Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China
Abstract
:1. Introduction
2. Results
2.1. General Characteristics of the Study Subjects
2.2. Postnatal Empirical Antibiotic Usage Changes and the Short-Term Outcomes
2.3. Logistic Regression Analysis to Determine the Risk Factors
2.4. The Continued Effect of the Antibiotic Usage Strategy in 2021
3. Discussion
4. Methods
4.1. Study Subjects and Inclusion Criteria
4.2. Relevant Definitions
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
AUR | antibiotic use rate |
BPD | bronchopulmonary dysplasia |
CRP | C-reactive protein |
EOS | early onset sepsis |
GA | gestational age |
IVH | intraventricular hemorrhage |
IVF | in vitro fertilization |
LOS | late-onset sepsis |
MDR | multidrug-resistant |
NEC | necrotizing enterocolitis |
NICU | neonatal intensive care unit |
PCT | procalcitonin |
ROP | retinopathy of prematurity |
SGA | small for gestational age |
VLBW | very low birth weight |
References
- Ting, J.Y.; Roberts, A.; Sherlock, R.; Ojah, C.; Cieslak, Z.; Dunn, M.; Barrington, K.; Yoon, E.W.; Shah, P.S.; on behalf of the Canadian Neonatal Network Investigators. Duration of Initial Empirical Antibiotic Therapy and Outcomes in Very Low Birth Weight Infants. Pediatrics 2019, 143, e20182286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.Y.; Lo, Y.C.; Huang, P.H.; Chen, Y.X.; Tsao, P.C.; Lee, Y.S.; Jeng, M.J.; Hung, M.C. Increased antibiotic exposure in early life is associated with adverse outcomes in very low birth weight infants. J. Chin. Med. Assoc. JCMA 2022, 85, 939–943. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, S.H.; Shrestha, S.; Bjerregaard, L.G.; Ängquist, L.H.; Baker, J.L.; Jess, T.; Allin, K.H. Antibiotic exposure in early life and childhood overweight and obesity: A systematic review and meta-analysis. Diabetes Obes. Metab. 2018, 20, 1508–1514. [Google Scholar] [CrossRef]
- Slob, E.M.A.; Brew, B.K.; Vijverberg, S.J.H.; Kats, C.; Longo, C.; Pijnenburg, M.W.; van Beijsterveldt, T.; Dolan, C.V.; Bartels, M.; Magnusson, P.; et al. Early-life antibiotic use and risk of asthma and eczema: Results of a discordant twin study. Eur. Respir. J. 2020, 55, 1902021. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Yan, J.; Zhang, T. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. J. Matern.-Fetal Neonatal Med. 2022, 35, 861–870. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Røttingen, J.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Li, J.Y.; Chen, S.Q.; Yan, Y.Y.; Hu, Y.Y.; Wei, J.; Wu, Q.P.; Lin, Z.L.; Lin, J. Identification and antimicrobial resistance of pathogens in neonatal septicemia in China-A meta-analysis. Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2018, 71, 89–93. [Google Scholar] [CrossRef] [Green Version]
- Nadimpalli, M.; Chan, C.; Doron, S. Antibiotic resistance: A call to action to prevent the next epidemic of inequality. Nat. Med. 2021, 27, 187–188. [Google Scholar] [CrossRef]
- Wang, M.; Yue, S.; Lin, J.; Gao, X.; Peng, X.; Chen, M.; Peng, H.; Cao, B.; Zeng, Y.; Wang, S.; et al. A multicenter survey of antibiotic use in very and extremely low birth weight infants in Hunan Province. Zhongguo Dang Dai Er Ke Za Zhi 2020, 22, 561–566. [Google Scholar]
