–S157. [Google Scholar] [CrossRef]
- Kaplan, S.L.; Deville, J.G.; Yogev, R.; Morfin, M.R.; Wu, E.; Adler, S.; Edge-Padbury, B.; Naberius-Stehouwer, S.; Bruss, J.B. Linezolid Pediatric Study Group. Linezolid versus vancomycin for treatment of resistant Gram-positive infections in children. Pediatr. Infect. Dis. J. 2003, 22, 677–686. [Google Scholar] [CrossRef]
- Leach, K.L.; Brickner, S.J.; Noe, M.C.; Miller, P.F. Linezolid, the first oxazolidinone antibacterial agent. Ann. N. Y. Acad. Sci. 2011, 1222, 49–54. [Google Scholar] [CrossRef]
- ZYVOX® (Linezolid). Prescribing Information. Pfizer Inc. 2019. Available online: http://labeling.pfizer.com/ShowLabeling.aspx?format=PDF&id=649 (accessed on 20 May 2020).
- Stevens, D.L.; Herr, D.; Lampiris, H.; Hunt, J.L.; Batts, D.H.; Hafkin, B. Linezolid versus vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin. Infect. Dis. 2002, 34, 1481–1490. [Google Scholar] [CrossRef] [Green Version]
- Welshman, I.R.; Sisson, T.A.; Jungbluth, G.L.; Stalker, D.J.; Hopkins, N.K. Linezolid absolute bioavailability and the effect of food on oral bioavailability. Biopharm. Drug Dispos. 2001, 22, 91–97. [Google Scholar] [CrossRef]
- Attassi, K.; Hershberger, E.; Alam, R.; Zervos, M.J. Thrombocytopenia associated with linezolid therapy. Clin. Infect. Dis. 2002, 34, 695–698. [Google Scholar] [CrossRef]
- Garazzino, S.; Krzysztofiak, A.; Esposito, S.; Castagnola, E.; Plebani, A.; Galli, L.; Cellini, M.; Lipreri, R.; Scolfaro, C.; Bertaina, C.; et al. Use of linezolid in infants and children: A retrospective multicentre study of the Italian Society for Paediatric Infectious Diseases. J. Antimicrob. Chemother. 2011, 66, 2393–2397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, N.; VanDeWall, H.; Tristani, L.; Rivera, A.; Woo, B.; Dihmess, A.; Li, H.K.; Smith, R.; Lodise, T.P. A comparative evaluation of adverse platelet outcomes among Veterans’ Affairs patients receiving linezolid or vancomycin. J. Antimicrob. Chemother. 2012, 67, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Quinn, D.K.; Stern, T.A. Linezolid and serotonin syndrome. Prim. Care Companion J. Clin. Psychiatry 2009, 11, 353–3566. [Google Scholar] [CrossRef] [Green Version]
- Boyer, E.W.; Shannon, M. The serotonin syndrome. N. Engl. J. Med. 2005, 352, 1112–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- US Food and Drug Administration. Drug Trials Snapshot: Sivextro (Tedizolid). Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/drug-trials-snapshot-sivextro-tedizolid (accessed on 6 September 2021).
- European Medicines Agency. Sivextro. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/sivextro#authorisation-details-section (accessed on 6 September 2021).
