Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Control of Plant Material
2.1.1. Moisture Content
2.1.2. pH Determination
2.1.3. Ash Content
2.1.4. Heavy Metal Assays
2.2. Phytochemical Screening of Plant Material
2.2.1. Primary Metabolites
2.2.2. Secondary Metabolites
2.3. Yields and Quality Control of Essential Oils
2.3.1. Yields of EOs
2.3.2. Chemical Composition of EOs of the Plants Studied
2.4. Analysis of the Similarity between the EOs of the Plants Studied
2.4.1. Hierarchical Ascending Classification (HAC)
2.4.2. Principal Component Analysis (PCA)
2.5. EO Quality Control
2.5.1. Density
2.5.2. Acid Value
2.5.3. Iodine Value
2.5.4. Peroxide Value
2.5.5. Saponification Value
2.6. Antioxidant Activity of EOs
2.7. Antimicrobial Activity
2.7.1. Antibacterial Activity
2.7.2. Antifungal Activity
2.8. Correlation of the Chemical Composition of EOs and Their Antimicrobial Activities
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Material
3.3. Quality Control of Plant Material
3.3.1. Moisture Content (MC)
3.3.2. pH Determination
3.3.3. Determination of Titratable Acidity
3.3.4. Ash Contents
3.3.5. Heavy Metal Assays: Atomic Emission Spectrometry Coupled with Induced Plasma (ICP-AES)
3.4. Phytochemical Screening of Plant Material
3.4.1. Primary Metabolites
3.4.2. Secondary Metabolites
3.5. Extraction and Quality Control of EOs
3.5.1. Extraction and Determination of EOs Yields
3.5.2. Analysis and Identification of the Chemical Composition of EOs
3.5.3. EO Quality Control
Density
Acid Value
Iodine Value
Peroxide Value
Saponification Value
3.6. Antimicrobial Activity
3.6.1. Microbial Material
3.6.2. Determination of Minimum Inhibitory Concentration, Minimum Bactericidal Concentration, and Minimum Fungicidal Concentration
3.7. Antioxidant Activity of EOs by the Antiradical DPPH Method
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Rimawi, F.; Jaradat, N.; Qneibi, M.; Hawash, M.; Emwas, N. Free radicals and enzymes inhibitory potentials of the traditional medicinal plant Echium angustifolium. Eur. J. Integr. Med. 2020, 38, 101196. [Google Scholar] [CrossRef]
- Sun, J.; Sun, P.; Kang, C.; Zhang, L.; Guo, L.; Kou, Y. Chemical composition and biological activities of essential oils from six lamiaceae folk medicinal plants. Front. Plant Sci. 2022, 13, 919294. [Google Scholar] [CrossRef] [PubMed]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical Composition and In Vitro Antibacterial Activity of the Essential Oil of Cedrus atlantica. Int. J. Agric. Biol. 2010, 12, 381–385. [Google Scholar]
- Abdoul-Latif, M.F.; Ainane, A.; Oumaskour, K.; Boujaber, N.; Jalludin, M.; Ainane, T. Chemical Composition and Antimicrobial Activity of the Essential Oil of Chamaemelum Nobile (L.) All. PhOL 2021, 2, 449–457. [Google Scholar]
- Ma, L.; Li, J. Food Flavor Substances. In Essentials of Food Chemistry; Springer: Singapore, 2021; pp. 433–509. [Google Scholar]
- Czernicka, M.; Chłosta, I.; Kęska, K.; Kozieradzka-Kiszkurno, M.; Abdullah, M.; Popielarska-Konieczna, M. Protuberances are organized distinct regions of long-term callus: Histological and transcriptomic analyses in kiwifruit. Plant Cell Rep. 2021, 40, 637–665. [Google Scholar] [CrossRef]
- Sarkic, A.; Stappen, I. Essential Oils and Their Single Compounds in Cosmetics—A Critical Review. Cosmetics 2018, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- De Groot, A.C.; Schmidt, E. Essential Oils: Contact Allergy and Chemical Composition; CRC Press: Boca Raton, FL, USA, 2016; p. 1058. [Google Scholar]
- Drioiche, A.; Benhlima, N.; Kchibale, A.; Boutahiri, S.; Ailli, A.; El Hilali, F.; Moukaid, B.; Zair, T. Ethnobotanical investigation of herbal food additives of Morocco used as natural dyes. Ethnobot. Res. Appl. 2021, 21, 11. [Google Scholar] [CrossRef]
- Caputo, L.; Nazzaro, F.; Souza, L.F.; Luigi, A.; Martino, L.D.; Fratianni, F.; Coppola, R.; Feo, V.D. Laurus nobilis: Composition of Essential Oil and its Biological Activities. Molecules 2017, 22, 930. [Google Scholar] [CrossRef]
- Dobroslavi, E.; Repaji, M.; Dragović-Uzelac, V.; Garofuli, I.E. Isolation of Laurus nobilis Leaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022, 11, 235. [Google Scholar] [CrossRef]
- Farkas, P.; Hollá, M.; Vaverková, S.; Stahlová, B.; Tekel, J.; Havránek, E. Composition of the Essential Oil from the Flowerheads of Chamaemelum nobile (L.) All. (Asteraceae) Cultivated in Slovak Republic. J. Essent. Oil Res. 2003, 15, 83–85. [Google Scholar] [CrossRef]
