Study of Essential Oil Isolated from Achiote (Bixa orellana) Leaves: Chemical Composition, Enantiomeric Distribution and Antimicrobial, Antioxidant and Anticholinesterase Activities
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Isolated
2.2. Physical Properties of Essential Oil
2.3. Chemical Composition of Essential Oil
2.4. Enantiomeric Analysis
2.5. Antimicrobial Activity
2.6. Antioxidant Activity
2.7. Anticholinesterase Activity
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Plant Material
4.3. Essential Oil Isolation
4.4. Determination of the Physical Properties of the Essential Oil
4.5. Identification and Quantification of Essential Oil Compounds
4.6. Enantioselective Analysis
4.7. Antimicrobial Activity
4.8. Evaluation of Antioxidant Capacity
4.9. Anticholinesterase Activity
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salmerón-Manzano, E.; Garrido-Cardenas, J.A.; Manzano-Agugliaro, F. Worldwide Research Trends on Medicinal Plants. Int. J. Environ. Res. Public Health 2020, 17, 3376. [Google Scholar] [CrossRef]
- Gomes Pacheco, T.; de Santana Lopes, A.; Monteiro Viana, G.D.; Nascimento da Silva, O.; Morais da Silva, G.; do Nascimento Vieira, L.; Guerra, M.P.; Nodari, R.O.; Maltempi de Souza, E.; de Oliveira Pedrosa, F.; et al. Genetic, evolutionary and phylogenetic aspects of the plastome of annatto (Bixa orellana L.), the Amazonian commercial species of natural dyes. Planta 2019, 249, 563–582. [Google Scholar] [CrossRef]
- WFO Plant List. Bixaceae Kunth. Available online: http://www.worldfloraonline.org/ (accessed on 5 January 2023).
- Torre, L.d.l.; Navarrete, H.; Muriel M., P.; Macía Barco, M.J.; Balslev, H. Enciclopedia de las plantas útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador: Quito, Ecuador; Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Aarhus, Denmark, 2008. [Google Scholar]
- Silva, R.B.; Almeida, C.R.; Chavasco, J.M.; Chavasco, J.K. Antimycobacterial activity evaluation and MIC determination of liophilizated hydroalcoholic extracts of Bixa orellana L., Bixaceae. Rev. Bras. Farmacogn. 2010, 20, 171–174. [Google Scholar] [CrossRef] [Green Version]
- Kar, B.; Chandar, B.; Rachana, S.S.; Bhattacharya, H.; Bhattacharya, D. Antibacterial and genotoxic activity of Bixa orellana, a folk medicine and food supplement against multidrug resistant clinical isolates. J. Herb. Med. 2022, 32, 100502. [Google Scholar] [CrossRef]
- Jørgesen, P.; León-Yáñez, S. Catalogue of the Vascular Plants of Ecuador; Missouri Botanical Garden Press: St. Louis, MO, USA, 1999. [Google Scholar]
- Shahid ul, I.; Rather, L.J.; Mohammad, F. Phytochemistry, biological activities and potential of annatto in natural colorant production for industrial applications—A review. J. Adv. Res. 2016, 7, 499–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-Flores, D.; Ulloa-Urizar, G.; Camere-Colarossi, R.; Caballero-García, S.; Mayta-Tovalino, F.; del Valle-Mendoza, J. Antibacterial activity of Bixa orellana L. (achiote) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac. J. Trop. Biomed. 2016, 6, 400–403. [Google Scholar] [CrossRef] [Green Version]
- Fleischer, T.C.; Ameade, E.P.K.; Mensah, M.L.K.; Sawer, I.K. Antimicrobial activity of the leaves and seeds of Bixa orellana. Fitoterapia 2003, 74, 136–138. [Google Scholar] [CrossRef]
- Giorgi, A.; De Marinis, P.; Granelli, G.; Chiesa, L.M.; Panseri, S. Secondary Metabolite Profile, Antioxidant Capacity, and Mosquito Repellent Activity of Bixa orellana from Brazilian Amazon Region. J. Chem. 2013, 2013, 409826. [Google Scholar] [CrossRef] [Green Version]
- Monzote, L.; García, M.; Scull, R.; Cuellar, A.; Setzer, W.N. Antileishmanial Activity of the Essential Oil from Bixa orellana. Phytother. Res. 2014, 28, 753–758. [Google Scholar] [CrossRef]