- Hasannejad-Bibalan, M.; Mojtahedi, A.; Biglari, H.; Halaji, M.; Sedigh Ebrahim-Saraie, H. Antibacterial Activity of Tedizolid, a Novel Oxazolidinone Against Methicillin-Resistant Staphylococcus aureus: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2019, 25, 1330–1337. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.; Alder, J.; Li, L.; O’Riordan, W.; Rybak, M.J.; Ye, H.; Zhang, R.; Zhang, Z.; Zhu, X.; Wilcox, M.H. Efficacy and safety of tedizolid phosphate versus linezolid in a randomized phase 3 trial in patients with acute bacterial skin and skin structure infection. Antimicrob. Agents Chemother. 2019, 63, e02252-18. [Google Scholar] [CrossRef] [Green Version]
- Mikamo, H.; Takesue, Y.; Iwamoto, Y.; Tanigawa, T.; Kato, M.; Tanimura, Y.; Kohno, S. Efficacy, safety and pharmacokinetics of tedizolid versus linezolid in patients with skin and soft tissue infections in Japan—Results of a randomised, multicentre phase 3 study. J. Infect. Chemother. 2018, 24, 434–442. [Google Scholar] [CrossRef] [Green Version]
- Moran, G.J.; Fang, E.; Corey, G.R.; Das, A.F.; De Anda, C.; Prokocimer, P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 696–705. [Google Scholar] [CrossRef]
- Prokocimer, P.; De Anda, C.; Fang, E.; Mehra, P.; Das, A. Tedizolid phosphate vs. linezolid for treatment of acute bacterial skin and skin structure infections: The ESTABLISH-1 randomized trial. JAMA 2013, 309, 559–569. [Google Scholar] [CrossRef] [Green Version]
- Arrieta, A.C.; Ang, J.Y.; Espinosa, C.; Fofanov, O.; Tøndel, C.; Chou, M.Z.; De Anda, C.S.; Kim, J.Y.; Li, D.; Sabato, P.; et al. Pharmacokinetics and Safety of Single-dose Tedizolid Phosphate in Children 2 to <12 Years of Age. Pediatr. Infect. Dis. J. 2021, 40, 317–323. [Google Scholar]
- Flanagan, S.; Bartizal, K.; Minassian, S.L.; Fang, E.; Prokocimer, P. In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob. Agents Chemother. 2013, 57, 3060–3066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, S.H.; Lin, W.T.; Chang, S.P.; Lu, L.C.; Chao, C.M.; Lai, C.C.; Wang, J.H. Tedizolid Versus Linezolid for the Treatment of Acute Bacterial Skin and Skin Structure Infection: A Systematic Review and Meta-Analysis. Antibiotics 2019, 8, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci. 2011, 1241, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Stein, G.E.; Craig, W.A. Tigecycline: A critical analysis. Clin. Infect. Dis. 2006, 43, 518–524. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villano, S.; Steenbergen, J.; Loh, E. Omadacycline: Development of a novel aminomethylcycline antibiotic for treating drug-resistant bacterial infections. Future Microbiol. 2016, 11, 1421–1434. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Ting, L.; Machineni, S.; Praestgaard, J.; Kuemmell, A.; Stein, D.S.; Sunkara, G.; Kovacs, S.J.; Villano, S.; Tanaka, S.K. Randomized, Open-Label Study of the Pharmacokinetics and Safety of Oral and Intravenous Administration of Omadacycline to Healthy Subjects. Antimicrob. Agents Chemother. 2016, 60, 7431–7435. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Drug Approval Package: NUZYRA. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/209816Orig1s000,209817Orig1s000TOC.cfm (accessed on 6 September 2021).
- European Medicines Agency. Nuzyra: Withdrawal of the Marketing Authorisation Application. Available online: https://www.ema.europa.eu/en/medicines/human/withdrawn-applications/nuzyra (accessed on 6 September 2021).
- O’Riordan, W.; Green, S.; Overcash, J.S.; Puljiz, I.; Metallidis, S.; Gardovskis, J.; Garrity-Ryan, L.; Das, A.F.; Tzanis, E.; Eckburg, P.B.; et al. Omadacycline for Acute Bacterial Skin and Skin-Structure Infections. N. Engl. J. Med. 2019, 380, 528–538. [Google Scholar] [CrossRef]
- O’Riordan, W.; Cardenas, C.; Sirbu, A.; Garrity-Ryan, L.; Das, A.F.; Eckburg, P.B.; Manley, A.; Steenbergen, J.N.; Tzanis, E.; McGovern, P.; et al. A phase 3 randomized, double-blind, multi-centre study to compare the safety and efficacy of oral omadacycline to oral linezolid for treating adult subjects with ABSSSI (OASIS-2 study). In Proceedings of the 28th European Congress of Clinical Microbiology and Infectious Diseases, Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Stets, R.; Popescu, M.; Gonong, J.R.; Mitha, I.; Nseir, W.; Madej, A.; Kirsch, C.; Das, A.F.; Garrity-Ryan, L.; Steenbergen, J.N.; et al. Omadacycline for Community-Acquired Bacterial Pneumonia. N. Engl. J. Med. 2019, 380, 517–527. [Google Scholar] [CrossRef]
- Opal, S.; File, T.M., Jr.; van der Poll, T.; McGovern, P.C.; Tzanis, E.; Chitra, S. An integrated safety summary of the novel aminomethylcycline antibiotic omadacycline. Clin. Infect. Dis. 2019, 69 (Suppl. 1), S40–S47. [Google Scholar] [CrossRef] [Green Version]
- Shetty, A.K. Tetracyclines in pediatrics revisited. Clin. Pediatr. 2002, 41, 203–209. [Google Scholar] [CrossRef]
- Gade, N.D.; Qazi, M.S. Fluoroquinolone Therapy in Staphylococcus aureus Infections: Where Do We Stand? J. Lab. Physicians 2013, 5, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Sader, H.S.; Rhomberg, P.R.; Flamm, R.K. In Vitro Activity of Delafloxacin against Contemporary Bacterial Pathogens from the United States and Europe, 2014. Antimicrob. Agents Chemother. 2017, 61, e02609–e02616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Food and Drug Administration. Drug Approval Package: Baxdela. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208610s007,208611s006lbl.pdf (accessed on 6 September 2021).