- Kacániová, M.; Terentjeva, M.; Galovičová, L.; Ivanišová, E.; Štefániková, J.; Valková, V.; Borotová, P.; Kowalczewski, P.Ł.; Kunová, S.; Felšöciová, S.; et al. Biological Activity and Antibiofilm Molecular Profile of Citrus aurantium Essential Oil and its Application in a Food Model. Molecules 2020, 25, 3956. [Google Scholar] [CrossRef]
- Moraes, T.M.; Kushima, H.; Moleiro, F.C.; Santos, R.C.; Machado Rocha, L.R.; Marques, M.O.; Vilegas, W.; Hiruma-Lima, C.A. Effects of limonene and essential oil from Citrus aurantium on gastric mucosa: Role of prostaglandins and gastric mucus secretion. Chem. Biol. Interact. 2009, 180, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Leja, K.; Szudera-Kończal, K.; Switała, E.; Juzwa, W.; Kowalczewski, P.Ł.; Czaczyk, K. The Influence of Selected Plant Essential Oils on Morphological and Physiological Characteristics in Pseudomonas Orientalis. Foods 2019, 8, 277. [Google Scholar] [CrossRef] [Green Version]
- Ouedrhiri, W.; Bouhdid, S.; Balouiri, M.; Lalami, A.E.O.; Moja, S.; Chahdi, F.O.; Greche, H. Chemical composition of Citrus aurantium L. leaves and zest essential oils, their antioxidant, antibacterial single and combined effects. J. Chem. Pharm. Res. 2015, 7, 78–84. [Google Scholar]
- Amorim, J.L.; Simas, D.L.R.; Pinheiro, M.M.G.; Moreno, D.S.A.; Alviano, C.S.; da Silva, A.J.R.; Dias Fernandes, P. Anti-Inflammatory Properties and Chemical Characterization of the Essential Oils of Four Citrus Species. PLoS ONE 2016, 11, e0153643. [Google Scholar] [CrossRef] [Green Version]
- Khakpour, S.; Khosravi, M.; Mashayekhipour, Z.; Jahromy, M.H. Effect of Citrus aurantium L. Essential Oil and Haloperidol on Anxiety in Male Mice. World J. Neurosci. 2014, 4, 427–433. [Google Scholar] [CrossRef]
- Tabanca, N.; Demirci, B.; Nalbantsoy, A.; Kendra, P.E.; Demirci, F.; Demirci, B. Chemical Characterization and Biological Activity of the Mastic Gum Essential Oils of Pistacia lentiscus var. Chia from Turkey. Molecules 2020, 25, 2136. [Google Scholar] [CrossRef]
- Xynos, N.; Termentzi, A.; Fokialakis, N.; Skaltsounis, L.A.; Aligiannis, N. Supercritical CO2 extraction of mastic gum and chemical characterization of bioactive fractions using LC-HRMS/MS and GC–MS. J. Supercrit. Fluids 2018, 133, 349–356. [Google Scholar] [CrossRef]
- Paoli, M.; Nam, A.M.; Castola, V.; Casanova, J.; Bighelli, A. Chemical Variability of the Wood Essential Oil of Cedrus atlantica Manetti from Corsica. Chem. Biodivers. 2011, 8, 344–351. [Google Scholar] [CrossRef]
- Belkacem, N.; Khettal, B.; Hudaib, M.; Bustanji, Y.; Abu-Irmaileh, B.; Amrine, C.S.M. Antioxidant, antibacterial, and cytotoxic activities of Cedrus atlantica organic extracts and essential oil. Eur. J. Integr. Med. 2021, 42, 101292. [Google Scholar] [CrossRef]
- Nunes, H.S.; Miguel, M.G. Rosa damascena essential oils: A brief review about chemical composition and biological properties. Trends Phytochem. Res. 2017, 1, 111–128. [Google Scholar]
- Harborne, A.J. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Bruneton, J. Pharmacognosie, Phytochimie, Plantes Médicinales, 3rd ed.; Techniques et documentations; Lavoisier: Paris, France, 1999. [Google Scholar]
- Paun, G.; Zrira, S.; Boutakiout, A.; Ungureanu, O.; Simion, D.; Chelaru, C.; Radu, G.L. Chemical composition, antioxidant and antibacterial activity of essential oils from moroccan aromatic herbs. Rev. Roum. Chim. 2013, 58, 891–897. [Google Scholar]
- Milia, E.; Usai, M.; Szotáková, B.; Elstnerová, M.; Králová, V.; D’hallewin, G.; Spissu, Y.; Barberis, A.; Marchetti, M.; Bortone, A.; et al. The Pharmaceutical Ability of Pistacia lentiscus L. Leaves Essential Oil Against Periodontal Bacteria and Candida sp. and Its Anti-Inflammatory Potential. Antibiotics 2020, 9, 281. [Google Scholar] [CrossRef]
- El Idrissi, M.; Idrissi, E.L. Caractérisation Chimique de Certaines Espèces de Thym Marocain Du Moyen Atlas (Région de Khenifra). Sci. Lib. 2014, 6, 140906. [Google Scholar]
- Fidan, H.; Stefanova, G.; Kostova, I.; Stankov, S.; Stoyanova, A.; Zheljazkov, V.D. Chemical Composition and Antimicrobial Activity of Laurus nobilis L. Essential Oils from Bulgaria. Molecules 2019, 24, 804. [Google Scholar] [CrossRef] [Green Version]
- Ekren, S.; Yerlikaya, O.; Tokul, H.E.; Akpınar, A.; Acu, M. Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr. J. Microbiol. Res. 2013, 7, 383–388. [Google Scholar]