- Hunan Neonatal Medical Quality Control Center; Neonatology Group of Perinatal Medical Committee of Hunan Medical Association. Recommendations on the diagnosis and the use of antibiotics for early-onset sepsis in preterm infant: Consensus of the expert panel from Hunan Province. Zhongguo Dang Dai Er Ke Za Zhi 2020, 22, 1–6. [Google Scholar]
- Shixiao, W. Revised scheme of diagnosis standard of neonatal sepsis. Chin. J. Pediatr. 1988, 26, 163–164. [Google Scholar]
- Neonatology Group of Pediatric Society of Chinese Medical Association; Editorial Board of Chinese Journal of Pediatrics of Chinese Medical Association. Diagnosis and treatment program of neonatal sepsis (Kunming, 2003). Chin. J. Pediatr. 2003, 41, 897–899. [Google Scholar]
- Subspecialty Group of Neonatology, the Society of Pediatrics, Chinese Medical Association; Professional Committee of Infectious Diseases, Neonatology Society, Chinese Medical Doctor Association. Expert consensus on the diagnosis and management of neonatal sepsis (version 2019). Zhonghua Er Ke Za Zhi 2019, 57, 252–257. [Google Scholar]
- Mukhopadhyay, S.; Puopolo, K.M. Clinical and Microbiologic Characteristics of Early-onset Sepsis among Very Low Birth Weight Infants: Opportunities for Antibiotic Stewardship. Pediatr. Infect. Dis. J. 2017, 36, 477–481. [Google Scholar] [CrossRef]
- Puopolo, K.M.; Benitz, W.E.; Zaoutis, T.E. Management of Neonates Born at ≤34 6/7 Weeks’ Gestation With Suspected or Proven Early-Onset Bacterial Sepsis. Pediatrics 2018, 142, e20182896. [Google Scholar] [CrossRef] [Green Version]
- Morales-Betancourt, C.; De la Cruz-Bértolo, J.; Muñoz-Amat, B.; Bergón-Sendín, E.; Pallás-Alonso, C. Reducing Early Antibiotic Use: A Quality Improvement Initiative in a Level III Neonatal Intensive Care Unit. Front. Pediatr. 2022, 10, 913175. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Clinical Guidelines. In Neonatal Infection: Antibiotics for Prevention and Treatment; National Institute for Health and Care Excellence (NICE): London, UK, 2021. [Google Scholar]
- Yaacobi, N.; Bar-Meir, M.; Shchors, I.; Bromiker, R. A prospective controlled trial of the optimal volume for neonatal blood cultures. Pediatr. Infect. Dis. J. 2015, 34, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Hou, S.; Yu, Y.; Wu, Y.; Cao, Y.; Zhang, J.; Liu, Z.; Guo, C.; Chen, Y.; Sun, X.; Li, M.; et al. Association Between Antibiotic Overexposure and Adverse Outcomes in Very-Low-Birth-Weight Infants Without Culture-Proven Sepsis or Necrotizing Enterocolitis: A Multicenter Prospective Study. Indian J. Pediatr. 2022, 89, 785–792. [Google Scholar] [CrossRef]
- Flannery, D.D.; Ross, R.K.; Mukhopadhyay, S.; Tribble, A.C.; Puopolo, K.M.; Gerber, J.S. Temporal Trends and Center Variation in Early Antibiotic Use Among Premature Infants. JAMA Netw. Open 2018, 1, e180164. [Google Scholar] [CrossRef] [Green Version]
- Budgell, E.; Davies, T.; Donker, T.; Hopkins, S.; Wyllie, D.; Peto, T.; Gill, M.; Llewelyn, M.; Walker, A. Impact of antibiotic use on patient-level risk of death in 36 million hospital admissions in England. J. Infect. 2022, 84, 311–320. [Google Scholar] [CrossRef]
- Asfour, S.; Al-Mouqdad, M. Early initiation of broad-spectrum antibiotics in premature infants. Minerva Pediatr. 2022, 74, 136–143. [Google Scholar] [CrossRef]
