The Sample Error Pre-Antimicrobial Susceptibility Testing and Its Influencing Factors from the Perspective of Hospital Management: A Cross-Sectional Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design and Participants
2.2. Sample Errors’ Measurement
2.3. Hospital Management Factors’ Measurement
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Clinical Nurses, Hospital Management Factors and Sampling Errors
3.2. Sampling Errors and Their Influencing Factors
3.3. Resource and Technology-Oriented Error and Its Influencing Factors
3.4. Capability-Oriented Error and Its Influencing Factors
3.5. Attitude-Oriented Error and Its Influencing Factors
4. Discussion
4.1. High Frequency of Sample Errors Pre-AST
4.2. Recording Timeliness to Reduce Resource and Technology-Oriented Errors and Attitude-Oriented Errors
4.3. Performance Appraisal to Reduce Resource and Technology, Capability, and Attitude-Oriented Errors
4.4. Training to Reduce Attitude and Capability-Oriented Errors
4.5. Publicity Activities to Reduce Resource and Technology-Oriented Errors and Attitude-Oriented Errors
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- O’neill, J. Review on Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; HM Government: London, UK, 2016. [Google Scholar]
- World Health Organization. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2015. [Google Scholar]
- National Health Commission of the People’s Republic of China. 2015 Edition of the Guiding Principles of Clinical Application of Antibiotic. 2015. Available online: http://www.nhc.gov.cn/yzygj/s3594/201508/168a5ef6e0844a7b8d894f247d89d46a.shtml (accessed on 27 August 2022).
- Van Belkum, A.; Bachmann, T.T.; Lüdke, G.; Lisby, J.G.; Kahlmeter, G.; Mohess, A.; Becker, K.; Hays, J.P.; Woodford, N.; Mitsakakis, K.; et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2018, 17, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Mei, X.F.; Zuo, G.Z.; Fan, H.M.; Xie, S.Q.; Wang, L.H.; Zhang, L.; Zhang, L.L. Analysis and Countermeasures of the problems in the collection of microbiological specimens of clinical medical staff. J. Nurs. 2010, 17, 27–28. [Google Scholar]
- Ou, C.W.; Lin, Z.; Zheng, J.B.; Yin, S.L.; Huang, W.Y.; Chen, M. Analysis of unqualified samples before analysis and Countermeasures. Int. J. Lab. Med. 2011, 32, 618–619. [Google Scholar]
- Carraro, P.; Plebani, M. Errors in a Stat Laboratory: Types and Frequencies 10 Years Later. Clin. Chem. 2007, 53, 1338–1342. [Google Scholar] [CrossRef]
- Liu, J.L.; Chen, R.Y.; Qin, X.J.; Chen, H.M.; Lin, Q. Investigation on incorrect rate of laboratory test report and continuous improvement of quality. Chin. J. Clin. Lab. Sci. 2022, 40, 67–70. [Google Scholar]
- Yu, M.; Lee, T.; Mills, M.E. The Effect of Barcode Technology Use on Pathology Specimen Labeling Errors. AORN J. 2019, 109, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Halwachs-Baumann, G.; Winninger, B. Implementation of pre-labelled barcode tubes and the GeT-System in a general hospital for the exact documentation of the time of venous blood sample and improvement of sample quality. Clin. Chem. Lab. Med. 2020, 59, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Vasset, F.; Marnburg, E.; Furunes, T. The effects of performance appraisal in the Norwegian municipal health services: A case study. Hum. Resour. Health 2011, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Sepahvand, F.; Mohammadipour, F.; Parvizy, S.; Tafreshi, M.Z.; Skerrett, V.; Atashzadeh-Shoorideh, F. Improving nurses’ organizational commitment by participating in their performance appraisal process. J. Nurs. Manag. 2020, 28, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Yang, Y.C.; Huang, W.F.; Li, Y.F.; Song, P.; Chen, L.; Lan, Y. Reduction of preanalytical errors in laboratory by establishment and application of training system. J. Evid.-Based Med. 2014, 7, 258–262. [Google Scholar]