- Snuossi, M.; Trabelsi, N.; Ben Taleb, S.; Dehmeni, A.; Flamini, G.; de Feo, V. Laurus nobilis, Zingiber officinale and Anethum graveolens essential oils: Composition, antioxidant and antibacterial activities against bacteria isolated from fish and shellfish. Molecules 2016, 21, 1414. [Google Scholar] [CrossRef] [Green Version]
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical composition and antibacterial activity of leaves essential oil of Laurus nobilis from Morocco. Aust. J. Basic Appl. Sci. 2009, 3, 3818–3824. [Google Scholar]
- Yalcin, H.; Anik, M.; Sanda, M.A.; Cakir, A. Gas chromatography/mass spectrometry analysis of Laurus nobilis essential oil composition of northern Cyprus. J. Med. Food. 2007, 10, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Roozbeh, F.; Dong-Jin, L. P 021—Chemical constituents and antioxidant properties of Matricaria recutita and Chamaemelum nobile essential oil growing in south west of Iran. Free Radic. Biol. Med. 2017, 108 (Suppl. 1), S24. [Google Scholar]
- Aremu, O.O.; Tata, C.M.; Sewani-Rusike, C.R.; Oyedeji, A.O.; Oyedeji, O.O.; Nkeh-Chungag, B.N. Phytochemical composition, and analgesic and anti-inflammatory properties of essential oil of Chamaemelum nobile (Asteraceae L All) in rodents. Trop. J. Pharm. Res. 2018, 17, 1939–1945. [Google Scholar] [CrossRef] [Green Version]
- Bourgou, S.; Rahali, F.Z.; Ourghemmi, I.; Saïdani Tounsi, M. Changes of Peel Essential Oil Composition of Four Tunisian Citrus during Fruit Maturation. Sci. World J. 2012, 2012, 528593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I. Volatile constituents and antioxidant activity of peel, flowers and leaf oils of Citrus aurantium L. growing in Greece. Molecules 2013, 18, 10639–10647. [Google Scholar] [CrossRef] [Green Version]
- Duru, M.E.; Cakir, A.; Kordali, S.; Zengin, H.; Harmandar, M.; Izumi, S.; Hirata, T. Chemical composition and antifungal properties of essential oils of three Pistacia species. Fitoterapia 2003, 74, 170–176. [Google Scholar] [CrossRef]
- Aberchane, M.; Fechtal, M.; Chaouch, A. Analysis of Moroccan Atlas Cedarwood Oil (Cedrus atlantica Manetti). J. Essent. Oil Res. 2004, 16, 542–547. [Google Scholar] [CrossRef]
- Boudarene, L.; Baaliouamer, A.; Meklati, B.Y.; Scharff, C. Composition of the Seed Oils from Algerian Cedrus atlantica G. Manetti. J. Essent. Oil Res. 2004, 16, 61–63. [Google Scholar] [CrossRef]
- Ghavam, M.; Afzali, A.; Manconi, M.; Bacchetta, G.; Manca, M.L. Variability in chemical composition and antimicrobial activity of essential oil of Rosa × damascena Herrm. from mountainous regions of Iran. Chem. Biol. Technol. Agric. 2021, 8, 22. [Google Scholar] [CrossRef]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J. Agric. Food. Chem. 2006, 54, 4364–4370. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Nenadis, N.; Tsimidou, M.Z.; Mantzouridou, F.T. Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods 2022, 11, 752. [Google Scholar] [CrossRef]
- Zarith Asyikin, A.A.; Akil, A.; Siti Hamidah, M.S.; Alptug, K.; Muhammad Mohsin, A.; David, L.; Mohd, R.; Magdah, G.; Mohammad, A.K.; Ghulam, M.A. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar]
- Shanaida, M.; Hudz, N.; Białon, M.; Kryvtsowa, M.; Svydenko, L.; Filipska, A.; Wieczorek, P.P. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci. 2021, 28, 6145–6152. [Google Scholar] [CrossRef]
- González-Mas, M.C.; Rambla, J.L.; López-Gresa, M.P.; Blázquez, M.A.; Granell, A. Volatile Compounds in Citrus Essential Oils: A Comprehensive Review. Front. Plant Sci. 2019, 10, 12. [Google Scholar] [CrossRef]
- Fortes, G.A.C.; Naves, S.S.; Godoi, F.F.F.; Duarte, A.R.; Ferri, P.H.; Santos, S.C. Assessment of a Maturity Index in Jabuticaba Fruit by the Evaluation of Phenolic Compounds, Essential Oil Components, Sugar Content and Total Acidity. Am. J. Food Technol. 2011, 6, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Farahmandfar, R.; Asnaashari, M.; Pourshayegan, M.; Maghsoudi, S.; Moniri, H. Evaluation of antioxidant properties of lemon verbena (Lippia citriodora) essential oil and its capacity in sunflower oil stabilization during storage time. Food Sci. Nutr. 2018, 6, 983–990. [Google Scholar] [CrossRef]
- CODEX STAN 210-1999; Codex Alimentarius. International Food Standards for Named Vegetable Oils. Adopted in 1999. Amendment: 2005, 2011, 2013, 2015. Revision: 2001, 2003, 2009. Codex Alimentarius: Paris, France, 2009.