- Letouzey, M.; Lorthe, E.; Marchand-Martin, L.; Kayem, G.; Charlier, C.; Butin, M.; Mitha, A.; Kaminski, M.; Benhammou, V.; Ancel, P.Y.; et al. Early Antibiotic Exposure and Adverse Outcomes in Very Preterm Infants at Low Risk of Early-Onset Sepsis: The EPIPAGE-2 Cohort Study. J. Pediatr. 2022, 243, 91–98.e94. [Google Scholar] [CrossRef] [PubMed]
- Saleem, B.; Okogbule-Wonodi, A.C.; Fasano, A.; Magder, L.S.; Ravel, J.; Kapoor, S.; Viscardi, R.M. Intestinal Barrier Maturation in Very Low Birthweight Infants: Relationship to Feeding and Antibiotic Exposure. J. Pediatr. 2017, 183, 31–36.e31. [Google Scholar] [CrossRef] [Green Version]
- Diamond, L.; Wine, R.; Morris, S.K. Impact of intrapartum antibiotics on the infant gastrointestinal microbiome: A narrative review. Arch. Dis. Child. 2022, 107, 627–634. [Google Scholar] [CrossRef]
- Xu, Y.; Milburn, O.; Beiersdorfer, T.; Du, L.; Akinbi, H.; Haslam, D.B. Antibiotic exposure prevents acquisition of beneficial metabolic functions in the preterm infant gut microbiome. Microbiome 2022, 10, 103. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.T.; Duan, Y.; Deng, X.K.; Lin, J. Prevention of necrotizing enterocolitis in premature infants—An updated review. World J. Clin. Pediatr. 2019, 8, 23–32. [Google Scholar] [CrossRef]
- Kim, J.H.; Sampath, V.; Canvasser, J. Challenges in diagnosing necrotizing enterocolitis. Pediatr. Res. 2020, 88 (Suppl. S1), 16–20. [Google Scholar] [CrossRef]
- Higgins, R.D.; Jobe, A.H.; Koso-Thomas, M.; Bancalari, E.; Viscardi, R.M.; Hartert, T.V.; Ryan, R.M.; Kallapur, S.G.; Steinhorn, R.H.; Konduri, G.G.; et al. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J. Pediatr. 2018, 197, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Ballabh, P.; de Vries, L.S. White matter injury in infants with intraventricular haemorrhage: Mechanisms and therapies. Nat. Rev. Neurol. 2021, 17, 199–214. [Google Scholar] [CrossRef]
- Flannery, D.D.; Mukhopadhyay, S.; Jensen, E.A.; Gerber, J.S.; Passarella, M.R.; Dysart, K.; Aghai, Z.H.; Greenspan, J.; Puopolo, K.M. Influence of Patient Characteristics on Antibiotic Use Rates Among Preterm Infants. J. Pediatr. Infect. Dis. Soc. 2021, 10, 97–103. [Google Scholar] [CrossRef]
- Dukhovny, D.; Buus-Frank, M.; Edwards, E.; Ho, T.; Morrow, K.; Srinivasan, A.; Pollock, D.; Zupancic, J.; Pursley, D.; Goldmann, D.; et al. A Collaborative Multicenter QI Initiative to Improve Antibiotic Stewardship in Newborns. Pediatrics 2019, 144, e20190589. [Google Scholar] [CrossRef] [PubMed]
Variable | 2014 (n = 96) | 2015 (n = 77) | 2016 (n = 76) | p | |
---|---|---|---|---|---|
Neonatal characteristics | |||||
GA, mean (SD) | 30.3 ± 1.9 | 30.0 ± 1.9 | 29.8 ± 2.1 | F = 1.787 | 0.170 |
BW, mean (SD) | 1.23 ± 0.17 | 1.24 ± 0.19 | 1.17 ± 0.19 | F = 2.963 | 0.054 |
SGA, n (%) | 29 (30.2) | 16 (20.8) | 21 (27.6) | χ2 = 2.021 | 0.364 |
Male, n (%) | 50 (52.1) | 43 (55.8) | 51 (67.1) | χ2 = 4.106 | 0.128 |
PROM, n (%) | 31 (32.3) | 27 (35.1) | 21 (27.6) | χ2 = 0.999 | 0.607 |
Apgar score ≤ 7 at 1 min, n (%) | 36 (37.5) | 23 (29.9) | 38 (50.0) | χ2 = 9.330 | 0.053 |
Apgar score ≤ 7 at 5 min, n (%) | 4 (4.2) | 5 (6.5) | 10 (13.2) * | χ2 = 9.907 | 0.042 |