- Zhan, C.R.; Cao, L.H. Cause analysis and treatment of unqualified samples before analysis. Lab. Med. Clin. 2007, 4, 626–627. [Google Scholar]
- Corkill, D. Testing the effects of educational toilet posters: A novel way of reducing haemolysis of blood samples within ED. Australas. Emerg. Nurs. J. 2012, 15, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Anoosheh, M.; Ahmadi, F.; Faghihzadeh, S.; Vaismoradi, M. Causes and management of nursing practice errors: A questionnaire survey of hospital nurses in Iran. Int. Nurs. Rev. 2008, 55, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Ricos, C.; Garcia-Victoria Fuente, B. Quality indicators and specifications for the extra-analytical phases in clinical laboratory management. Clin. Chem. Lab. Med. 2004, 42, 578–582. [Google Scholar] [CrossRef] [PubMed]
- Simundic, A.-M.; Nikolac, N.; Vukasovic, I.; Vrkic, N. The prevalence of preanalytical errors in a Croatian ISO 15189 accredited laboratory. Clin. Chem. Lab. Med. 2010, 48, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Plebani, M.; Sciacovelli, L.; Aita, A.; Pelloso, M.; Chiozza, M.L. Performance criteria and quality indicators for the pre-analytical phase. Clin. Chem. Lab. Med. 2015, 53, 943–948. [Google Scholar] [CrossRef]
- Liu, Z.P.; Li, B.; Peng, F.Q. Application of PDCA cycle in quality management of clinical sample collection. Chongqing Med. 2005, 34, 64–65. [Google Scholar]
- Lai, X.F.; Yang, P.; Zhang, Y.H.; Cao, J.; Zhang, L. Analysis of Factors Influencing the Generation of Unqualified Clinical Samples and Measures to Prevent this Generation. Ann. Lab. Med. 2012, 32, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Chavan, P.D.; Bhat, V.G.; Poladia, P.P.; Tiwari, M.R.; Naresh, C. Reduction in sample rejections at the preanalytical phase—Impact of training in a tertiary care oncology center. J. Lab. Physicians 2019, 11, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Bölenius, K.; Söderberg, J.; Hultdin, J.; Lindkvist, M.; Brulin, C.; Grankvist, K. Minor improvement of venous blood specimen collection practices in primary health care after a large-scale educational intervention. Clin. Chem. Lab. Med. 2012, 51, 303–310. [Google Scholar] [CrossRef] [PubMed]
Variable. | N | Mean/% | Resources/Technonlogy Oriented Errors | Capability-Oriented Errors | Attitude-Oriented Errors | |||
---|---|---|---|---|---|---|---|---|
χ/t | P | χ/t | P | χ/t | P | |||
Demographic characteristic | ||||||||
Gender | 1.256 | 0.262 | 0.628 | 0.428 | 0.933 | 0.334 | ||
Male | 115 | 1.93 | ||||||
Female | 5848 | 98.07 | ||||||
Age | 5963 | 31.15 ± 6.22 | 0.574 | 0.566 | −2.182 | 0.029 | −1.542 | 0.123 |
Tenure | 5961 | 9.41 ± 6.68 | 0.173 | 0.863 | −1.637 | 0.102 | −1.775 | 0.076 |
Professional Title | 8.922 | 0.063 | 3.632 | 0.458 | 7.316 | 0.120 | ||
Senior | 1032 | 17.31 | ||||||
Associate senior | 2756 | 46.22 | ||||||
Middle degree | 1723 | 28.89 | ||||||
Primary degree | 152 | 2.55 | ||||||
Other | 190 | 3.19 | ||||||
Department | 39.617 | 0.000 | 75.106 | 0.000 | 80.004 | 0.000 | ||
Respiratory | 643 | 10.78 | ||||||
Urological surgical | 597 | 10.01 | ||||||
ICU | 936 | 15.70 | ||||||
Neurology | 752 | 12.61 | ||||||