- Asnaashari, E.; Asnaashari, M.; Ehtiati, A.; Farahmandfar, R. Comparison of adaptive neuro-fuzzy inference system and artificial neural networks (MLP and RBF) for estimation of oxidation parameters of soybean oil added with curcumin. J. Food Meas. Charact. 2015, 9, 215–224. [Google Scholar] [CrossRef]
- Ibipiriene, E.-F.; Akpa, J.G.; Ehirim, E.O. Comparative Study on the Analysis and Utilization of Citrus Peels Essential Oil and Pectin. Iconic Res. Eng. J. 2022, 5, 402–411. [Google Scholar]
- Guenane, H.; Gherib, A.; Carbonell-Barrachina, Á.; Cano-Lamadrid, M.; Krika, F.; Berrabah, M.; Maatallah, M.; Bakchiche, B. Minerals analysis, antioxidant and chemical composition of extracts of Laurus nobilis from southern Algeria. J. Mater. Environ. Sci. 2016, 7, 4253–4261. [Google Scholar]
- Mssillou, I.; Agour, A.; El Ghouizi, A.; Hamamouch, N.; Lyoussi, B.; Derwich, E. Chemical Composition, Antioxidant Activity, and Antifungal Effects of Essential Oil from Laurus nobilis L. Flowers Growing in Morocco. J. F. Qual. 2020, 2020, 8819311. [Google Scholar] [CrossRef]
- Ben Hsouna, A.; Hamdi, N.; Ben Halima, N.; Abdelkafi, S. Characterization of Essential Oil from Citrus aurantium L. Flowers: Antimicrobial and Antioxidant Activities. J. Oleo Sci. 2013, 62, 763–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Li, X.; Jiang, Q.; Sun, H.; Jiang, J.; Chen, S.; Guan, Z.; Fang, W.; Chen, F. GC-MS Analysis of the Volatile Constituents in the Leaves of 14 Compositae Plants. Molecules 2018, 23, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 2nd ed.; CRC Press: Abingdon, UK, 2015. [Google Scholar]
- Ansari Dezfooli, N.; Hasanzadeh, N.; Bagher Rezaee, M.; Ghasemi, A. Antibacterial Activity and Chemical Compositions of Chamaemelum nobile Essential Oil/Extracts against Psedomonas tolaasii, the Causative Agent of Mushroom Brown Blotch. Anna. Biol. Res. 2012, 3, 2602–2608. [Google Scholar]
- Ben Hsouna, A.; Ben Halima, N.; Smaoui, S.; Hamdi, N. Citrus lemon essential oil: Chemical composition, antioxidant and antimicrobial activities with its preservative effect against Listeria monocytogenes inoculated in minced beefmeat. Lipids Health Dis. 2017, 16, 146. [Google Scholar] [CrossRef] [Green Version]
- Saab, A.M.; Gambari, R.; Sacchetti, G.; Guerrini, A.; Lampronti, I.; Tacchini, M.; El Samrani, A.; Medawar, S.; Makhlouf, H.; Tannoury, M.; et al. Phytochemical and pharmacological properties of essential oils from Cedrus species. Nat. Prod. Res. 2018, 32, 1415–1427. [Google Scholar] [CrossRef]
- NF V03-402; Spices and HERBS—Determination of Water Content—Entrainment Method. Spices and Aromatics—Determination of Water Content—Entrainment Method. AFNOR Editions: La Plaine Saint-Denis, France, 1985.
- NF V05-113; Fruits, Vegetables and Derived Products—Mineralization of Organic Matter—Method by Incineration. AFNOR Editions: La Plaine Saint-Denis, France, 1972.
- NF EN 1999-1-1/A1; Eurocode 9—Design of Aluminum Structures—Part 1-1: General Rules. AFNOR Editions: La Plaine Saint-Denis, France, 1999.
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Senhaji, S.; Lamchouri, F.; Boulfia, M.; Lachkar, N.; Bouabid, K.; Toufik, H. Mineral Composition, in Vitro Inhibitory Effects of α-Amylase, α-Glucosidase, β-Galactosidase Enzymes and Antibacterial Activity of Ajuga Iva Subsp. Pseudoiva (Dc.) Bric. Biointerface Res. Appl. Chem. 2022, 12, 2373–2391. [Google Scholar] [CrossRef]
- Akrout, A.; Chemli, R.; Chreïf, I.; Hammami, M. Analysis of the essential oil of Artemisia campestris L. Flavour Fragr. J. 2001, 16, 337–339. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; Volume 456. [Google Scholar]
- Kovats, E.S. Gas chromatographic characterization of organic substances in the retention index system. Adv. Chromatogr. 1965, 1, 229–247. [Google Scholar]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.H.; Otsuka, N.; Noyori, K.; Shiota, S.; Ogawa, W.; Kuroda, T.; Hatano, T.; Tsuchiya, T. Synergistic Effect of Kaempferol Glycosides Purified from Laurus nobilis and Fluoroquinolones on Methicillin-Resistant Staphylococcus aureus. Biol. Pharm. Bull. 2009, 32, 489–492. [Google Scholar] [CrossRef] [Green Version]