- European Medicines Agency. Quofenix. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/quofenix#authorisation-details-section (accessed on 6 September 2021).
- Pullman, J.; Gardovskis, J.; Farley, B.; Sun, E.; Quintas, M.; Lawrence, L.; Ling, R.; Cammarata, S.; PROCEED Study Group. Efficacy and safety of delafloxacin compared with vancomycin plus aztreonam for acute bacterial skin and skin structure infections: A Phase 3, double-blind, randomized study. J. Antimicrob. Chemother. 2017, 72, 3471–3480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Riordan, W.; McManus, A.; Teras, J.; Poromanski, I.; Cruz-Saldariagga, M.; Quintas, M.; Lawrence, L.; Liang, S.; Cammarata, S.; PROCEED Study Group. A Comparison of the Efficacy and Safety of Intravenous Followed by Oral Delafloxacin with Vancomycin Plus Aztreonam for the Treatment of Acute Bacterial Skin and Skin Structure Infections: A Phase 3, Multinational, Double-Blind, Randomized Study. Clin. Infect. Dis. 2018, 67, 657–666. [Google Scholar] [CrossRef] [PubMed]
- McCurdy, S.; Keedy, K.; Lawrence, L.; Nenninger, A.; Sheets, A.; Quintas, M.; Cammarata, S. Efficacy of Delafloxacin versus Moxifloxacin against Bacterial Respiratory Pathogens in Adults with Community-Acquired Bacterial Pneumonia (CABP): Microbiology Results from the Delafloxacin Phase 3 CABP Trial. Antimicrob. Agents Chemother. 2020, 64, e01949-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Principi, N.; Esposito, S. Appropriate use of fluoroquinolones in children. Int. J. Antimicrob. Agents 2015, 45, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, I.; Bordeau, V.; Bondon, A.; Baudy-Floc’h, M.; Felden, B. Novel antibiotics effective against gram-positive and -negative multi-resistant bacteria with limited resistance. PLoS Biol. 2019, 17, e3000337. [Google Scholar] [CrossRef]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
Drug Class | Cephalosporins | Lipopeptides | Lipoglycopeptides | Oxazolidinones | Tetracyclines | Fluoroquinolones | ||
---|---|---|---|---|---|---|---|---|
Drug Name | Ceftobiprole | Ceftaroline | Telavancin | Dalbavancin | Oritavancin | Tedizolid | Omadacycline | Delafloxacin |
In vitro activity | MSSA, MRSA, CoNS, streptococci, penicillin-R S. pneumoniae and E. faecalis Gram-negative pathogens including Pseudomonas aeruginosa | MSSA, MRSA, hVISA, VISA, VRSA and DAP-non susceptible S. aureus, CoNS, streptococci penicillin-R S. pneumoniae Gram-negative pathogens excluding Pseudomonas aeruginosa | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB | MSSA, MRSA, CoNS, streptococci, E. faecFalis | MSSA, MRSA, CoNS, streptococci, enterococci including VRE vanA, vanB Stable in the presence of ESBLs |
Drug target | Cell wall synthesis | Cell wall synthesis | Cell wall synthesis | Cell wall synthesis | Cell wall synthesis | Protein synthesis | Protein synthesis | DNA replication |
Type of activity | Bactericidal | Bactericidal | Bactericidal | Bactericidal | Bactericidal | Bacteriostatic | Bacteriostatic | Bactericidal |
Half-life (h) - Oral bioavailability (%) | 2–3 | 2–3 | 8 | 192–336 | 393 | 10 - 91 | 17–21 - 34.5 | 8 - 58.8 |