Endotracheal intubation in the delivery room, n (%) | 11 (11.5) | 9 (11.7) | 8 (10.5) | χ2 = 0.059 | 0.971 |
Surfactant usage, n (%) | 60 (62.5) | 56 (72.7) | 56 (73.7) | χ2 = 3.180 | 0.204 |
Mechanical ventilation for first 3 days after birth, n (%) | 12 (12.5) | 10 (13.0) | 13 (17.1) | χ2 = 0.850 | 0.654 |
Maternal characteristics | |||||
Maternal age (y) | 30.0 (26.0, 33.0) | 30.0 (27.0, 33.0) | 30.5 (27.0, 34.0) | Z = 0.617 | 0.734 |
Cesarean delivery, n (%) | 67 (69.8) | 48 (62.3) | 45 (59.2) | χ2 = 2.247 | 0.325 |
Multiples, n (%) | 36 (37.5) | 36 (46.8) | 35 (46.1) | χ2 = 1.917 | 0.384 |
IVF, n (%) | 30 (31.3) | 29 (37.7) | 24 (31.6) | χ2 = 0.942 | 0.624 |
Antepartum antibiotics, n (%) | 40 (42.1) | 23 (29.9) | 37 (48.7) | χ2 = 5.830 | 0.054 |
Antenatal steroids, n (%) | 66 (68.8) | 48 (62.3) | 57 (75.0) | χ2 = 2.851 | 0.240 |
Empirical Antibiotics | 2014 (n = 96) | 2015 (n = 77) | 2016 (n = 76) | p | |
---|---|---|---|---|---|
Early antibiotic usage rate, n (%) | 95 (99.0) | 72 (93.5) | 70 (92.1) | χ2 = 5.024 | 0.081 |
Early antibiotic usage, days, M(Q1, Q3) | 25.0 (17.0, 46.0) | 13.5 (8.0, 20.0) * | 5.0 (3.0, 12.0) *# | Z = 86.117 | <0.001 |
Early antibiotic course distribution | |||||
≤3 d | 2 (2.1) | 7 (9.1) * | 29 (38.2) *# | χ2 = 73.325 | <0.001 |
4~7 d | 2 (2.1) | 9 (11.7) * | 17 (22.4) *# | ||
>7 d | 92 (95.8) | 61 (79.2) * | 30 (39.5) *# | ||
Total antibiotic usage, days, M(Q1, Q3) | 27.0 (18.0, 50.3) | 21.0 (12.5, 35.0) * | 10.0 (4.0, 20.0) *# | Z = 50.654 | <0.001 |
Antibiotics use rate | 0.64 (0.42, 0.89) | 0.39 (0.17, 0.53) * | 0.12 (0.07, 0.25) *# | Z = 99.289 | <0.001 |
Outcomes of infants | |||||
Death, n (%) | 3 (3.1) | 7 (9.1) | 3 (3.9) | χ2 = 3.065 | 0.242 |
NEC, n (%) | 7 (7.3) | 8 (10.4) | 10 (13.2) | χ2 = 1.631 | 0.442 |
Severe IVH, n (%) | 24 (25.0) | 16 (20.8) | 6 (7.9) * | χ2 = 8.634 | 0.013 |
LOS, n (%) | 23 (24.0) | 18 (23.4) | 9 (11.8) | χ2 = 4.635 | 0.099 |
Severe ROP, n (%) | 10 (10.4) | 10 (13.0) | 8 (10.5) | χ2 = 0.339 | 0.844 |
Severe BPD, n (%) | 5 (5.2) | 5 (6.5) | 6 (7.9) | χ2 = 0.595 | 0.724 |
Days to full enteral feeding (d) | 26.0 (20.0, 36.5) (n = 93) | 21.5 (14.8, 29.5) (n = 70) * | 17.0 (12.0, 24.0) (n = 73) *# | Z = 26.203 | <0.001 |
Length of hospitalization (d) | 43.0 (30.5, 68.0) (n = 93) | 40.0 (28.8, 55.3) (n = 70) | 44.0 (30.5, 59.5) (n = 73) | Z = 1.647 | 0.439 |
Exposure | Composite Adverse Outcomes | Composite Adverse Outcomes | ||
---|---|---|---|---|
OR (95%CI) | p | aOR (95%CI) | p | |
Year of antibiotic use | ||||
2014 | 1.0 | 1.0 | ||
2015 | 1.061 (0.579, 1.942) | 0.849 | 0.865 (0.387, 1.933) | 0.723 |
2016 | 0.512 (0.269, 0.976) | 0.042 | 0.149 (0.055, 0.401) | <0.001 |
Initial antibiotic course | ||||
0~3 d | 1.0 | 1.0 | ||
4~7 d | 2.640 (0.758, 9.194) | 0.127 | 4.407 (0.973, 19.968) | 0.054 |
>7 d | 5.478 (2.047, 14.663) | 0.001 | 5.148 (1.598, 16.583) | 0.006 |
AUR (every 10%) | 1.181 (1.084, 1.288) | <0.001 | 1.175 (1.047, 1.319) | 0.006 |
Variable | 2016 (n = 76) | 2021 (n = 90) | p | |
---|---|---|---|---|
Neonatal characteristics | ||||
GA, mean (SD) | 29.8 ± 2.1 | 30.5 ± 2.1 | t = −2.413 | 0.017 |
BW, mean (SD) | 1.17 ± 0.19 | 1.26 ± 0.15 | t = −3.148 | 0.002 |
SGA, n (%) | 21 (27.6) | 22 (24.4) | χ2 = 0.218 | 0.641 |
Male, n (%) | 51 (67.1) | 43 (47.8) | χ2 = 6.267 | 0.012 |