Species | MC (%) | pH | Acidity (%) | OM (%) | MM (%) |
---|---|---|---|---|---|
Laurus nobilis | 14.88 ± 0.11 | 5.76 ± 0.01 | 0.85 ± 0.02 | 96.33 | 3.67 |
Chamaemelum nobile | 18.01 ± 0.27 | 4.55 ± 0.02 | 1.73 ± 0.06 | 91.95 | 8.05 |
Citrus aurantium | 83.61 ± 0.20 | 4.78 ± 0.01 | 3.04 ± 0.16 | 94.10 | 5.90 |
Pistacia lentiscus | 10.27 ± 0.22 | 4.03 ± 0.02 | 0.18 ± 0.02 | 81.77 | 18.23 |
Cedrus atlantica | 13.33 ± 0.31 | 5.41 ± 0.01 | 0.21 ± 0.10 | 71.86 | 28.14 |
Rosa damascena | 10.29 ± 0.29 | 4.93 ± 0.01 | 4.19 ± 0.06 | 95.02 | 4.98 |
Species | Chrome(Cr) | Antimony (Sb) | Lead (Pb) | Cadmium (Cd) | Iron (Fe) | Titanium (Ti) |
---|---|---|---|---|---|---|
Laurus nobilis | 0.0003 | 0.0126 | Undetectable | Undetectable | 0.4512 | 0.0102 |
Chamaemelum nobile | 0.0011 | 0.0102 | Undetectable | Undetectable | 1.166 | 0.0135 |
Citrus aurantium | 0.0002 | 0.008 | Undetectable | Undetectable | 0.3816 | 0.0043 |
Pistacia lentiscus | Undetectable | 0.0131 | 0.0018 | Undetectable | 1.002 | 0.0083 |
Cedrus atlantica | ND | ND | ND | ND | ND | ND |
Rosa damascena | Undetectable | 0.0081 | Undetectable | Undetectable | 0.4369 | 0.0056 |
Maximum Limit | 2 | 1 | 3 | 0.3 | 20 | – |
Species | Lipids | Proteins | Reducing Sugars | Polysaccharides | |
---|---|---|---|---|---|
Rx of Biuret | Rxxanthoproteic | ||||
Laurus nobilis | +++ | ++ | +++ | ++ | +++ |
Chamaemelum nobile | ++ | ++ | ++ | + | ++ |
Citrus aurantium | + | +++ | +++ | ++ | + |
Pistacia lentiscus | +++ | +++ | +++ | ++ | − |
Cedrus atlantica | − | + | ++ | + | − |
Rosa damascena | − | + | ++ | − | + |
Species | Tannins | Flavonoids | Alkaloids | Mucilage | Saponosides | |||||
---|---|---|---|---|---|---|---|---|---|---|
Totals | Catechists | Gallic | Flavonoids | Cyanidin Reaction | Anthocyanes | Dragendorff | Mayer | |||
Laurus nobilis | ++ | +++ | +++ | ++ | + | − | − | − | ++ | + |
Chamaemelum nobile | ++ | ++ | − | ++ | − | − | − | − | − | − |
Citrus aurantium | ++ | − | ++ | ++ | − | − | − | − | +++ | − |
Pistacia lentiscus | +++ | +++ | +++ | + | − | + | − | − | ++ | + |
Cedrus atlantica | + | + | − | + | − | − | − | − | − | − |
Rosa damascena | +++ | +++ | +++ | +++ | ++ | + | − | − | +++ | + |
RA (%) | IK | Compounds |
---|---|---|
0.63 | 930 | Thujene<α-> |
5.29 | 939 | Pinene<α-> |
0.15 | 954 | Camphene |
12.08 | 975 | Sabinene |
4.06 | 979 | Pinene<β-> |
0.72 | 990 | Myrcene |
0.17 | 1002 | Phellandrene<α-> |
1.85 | 1029 | Limonene |
1.07 | 1029 | Phellandrene<β-> |
36.58 | 1031 | Cineole<1,8-> |
0.68 | 1059 | Terpinene<γ-> |
0.56 | 1070 | Sabinene hydrate <cis-> |
0.69 | 1088 | Terpinolene |
3.45 | 1096 | Linalool |
0.33 | 1098 | Sabinene hydrate <trans-> |
0.39 | 1166 | Terpineol<δ-> |
1.49 | 1177 | Terpinen-4-ol |
3.15 | 1188 | Terpineol<α-> |
0.16 | 1285 | Bornylacetate |
0.59 | 1317 | Terpinylacetate<δ-> |
15.42 | 1349 | Terpinylacetate<α-> |
1.57 | 1359 | Eugenol |
0.5 | 1390 | Elemene<β-> |
5.34 | 1403 | Methyleugenol |
0.15 | 1500 | Bicyclogermacrene |
0.15 | 1513 | Cadinene<γ-> |
0.46 | 1523 | Cadinene<δ-> |
0.26 | 1541 | Copaen-11-ol <α-> |
0.41 | 1557 | Elemicin |
0.71 | 1578 | Spathulenol |
0.18 | 1592 | Viridiflorol |
0.16 | 1602 | Ledol |
0.41 | 1654 | Cadinol<α-> |
0.17 | 1689 | Shyobunol |
Compounds identified (%) | 99.98 | |
Oxygenated monoterpenes (%) | 47.52 | |
Monoterpenes (%) | 27.39 | |
Oxygenated sesquiterpenes (%) | 23.81 | |
Sesquiterpenes (%) | 1.26 |
RA (%) | IK | Compounds |
---|---|---|
0.26 | 911 | Isobutylisobutyrate |
0.27 | 912 | Tiglicacid |
1.01 | 960 | 2-Methylallyl isobutyrate |
0.25 | 1001 | Isobutyl 2-methylbutanoate |
0.27 | 1014 | 2-Methylbutyl isobutyrate |
0.79 | 1020 | 2-Methylallyl 2-methylbutanoate |
1.46 | 1051 | Isobutylangelate |
1.36 | 1060 | 2-Methylbut-2-en-1-yl isobutyrate |
19.39 | 1112 | Methallylangelate |
0.69 | 1147 | Isoamylangelate |
1.03 | 1158 | 2-Methylbutyl angelate |
0.20 | 1160 | Valeric acid, 3-methylbut-2-enyl ester |
0.52 | 1190 | Prenylangelate |