Endocrinology | 617 | 10.35 | ||||||
Orthopedics | 978 | 16.40 | ||||||
Internalmedicine | 389 | 6.52 | ||||||
Surgery | 362 | 6.07 | ||||||
Pediatric | 251 | 4.21 | ||||||
Obstetrics and gynecology | 95 | 1.59 | ||||||
Other | 351 | 5.88 | ||||||
Tertiary hospital | 4.012 | 0.045 | 0.475 | 0.491 | 2.294 | 0.130 | ||
Is tertiary hospital | 2859 | 47.99 | ||||||
No | 3099 | 52.01 | ||||||
Clinical guidelines | 0.012 | 0.914 | 21.144 | 0.000 | 16.929 | 0.000 | ||
Have | 5274 | 88.45 | ||||||
Not have | 689 | 11.55 | ||||||
Sampling record | 5.599 | 0.018 | 11.674 | 0.001 | 0.091 | 0.763 | ||
Have | 5508 | 92.37 | ||||||
Not have | 455 | 7.63 | ||||||
Record method | 10.994 | 0.001 | 1.715 | 0.190 | 0.053 | 0.818 | ||
Paper or digital | 2240 | 38.71 | ||||||
Both | 3547 | 61.29 | ||||||
Performance appraisal | 2.240 | 0.025 | −2.061 | 0.039 | 0.4222 | 0.673 | ||
zero | 2568 | 43.07 | ||||||
one | 2962 | 49.67 | ||||||
two | 137 | 2.30 | ||||||
three | 126 | 2.11 | ||||||
four at least | 170 | 2.85 | ||||||
Training | 0.395 | 0.693 | −3.702 | 0.000 | −1.459 | 0.145 | ||
zero | 1205 | 20.21 | ||||||
one | 3596 | 60.31 | ||||||
two | 367 | 6.15 | ||||||
three | 395 | 6.62 | ||||||
four at least | 400 | 6.71 | ||||||
Publicity | 3.173 | 0.002 | −6.988 | 0.000 | −1.948 | 0.051 | ||
zero | 1832 | 30.72 | ||||||
one | 3031 | 50.83 | ||||||
two | 325 | 5.45 | ||||||
three | 322 | 5.40 | ||||||
four at least | 453 | 7.60 |
Samples Errors | N | % | Mean | SD |
---|---|---|---|---|
Resources/technology-oriented errors | 1908 | 25.3 | 1.48 | 1.15 |
Deficiency of equipment/tech | 949 | 12.6 | 1.17 | 0.68 |
Inappropriate containers | 959 | 12.7 | 1.26 | 0.96 |
Capability-oriented errors | 2937 | 38.9 | 1.35 | 0.68 |
Site infections | 2017 | 26.7 | 1.11 | 0.39 |
Wrong site selection | 920 | 12.2 | 1.12 | 0.45 |
Attitude-oriented errors | 2696 | 35.8 | 1.36 | 0.99 |
Insufficient sample volume | 2154 | 28.6 | 1.15 | 0.59 |
Samples without tagging | 542 | 7.2 | 1.26 | 0.84 |
(1) | (2) | (3) | |
---|---|---|---|
Variable | Resource/Tech-Oriented Error | Capability-Oriented Error | Attitude-Oriented Error |
Age | −0.011 ** | 0.004 | −0.007 |
[−0.020, −0.002] | [−0.005, 0.013] | [−0.016, 0.002] | |
Tenure | 0.006 | 0.002 | 0.004 |
[−0.002, 0.014] | [−0.007, 0.011] | [−0.004, 0.013] | |
Title(reference: other title) | . | . | . |
Senior | 0.082 | 0.136 ** | 0.055 |
[−0.018, 0.181] | [0.024, 0.247] | [−0.060, 0.170] | |
Associate senior | 0.110 ** | 0.070 | 0.085 |
[0.020, 0.200] | [−0.031, 0.171] | [−0.021, 0.191] | |
Middle degree | 0.178 *** | 0.050 | 0.153 *** |
[0.082, 0.275] | [−0.054, 0.155] | [0.039, 0.266] | |
Primary degree | 0.075 | 0.024 | 0.106 |
[−0.065, 0.214] | [−0.147, 0.195] | [−0.061, 0.274] | |
Department(reference:other department) | . | . | . |
Respiratory | 0.081 ** | 0.179 *** | 0.225 *** |
[0.004, 0.159] | [0.091, 0.267] | [0.138, 0.313] | |
Urological surgical | 0.316 *** | 0.275 *** | 0.430 *** |
[0.201, 0.431] | [0.171, 0.379] | [0.292, 0.567] | |
ICU | 0.152 *** | 0.323 *** | 0.188 *** |
[0.080, 0.225] | [0.240, 0.406] | [0.112, 0.264] | |
Neurology | 0.251 *** | 0.250 *** | 0.315 *** |
[0.160, 0.341] | [0.162,0.338] | [0.225, 0.404] | |
Endocrinology | 0.206 *** | 0.191 *** | 0.152 *** |
[0.120, 0.293] | [0.102, 0.280] | [0.066, 0.237] | |
Orthopedics | 0.176 *** | 0.194 *** | 0.202 *** |
[0.100, 0.251] | [0.113, 0.275] | [0.116, 0.288] | |
Internal medicine | 0.175 *** | 0.132 ** | 0.134 ** |
[0.071, 0.279] | [0.017, 0.248] | [0.029, 0.240] | |