Doses, frequency and duration | IV: 500 mg over 2 h t.i.d. | IV: 600 mg over 60 min b.i.d./t.i.d. in severe infections | IV: 10 mg/kg q.d. | IV single-dose regimen 1500 mg over 30 min For sequential use: 1500 mg on day 1 and 1000/ 1500 mg every 2 weeks | IV single-dose regimen: 1200 mg over 3 h For sequential use: 1200 day 1 and then 800/1200 mg once week | Oral: 200 mg IV: 200 mg over 1 h q.d. | Oral: loading dose 450 mg, then 300 mg IV: loading dose 200 mg, then 100 mg over 30 min q.d. | Oral: 450 mg IV: 300 mg over 1 h b.i.d. |
Protein Binding (%) Excretion | 16 Faeces: 6% Urine: 88% | 20 Faeces: 6% Urine: 88% | 90 Faeces: <1% Urine: <76% | 93–98 Faeces: 20% Urine: 45% | 85 Not metabolized | 70–90 If oral: Faeces: 82% Urine: 18% | 20 If oral: Faeces: N/A Urine: 27% If IV: Faeces: 81% Urine: 15% | 84 If oral: Faeces: 28% Urine: 65% If IV: Faeces: 48% Urine: 50% |
Doses adjustments not required for | CrCL > 50 mL/min | CrCL > 50 mL/min | CrCL > 50 mL/min | CrCL > 30 mL/min | Renal impairment, hepatic impairment | Hepatic dysfunction, renal dysfunction | Hepatic impairment, renal impairment | Body weight, hepatic impairment, mild-to-moderate renal impairment |
FDA or EMA approval (Year and indications) | Not approved by the FDA 2009 ABSSSI, CAP, HAP | 2010 ABSSSI, CAP | 2009, ABSSSI, HAP, VAP | 2014, ABSSSI | 2014, ABSSSI | 2014, ABSSSI | 2018 ABSSSI, CAP | 2017 and 2019, ABSSSI, CAP |
Paediatrics Therapeutic indication | No data | Yes | No data | Yes | No data | Yes >12 years | Not approved | Not approved |
Future directions and points of clinical interest | VAP | Primary SAB, complicated SAB secondary to non-ABSSSI causes (IE, OSM, or non-responsive to first line therapy) | OSM; prosthetic infection including IE, CLABSI, OPAT regimens | OSM; prosthetic infection including IE, CLABSI, OPAT regimens | OSM; HAP, or VAP due to MRSA Especially if resistant or intolerant to linezolid | HAP, biliary infections and OSM to allow early hospital discharge | HAP, MRSA OSM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito, S.; Blasi, F.; Curtis, N.; Kaplan, S.; Lazzarotto, T.; Meschiari, M.; Mussini, C.; Peghin, M.; Rodrigo, C.; Vena, A.; et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics 2023, 12, 742. https://doi.org/10.3390/antibiotics12040742
Esposito S, Blasi F, Curtis N, Kaplan S, Lazzarotto T, Meschiari M, Mussini C, Peghin M, Rodrigo C, Vena A, et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics. 2023; 12(4):742. https://doi.org/10.3390/antibiotics12040742
Chicago/Turabian StyleEsposito, Susanna, Francesco Blasi, Nigel Curtis, Sheldon Kaplan, Tiziana Lazzarotto, Marianna Meschiari, Cristina Mussini, Maddalena Peghin, Carlos Rodrigo, Antonio Vena, and et al. 2023. "New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA)" Antibiotics 12, no. 4: 742. https://doi.org/10.3390/antibiotics12040742
APA StyleEsposito, S., Blasi, F., Curtis, N., Kaplan, S., Lazzarotto, T., Meschiari, M., Mussini, C., Peghin, M., Rodrigo, C., Vena, A., Principi, N., & Bassetti, M. (2023). New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics, 12(4), 742. https://doi.org/10.3390/antibiotics12040742