0.78 | 1193 | (Z)-(E)-2-Methylbut-2-en-1-yl 2-methylbut-2-enoate |
41.79 | 1200 | AngelylAngelate |
0.22 | 1230 | 2-Butenoic acid, 3-methyl-, 3-methyl-2-butenyl ester |
0.11 | 1237 | Pulegone |
19.33 | 1243 | 2-hydroxy-2-methyl-3-butenyl Angelate |
0.23 | 1252 | Methylpentylangelate<3-> |
0.24 | 1290 | Thymol |
2.15 | 1299 | Carvacrol |
1.08 | 1300 | 2-hydroxy-2-methyl-3-butenyl Angelate |
0.12 | 1317 | Hexenyltiglate<(3E)-> |
1.83 | 1321 | Hexenyltiglate<(3Z)-> |
1.12 | 1366 | Decanoicacid |
0.20 | 1480 | Curcumene<ar-> |
0.18 | 1497 | Benzyltiglate |
0.15 | 1583 | Caryophylleneoxide |
0.16 | 1640 | Cadinol<epi-α-> |
0.56 | 1800 | Psoralen, 3-(α,α-dimethylallyl)- |
0.94 | 1840 | Psoralen, 3-(α,α-dimethylallyl)- |
0.18 | 1900 | Corymbolone |
0.69 | 1940 | 1-Phenyldodec-1-en-3-one |
Compounds identified (%) | 99.56 | |
Oxygenated monoterpenes (%) | 94.32 | |
Oxygenated sesquiterpenes (%) | 5.04 | |
Sesquiterpenes (%) | 0.20 | |
Monoterpenes (%) | 0.00 |
RA (%) | IK | Compounds |
---|---|---|
0.18 | 939 | Pinene<α-> |
0.57 | 975 | Sabinene |
3.98 | 979 | Pinene<β-> |
1.06 | 990 | Myrcene |
6.42 | 1029 | Limonene |
0.67 | 1037 | Ocimene<(Z)-β-> |
0.07 | 1042 | Benzeneacetaldehyde |
5.93 | 1050 | Ocimene<(E)-β-> |
0.05 | 1059 | Terpinene<γ-> |
0.10 | 1072 | Linalooloxide<cis-> |
0.44 | 1088 | Terpinolene |
29.01 | 1096 | Linalool |
0.11 | 1177 | Terpinen-4-ol |
5.47 | 1188 | Terpineol<α-> |
1.05 | 1229 | Nerol |
3.09 | 1252 | Geraniol |
12.46 | 1257 | Linaloolacetate |
0.22 | 1291 | Indole |
0.25 | 1337 | Anthranilate<methyl-> |
0.17 | 1349 | Terpinylacetate<α-> |
2.42 | 1361 | Nerylacetate |
4.57 | 1381 | Geranylacetate |
0.36 | 1419 | Caryophyllene<(E)-> |
0.19 | 1500 | Bicyclogermacrene |
0.06 | 1505 | Farnesene<(E,E)-α-> |
6.91 | 1563 | Nerolidol<(E)-> |
0.2 | 1583 | Nerylisovalerate |
0.1 | 1689 | Farnesol<2,3-dihydro-> |
0.29 | 1700 | Heptadecane<n-> |
12.77 | 1743 | Farnesol<(2E,6E)-> |
0.09 | 1846 | Farnesylacetate<(2E,6E)-> |
0.07 | 1878 | Cubitene |
0.08 | 1900 | Nonadecane<n-> |
0.4 | 1938 | Cembrene |
Compounds identified (%) | 99.81 | |
Oxygenated sesquiterpenes (%) | 39.69 | |
Oxygenated monoterpenes (%) | 39.15 | |
Monoterpenes (%) | 19.52 | |
Sesquiterpenes (%) | 1.45 |
RA (%) | IK | Compounds |
---|---|---|
1.63 | 911 | Isobutylisobutyrate |
10.16 | 939 | Pinene<α-> |
0.44 | 950 | 2-Methylallyl isobutyrate |
0.88 | 954 | Camphène |
1.27 | 979 | Pinene<β-> |
0.51 | 990 | Myrcene |
0.92 | 995 | Isobutyl-(2E)-butenoate |
0.55 | 1025 | Allyltiglate |
0.66 | 1038 | Propyltiglate |
10.65 | 1051 | Isobutylangelate |
0.42 | 1055 | Pentylisobutanoate |
3.46 | 1088 | Terpinolene |
1.22 | 1088 | Butylangelate |
1.62 | 1090 | 3-Methylbutylmethacrylate |
1.74 | 1091 | Pentylbutanoate |
0.99 | 1093 | Isobutyl 2-methylbutanoate |
1.33 | 1096 | Linalool |
1.22 | 1100 | Methyl butyl-2-methyl butyrate <2-> |
8.4 | 1112 | Methallylangelate |
1.62 | 1151 | Hexylisobutanoat |
2.99 | 1164 | Pinocarvone |
1.33 | 1177 | Terpinen-4-ol |
2.10 | 1185 | n-Hexylmethacrylate |
5.79 | 1190 | pentyl 2-methylisocrotonate |
2.84 | 1190 | Prenylangelate |
1.45 | 1195 | Myrtenal |
0.88 | 1197 | Butanoic acid, 2-methyl-4-methylpentyl ester |
0.66 | 1243 | 2-hydroxy-2-methyl-3-butenyl Angelate |
27.83 | 1252 | Methylpentylangelate<3> |
0.72 | 1419 | Caryophyllene<(E)-> |
3.29 | 1481 | Germacrene D |
0.43 | 1505 | Farnesene<(E,E)-α-> |
Compounds identified (%) | 100 | |
Oxygenated monoterpenes (%) | 49.35 | |
Oxygenated sesquiterpenes (%) | 28.71 | |
Monoterpenes (%) | 17.50 | |
Sesquiterpenes (%) | 4.44 |
RA (%) | IK | Compounds |
---|---|---|
0.46 | 1026 | Menthene<1-ρ-> |
0.34 | 1319 | Cycloisolongifolene<didehydro-> |
0.20 | 1352 | Longipinene<α-> |
0.76 | 1371 | Cyclosativene |
0.56 | 1407 | Longifolene |
1.75 | 1446 | Vestitenone |
15.74 | 1451 | Himachalene<α-> |
0.68 | 1477 | Chamigrene<β-> |
10.49 | 1482 | Himachalene<γ-> |
2.11 | 1495 | Cadina-1,4-diene <cis-> |
40.19 | 1500 | Himachalene<β-> |
0.30 | 1503 | Dihydroagarofuran<β-> |
1.39 | 1517 | Himachalene<α-dehydro-ar-> |
2.16 | 1523 | Cadinene<δ-> |
0.22 | 1529 | Calamenene<cis-> |