Surgery | 0.159 ** | 0.168 *** | 0.178 *** |
[0.018, 0.300] | [0.063, 0.273] | [0.066, 0.289] | |
Pediatric | 0.139 ** | 0.161 *** | 0.257 *** |
[0.030, 0.248] | [0.049, 0.274] | [0.142, 0.371] | |
Obstetrics and gynecology | 0.239 *** | −0.079 | 0.212 *** |
[0.113, 0.366] | [−0.210, 0.053] | [0.078, 0.345] | |
Tertiary Hospital (reference:non-tertiary) | |||
Is tertiary | 0.036 | −0.052 ** | −0.013 |
[−0.008, 0.079] | [−0.094, −0.010] | [−0.060, 0.035] | |
Guidelines(reference:no) | |||
Have guidelines | −0.031 | 0.003 | 0.080 ** |
[−0.115, 0.053] | [−0.074, 0.079] | [0.009, 0.151] | |
Sampling record(reference:no) | |||
Have record | −0.354 *** | −0.019 | −0.229 *** |
[−0.524, −0.184] | [−0.123, 0.086] | [−0.339, −0.118] | |
record method:(reference:is paper or digital) | |||
Both record | −0.060 *** | −0.025 | −0.011 |
[−0.105, −0.014] | [−0.067, 0.018] | [−0.059, 0.036] | |
Performance appraisal(reference:0) | . | . | . |
one | −0.027 | 0.016 | 0.028 |
[−0.071, 0.017] | [−0.033, 0.064] | [−0.026, 0.083] | |
two | 0.048 | −0.058 | 0.024 |
[−0.091, 0.188] | [−0.201, 0.086] | [−0.137, 0.185] | |
three | 0.159 | 0.080 | −0.164 ** |
[−0.033, 0.351] | [−0.042, 0.203] | [−0.302, −0.025] | |
four at least | −0.188 *** | −0.171 *** | −0.237 *** |
[−0.270, −0.105] | [−0.273, −0.069] | [−0.340, −0.133] | |
Training(reference:0) | . | . | . |
one | 0.016 | −0.056 | 0.012 |
[−0.069, 0.102] | [−0.128, 0.017] | [−0.057, 0.080] | |
two | 0.148 ** | 0.214 *** | 0.192 *** |
[0.020, 0.277] | [0.073, 0.355] | [0.057, 0.328] | |
three | −0.023 | −0.208 *** | −0.188 *** |
[−0.133, 0.087] | [−0.310, −0.106] | [−0.330, −0.045] | |
four at least | 0.107 * | −0.102 | −0.071 |
[−0.014, 0.229] | [−0.225, 0.021] | [−0.197, 0.056] | |
Publicity(reference:0) | . | . | . |
one | −0.022 | 0.090 *** | 0.023 |
[−0.092, 0.049] | [0.025, 0.155] | [−0.041, 0.086] | |
two | −0.032 | 0.049 | 0.043 |
[−0.151, 0.088] | [−0.071, 0.169] | [−0.067, 0.153] | |
three | −0.041 | 0.184 *** | 0.252 ** |
[−0.156, 0.074] | [0.084, 0.285] | [0.027, 0.477] | |
four at least | −0.186 *** | 0.206 *** | 0.137 ** |
[−0.279, −0.093] | [0.102, 0.309] | [0.024, 0.250] | |
_cons | 0.778 *** | 0.162 | 0.522 *** |
[0.469, 1.088] | [−0.108, 0.431] | [0.258, 0.787] | |
N | 5679 | 5679 | 5679 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, Q.; Zheng, F.; Yu, T.; Wang, Y.; Fan, S.; Zhang, X. The Sample Error Pre-Antimicrobial Susceptibility Testing and Its Influencing Factors from the Perspective of Hospital Management: A Cross-Sectional Study. Antibiotics 2022, 11, 1715. https://doi.org/10.3390/antibiotics11121715
Wu Y, Wang Q, Zheng F, Yu T, Wang Y, Fan S, Zhang X. The Sample Error Pre-Antimicrobial Susceptibility Testing and Its Influencing Factors from the Perspective of Hospital Management: A Cross-Sectional Study. Antibiotics. 2022; 11(12):1715. https://doi.org/10.3390/antibiotics11121715
Chicago/Turabian StyleWu, Yuanyang, Qianning Wang, Feiyang Zheng, Tiantian Yu, Yanting Wang, Si Fan, and Xinping Zhang. 2022. "The Sample Error Pre-Antimicrobial Susceptibility Testing and Its Influencing Factors from the Perspective of Hospital Management: A Cross-Sectional Study" Antibiotics 11, no. 12: 1715. https://doi.org/10.3390/antibiotics11121715
APA StyleWu, Y., Wang, Q., Zheng, F., Yu, T., Wang, Y., Fan, S., & Zhang, X. (2022). The Sample Error Pre-Antimicrobial Susceptibility Testing and Its Influencing Factors from the Perspective of Hospital Management: A Cross-Sectional Study. Antibiotics, 11(12), 1715. https://doi.org/10.3390/antibiotics11121715