PROM, n (%) | 21 (27.6) | 20 (22.2) | χ2 = 0.648 | 0.421 |
Apgar score ≤ 7 at 1 min, n (%) | 38 (50.0) | 36 (40.0) | χ2 = 3.071 | 0.215 |
Apgar score ≤ 7 at 5 min, n (%) | 10 (13.2) | 7 (7.8) | χ2 = 3.832 | 0.147 |
Endotracheal intubation in the delivery room, n (%) | 8 (10.5) | 10 (11.1) | χ2 = 0.015 | 0.904 |
Surfactant usage, n (%) | 56 (73.7) | 49 (54.4) | χ2 = 6.562 | 0.010 |
Mechanical ventilation for first 3 days after birth, n (%) | 13 (17.1) | 12 (13.3) | χ2 = 0.458 | 0.498 |
Maternal characteristics | ||||
Maternal age (y) | 30.5 (27.0, 34.0) | 32.0 (29.0, 34.0) | Z = −1.025 | 0.305 |
Cesarean delivery, n (%) | 45 (59.2) | 76 (84.4) | χ2 = 13.278 | <0.001 |
Multiples, n (%) | 35 (46.1) | 40 (44.4) | χ2 = 0.043 | 0.836 |
IVF, n (%) | 24 (31.6) | 36 (40.0) | χ2 = 1.266 | 0.261 |
Antepartum antibiotics, n (%) | 37 (48.7) | 38 (42.2) | χ2 = 0.695 | 0.405 |
Antenatal steroids, n (%) | 57 (75.0) | 78 (86.7) | χ2 = 3.693 | 0.055 |
Empirical Antibiotics | 2016 (n = 76) | 2021 (n = 90) | p | |
---|---|---|---|---|
Early antibiotic usage rate, n (%) | 70 (92.1) | 60 (66.7) | χ2 = 15.700 | <0.001 |
Early antibiotic usage, days, M(Q1, Q3) | 5.0 (3.0, 12.0) | 4.0 (3.0, 7.0) | Z = −3.703 | <0.001 |
Early antibiotic course distribution | ||||
≤3 d | 29 (38.2) | 51 (56.7) | χ2 = 7.636 | 0.022 |
4~7 d | 17 (22.4) | 20 (22.2) | ||
>7 d | 30 (39.5) | 19 (21.1) | ||
Total antibiotic usage, days, M(Q1, Q3) | 10.0 (4.0, 20.0) | 7.0 (4.0, 16.0) | Z = −2.592 | 0.010 |
Antibiotics use rate | 0.12 (0.07, 0.25) | 0.07 (0.00, 0.12) | Z = −4.446 | <0.001 |
Outcomes of infants | ||||
Death, n (%) | 3 (3.9) | 2 (2.2) | χ2 = 0.420 | 0.661 |
NEC, n (%) | 10 (13.2) | 8 (8.9) | χ2 = 0.777 | 0.378 |
Severe IVH, n (%) | 6 (7.9) | 4 (4.4) | χ2 = 0.866 | 0.515 |
LOS, n (%) | 9 (11.8) | 10 (11.1) | χ2 = 0.022 | 0.883 |
Severe ROP, n (%) | 8 (10.5) | 11 (12.2) | χ2 = 0.117 | 0.732 |
Severe BPD, n (%) | 6 (7.9) | 4 (4.4) | χ2 = 0.866 | 0.352 |
Days to full enteral feeding (d) | 17.0 (12.0, 24.0) (n = 73) | 24.0 (17.0, 36.0) (n = 88) | Z = −4.057 | <0.001 |
Length of hospitalization (d) | 44.0 (30.5, 59.5) (n = 73) | 44.0 (34.0, 60.0) (n = 88) | Z = −0.160 | 0.873 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, M.; Lin, J.; Wang, M.; Liao, Z.; Cao, C.; Hu, M.; Ding, Y.; Liu, Y.; Yue, S. Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China. Antibiotics 2023, 12, 741. https://doi.org/10.3390/antibiotics12040741
Chu M, Lin J, Wang M, Liao Z, Cao C, Hu M, Ding Y, Liu Y, Yue S. Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China. Antibiotics. 2023; 12(4):741. https://doi.org/10.3390/antibiotics12040741
Chicago/Turabian StyleChu, Meiyan, Jing Lin, Mingjie Wang, Zhengchang Liao, Chuanding Cao, Ming Hu, Ying Ding, Yang Liu, and Shaojie Yue. 2023. "Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China" Antibiotics 12, no. 4: 741. https://doi.org/10.3390/antibiotics12040741
APA StyleChu, M., Lin, J., Wang, M., Liao, Z., Cao, C., Hu, M., Ding, Y., Liu, Y., & Yue, S. (2023). Restrictive Use of Empirical Antibiotics Is Associated with Improved Short Term Outcomes in Very Low Birth Weight Infants: A Single Center, Retrospective Cohort Study from China. Antibiotics, 12(4), 741. https://doi.org/10.3390/antibiotics12040741