2.92 | 1532 | Himachalene<γ-dehydro-ar-> |
1.24 | 1545 | Calacorene<α-> |
1.87 | 1555 | Vetivenene<β-> |
0.29 | 1565 | Calacorene<β-> |
0.83 | 1579 | Himachaleneepoxide |
0.40 | 1599 | Longiborneol |
0.94 | 1616 | Himachaleneoxide<β-> |
1.14 | 1619 | Cubenol<1,10-di-epi-> |
0.61 | 1626 | Isolongifolanone<trans-> |
0.43 | 1653 | Himachalol |
1.60 | 1662 | Allohimachalol |
1.89 | 1685 | Bisabolol<α-> |
1 | 1694 | Atlantone<(Z)-γ-> |
2.22 | 1706 | Atlantone<(E)-γ-> |
4.57 | 1709 | Thujopsenal<cis-> |
0.67 | 1718 | Atlantone<(Z)-α-> |
Compounds identified (%) | 99.97 | |
Sesquiterpenes (%) | 81.16 | |
Oxygenated sesquiterpenes (%) | 18.35 | |
Monoterpenes (%) | 0.46 | |
Oxygenated monoterpenes (%) | 0 |
RA (%) | IK | Compounds |
---|---|---|
0.63 | 1038 | 2-Propanol, 1,1′-oxybis- |
0.8 | 1100 | Dipropylene glycol |
0.28 | 1180 | 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4one |
0.17 | 1403 | Methyleugenol |
0.52 | 1566 | Dodecanoicacid |
0.63 | 1585 | 8-Heptadecene |
0.37 | 1612 | Tetradecanal |
5.35 | 1700 | Heptadecane<n-> |
0.37 | 1723 | Methylmyristate |
0.47 | 1800 | Octadecane<n-> |
12.98 | 1860 | 1-Nonadecene |
44.89 | 1900 | Nonadecane<n-> |
0.34 | 1960 | Hexadecanoicacid |
3.52 | 2000 | Eicosane<n-> |
19.49 | 2100 | Heneicosane<n-> |
1.57 | 2200 | 17-Pentatriacontene |
0.44 | 2250 | Henicos-1-ene |
0.34 | 2300 | Phenethyltetradecanoate |
0.3 | 2320 | Anthracene, 9-propyl- |
4.04 | 2400 | Tetracosane<n-> |
0.43 | 2420 | Citronellyl benzoate |
0.34 | 2450 | 5-Eicosene, (E)- |
0.33 | 2460 | 2-Phenylethyl nonanoate |
0.28 | 2460 | Oleicacid,3-(octadecyloxy)propyl ester |
Compounds identified (%) | 98.88 | |
Sesquiterpenes (%) | 94.02 | |
Oxygenated sesquiterpenes (%) | 3.15 | |
Oxygenated monoterpenes (%) | 1.71 | |
Monoterpenes (%) | 0.00 |
Species | Percentage (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ethers | Alkenes | Esters | Alcohols | Acids | Ketones | Hydrocarbons | Amines | Aldehydes | |
Laurus nobilis | 42.33 | 28.65 | 16.17 | 12.83 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Chamaemelum nobile | 0.15 | 0.00 | 94.29 | 2.55 | 1.39 | 0.98 | 0.2 | 0.00 | 0.00 |
Citrus aurantium | 0.00 | 0.00 | 20.16 | 58.61 | 0.00 | 0.00 | 20.75 | 0.22 | 0.07 |
Pistacia lentiscus | 0.00 | 0.00 | 72.18 | 2.66 | 0.00 | 2.99 | 20.72 | 0.00 | 1.45 |
Cedrus atlantica | 2.07 | 0.00 | 0.00 | 5.46 | 0.00 | 19.81 | 68.06 | 0.00 | 4.57 |
Rosa damascena | 0.17 | 0.00 | 1.75 | 1.43 | 0.86 | 0.28 | 94.02 | 0.00 | 0.37 |
EO | Density (g/mL) | Acidity | Iodine | Peroxide | Saponification |
---|---|---|---|---|---|
Laurus nobilis | 0.912 ± 0.001 | 0.5 ± 0.03 | 0.812 ± 0.01 | 4 ± 0.08 | 0.471 ± 0.04 |
Chamaemelum nobile | 0.921 ± 0.002 | 2.24 ± 0.01 | 0.989 ± 0.01 | 30 ± 0.2 | 0.418 ± 0.02 |
Citrus aurantium | 0.873 ± 0.001 | 0.56 ± 0.03 | 1.1 ± 0.01 | 40 ± 0.5 | 0.594 ± 0.01 |
Pistacia lentiscus | 0.878 ± 0.001 | 1.12 ± 0.02 | 0.888 ± 0.01 | 64 ± 0.7 | 0.603 ± 0.07 |
Cedrus atlantica | 0.937 ± 0.001 | 1.68 ± 0.01 | 0.939 ± 0.01 | 170 ± 0.9 | 0.482 ± 0.03 |
Rosa damascena | 0.873 ± 0.002 | ND | ND | ND | ND |
Bacterial Strains | Essential Oils | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Laurus nobilis | Chamaemelum nobile | Citrus aurantium | Pistacia lentiscus | Cedrus atlantica | ||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Staphylococcus epidermidis | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Staphylococcus aureus BLACT | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Escherichia coli | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Escherichia coli BLSE | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Enterobacter cloacae | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Klebsiella pneumoniae | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Proteus mirabilis | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Pseudomonas aeruginosa | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Microorganism | CMI (µg/mL) Identification Instrument and Antibiogram BD Phoenix™ | |||
---|---|---|---|---|