- Abayomi, M.; Adebayo, A.S.; Bennett, D.; Porter, R.; Shelly-Campbell, J. In vitro antioxidant activity of Bixa orellana (Annatto) seed extract. J. Appl. Pharm. Sci. 2014, 4, 101–106. [Google Scholar] [CrossRef]
- Beretta, G.; Gelmini, F.; Fontana, F.; Moretti, R.M.; Montagnani Marelli, M.; Limonta, P. Semi-preparative HPLC purification of δ-tocotrienol (δ-T3) from Elaeis guineensis Jacq. and Bixa orellana L. and evaluation of its in vitro anticancer activity in human A375 melanoma cells. Nat. Prod. Res. 2018, 32, 1130–1135. [Google Scholar] [CrossRef]
- Chen, Y.-m.; Xu, T.-q.; Zhang, X.-q.; Fan, C.-l.; Ye, W.-c.; Xu, W.; Zhou, G.-x. Bixasteroid, a new compound from the fruits of Bixa orellana and its anti-inflammatory activity. Nat. Prod. Res. 2023, 37, 404–410. [Google Scholar] [CrossRef]
- Antunes, L.M.G.; Pascoal, L.M.; Bianchi, M.d.L.P.; Dias, F.L. Evaluation of the clastogenicity and anticlastogenicity of the carotenoid bixin in human lymphocyte cultures. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2005, 585, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Shilpi, J.A.; Taufiq-Ur-Rahman, M.; Uddin, S.J.; Alam, M.S.; Sadhu, S.K.; Seidel, V. Preliminary pharmacological screening of Bixa orellana L. leaves. J. Ethnopharmacol. 2006, 108, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Scotter, M. The chemistry and analysis of annatto food colouring: A review. Food Addit. Contam. 2009, 26, 1123–1145. [Google Scholar] [CrossRef]
- Vilar, D.d.A.; Vilar, M.S.d.A.; Moura, T.F.A.d.L.e.; Raffin, F.N.; Oliveira, M.R.d.; Franco, C.F.d.O.; de Athayde-Filho, P.F.; Diniz, M.d.F.F.M.; Barbosa-Filho, J.M. Traditional Uses, Chemical Constituents, and Biological Activities of Bixa orellana L.: A Review. Sci. World J. 2014, 2014, 857292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira Everton, G.; Holanda Sales, E.; Silva Costa Mafra, N.; Araújo, R.J.; Santos Júnior, P.S.; Serra Rosa, P.V.; Matos Pereira, A.P.; Silva Souza, F.; Silva Mendonca, C.d.J.; Carvalho Silva, F.; et al. Drying kinetics of Bixa orellana Labil (annatto) leaves and the influence of temperature on the physicochemical and biological properties of its essential oil. Rev. Colomb. Cienc. Quim. Farm. 2020, 49, 614–640. [Google Scholar] [CrossRef]
- Pino, J.A.; Correa, M.T. Chemical Composition of the Essential Oil from Annatto (Bixa orellana L.) Seeds. J. Essent. Oil Res. 2003, 15, 66–67. [Google Scholar] [CrossRef]
- Galindo-Cuspinera, V.; Lubran, M.B.; Rankin, S.A. Comparison of Volatile Compounds in Water- and Oil-Soluble Annatto (Bixa orellana L.) Extracts. J. Agric. Food. Chem. 2002, 50, 2010–2015. [Google Scholar] [CrossRef] [PubMed]
- Molares, S.; González, S.B.; Ladio, A.; Agueda Castro, M. Etnobotánica, anatomía y caracterización físico-química del aceite esencial de Baccharis obovata Hook. et Arn. (Asteraceae: Astereae). Acta Bot. Bras. 2009, 23, 578–589. [Google Scholar] [CrossRef]
- Caixeta, D.S.; Millezi, A.F.; Amaral, D.C.; Machado, S.M.F.; Cardoso, M.D.G.; Alves, E.; Piccoli, R.H. Chemical composition of essential oils from the leaves of Curcuma longa and Bixa orellana and antimicrobial activity in Pseudomonas aeruginosa and Listeria monocytogenes. Rev. Bras. Plantas Med. 2020, 22, 8–16. [Google Scholar]
- Delgado Ospina, J.; Grande Tovar, C.D.; Menjívar Flores, J.C.; Sánchez Orozco, M.S. Relationship between refractive index and thymol concentration in essential oils of Lippia origanoides Kunth. Chil. J. Agric. Anim. Sci. 2016, 32, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, B.M.; Hogg, J.W. Ishwarane in Bixa orellana leaf oil. Phytochem. 1973, 12, 2995. [Google Scholar] [CrossRef]