Gentamicin | Amoxicillin–Clavulanate | Vancomycin | Trimethoprim–Sulfamethoxazole | |
Staphylococcus epidermidis | 2 | >8 | >4/76 | |
Staphylococcus aureus BLACT | <0.5 | 2 | <10 | |
Escherichia coli | 2 | 8/2 | <=1/19 | |
Escherichia coli BLSE | 2 | >8/2 | >4/76 | |
Enterobacter cloacae | >4 | >8/2 | >4/76 | |
Klebsiella pneumoniae | <=1 | <=2/2 | <=1/19 | |
Proteus mirabilis | 2 | <=2/2 | >1/19 | |
Pseudomonas aeruginosa | 2 | >8/2 | 4/76 |
Fungal Strains | Essential oils | Terbinafine (µg/mL) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Laurus nobilis | Chamaemelum nobile | Citrus aurantium | Pistacia lentiscus | Cedrus atlantica | |||||||
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | CMI and CMB | |
Candida albicans | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 12,500 |
Candida dubliniensis | 5 | 5 | 5 | 5 | 5 | 5 | 2.5 | 2.5 | 5 | 5 | 3125 |
Saccharomyces cerevisiae | 5 | 5 | 5 | 5 | 5 | 5 | 2.5 | 5 | 5 | 5 | 3125 |
Aspergillus niger | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 3125 |
Candida tropicalis | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 12,500 |
Candida krusei | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 50,000 |
Candida kyfer | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 25,000 |
Candida parapsilosis | 1.2 | 2.5 | 1.2 | 2.5 | 1.2 | 1.2 | 0.6 | 1.2 | 0.6 | 1.2 | 6250 |
N° | Latin Name | Harvest Site | Parts Used | Latitude (x) | Longitude (y) | Altitude (m) | Harvest Year | |
---|---|---|---|---|---|---|---|---|
Region | Locality | |||||||
1 | Laurus nobilis | Meknes | Wislane | Leaves | 5.48′49″ W | 33°92′52″ N | 558 | 2020 |
2 | Chamaemelum nobile | Tetouan | Beni Imrane | Leaves | 5.40′09″ W | 35°52′24″ N | 395 | 2020 |
3 | Citrus aurantium | El Hajeb | SbaaaAyoun | Leaves | 5.37′53″ W | 33°9067631 N | 589 | 2020 |
4 | Pistacia lentiscus | Khenifra | M’rirt | Leaves | 5.56′92″ W | 33°15′78″ N | 1113 | 2021 |
5 | Cedrus atlantica | Boulmane | Enjil | Wood | 4.55′87″ W | 33°18′88″ N | 1639 | 2021 |
6 | Rosa damascena | Kalaat M’Gouna | Kalaat M’Gouna | Leaves | 6.12′76″ W | 31°21′11″ N | 1450 | 2020 |
Strains | References | Strains | References | ||||
---|---|---|---|---|---|---|---|
Bacteria | Gram- positive Cocci | Staphylococcus epidermidis | 5994 | Fungal | Yeasts | Candida albicans | Ca |
Staphylococcus aureus BLACT | 4IH2510 | Candida dubliniensis | Cd | ||||
Gram-negative Bacilli | Escherichia coli | 3DT1938 | Candida kyfer | Cky | |||
Escherichia coli BLSE | 2DT2057 | Candida parapsilosis | Cpa | ||||
Enterobacter cloacae | 02EV317 | Candida tropicalis | Ct | ||||
Klebsiella pneumoniae | 3DT1823 | Candida krusei | Ckr | ||||
Proteus mirabilis | 2DS5461 | Saccharomyces cerevisiae | Sacc | ||||
Pseudomonas aeruginosa | 2DT2138 | Molds | Aspergillus niger | AspN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ailli, A.; Handaq, N.; Touijer, H.; Gourich, A.A.; Drioiche, A.; Zibouh, K.; Eddamsyry, B.; El Makhoukhi, F.; Mouradi, A.; Bin Jardan, Y.A.; et al. Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties. Antibiotics 2023, 12, 721. https://doi.org/10.3390/antibiotics12040721
Ailli A, Handaq N, Touijer H, Gourich AA, Drioiche A, Zibouh K, Eddamsyry B, El Makhoukhi F, Mouradi A, Bin Jardan YA, et al. Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties. Antibiotics. 2023; 12(4):721. https://doi.org/10.3390/antibiotics12040721
Chicago/Turabian StyleAilli, Atika, Nadia Handaq, Hanane Touijer, Aman Allah Gourich, Aziz Drioiche, Khalid Zibouh, Brahim Eddamsyry, Fadoua El Makhoukhi, Aicha Mouradi, Yousef A. Bin Jardan, and et al. 2023. "Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties" Antibiotics 12, no. 4: 721. https://doi.org/10.3390/antibiotics12040721
APA StyleAilli, A., Handaq, N., Touijer, H., Gourich, A. A., Drioiche, A., Zibouh, K., Eddamsyry, B., El Makhoukhi, F., Mouradi, A., Bin Jardan, Y. A., Bourhia, M., Elomri, A., & Zair, T. (2023). Phytochemistry and Biological Activities of Essential Oils from Six Aromatic Medicinal Plants with Cosmetic Properties. Antibiotics, 12(4), 721. https://doi.org/10.3390/antibiotics12040721