- Zollo, P.H.A.; Biyiti, L.; Tchoumbougnang, F.; Menut, C.; Lamaty, G.; Bouchet, P. Aromatic plants of Tropical Central Africa. Part XXXII. Chemical composition and antifungal activity of thirteen essential oils from aromatic plants of Cameroon. Flavour Fragr. J. 1998, 13, 107–114. [Google Scholar] [CrossRef]
- Giwa-Ajeniya, A.O.; Ademefun, A.; Lawal, O.A.; Ogunwande, I.A. Chemical Composition of Essential Oils from the Leaves, Seeds, Seed-pods and Stems of Bixa orellana L. (Bixaceae). Arch. Curr. Res. Int. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Raga, D.D.; Espiritu, R.A.; Shen, C.-C.; Ragasa, C.Y. A bioactive sesquiterpene from Bixa orellana. J. Nat. Med. 2011, 65, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, A.; D’Acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Coelho dos Santos, D.; Silva Barboza, A.d.; Ribeiro, J.S.; Rodrigues Junior, S.A.; Campos, Â.D.; Lund, R.G. Bixa orellana L. (Achiote, Annatto) as an antimicrobial agent: A scoping review of its efficiency and technological prospecting. J. Ethnopharmacol. 2022, 287, 114961. [Google Scholar] [CrossRef]
- Mata, A.T.; Proença, C.; Ferreira, A.R.; Serralheiro, M.L.M.; Nogueira, J.M.F.; Araújo, M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007, 103, 778–786. [Google Scholar] [CrossRef]
- Morocho, V.; Hidalgo-Tapia, M.; Delgado-Loyola, I.; Cartuche, L.; Cumbicus, N.; Valarezo, E. Chemical Composition and Biological Activity of Essential Oil from Leaves and Fruits of Limoncillo (Siparuna muricata (Ruiz & Pav.) A. DC.). Antibiot. 2023, 12, 82. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.C.d.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.d.A. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease Therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef] [Green Version]
- Benny, A.; Thomas, J. Essential Oils as Treatment Strategy for Alzheimer’s Disease: Current and Future Perspectives. Planta Med. 2019, 85, 239–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Den Dool, H.A.N.D.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas—Liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69 in Base de Datos de Referencia Estándar del NIST Número 69. Available online: http://webbook.nist.gov (accessed on 19 May 2022).
- Valarezo, E.; Benítez, L.; Palacio, C.; Aguilar, S.; Armijos, C.; Calva, J.; Ramírez, J. Volatile and non-volatile metabolite study of endemic ecuadorian specie Piper lanceifolium Kunth. J. Essent. Oil Res. 2021, 33, 182–188. [Google Scholar] [CrossRef]
- Salinas, M.; Calva, J.; Cartuche, L.; Valarezo, E.; Armijos, C. Chemical Composition, Enantiomeric Distribution and Anticholinesterase and Antioxidant Activity of the Essential Oil of Diplosthephium juniperinum. Plants 2022, 11, 1188. [Google Scholar] [CrossRef]
- Valarezo, E.; Rivera, J.X.; Coronel, E.; Barzallo, M.A.; Calva, J.; Cartuche, L.; Meneses, M.A. Study of Volatile Secondary Metabolites Present in Piper carpunya Leaves and in the Traditional Ecuadorian Beverage Guaviduca. Plants 2021, 10, 338. [Google Scholar] [CrossRef]
Property | Bixa orellana EO | |
---|---|---|
Mean | SD | |
Density, ρ (g/cm3) | 0.8884 | 0.0063 |
Refractive index, n20 | 1.4714 | 0.0145 |
Specific rotation, [α] (°) | +12.48 | 0.02 |
Subjective color | Yellow | |
RGB color values | R:240, G:224, B:36 | |
CMYK color values | C:0, M:7, Y:85, K:6 | |
Hex Color Codes | #f0e024 |
CN | RT | Compound | RIC | RIR | % | SD | Type | CF | MM (Da) |
---|---|---|---|---|---|---|---|---|---|
1 | 7.11 | Pinene <α-> | 933 | 932 | 6.34 | 0.13 | MH | C10H16 | 136.13 |
2 | 9.16 | Pinene <β-> | 975 | 974 | 4.11 | 0.87 | MH | C10H16 | 136.13 |
3 | 9.69 | Myrcene | 989 | 988 | 0.65 | 0.04 | MH | C10H16 | 136.13 |
4 | 11.89 | Phellandrene <β-> | 1026 | 1025 | 0.15 | 0.05 | MH | C10H16 | 136.13 |
5 | 12.01 | Sylvestrene | 1027 | 1025 | 0.40 | 0.01 | MH | C10H16 | 136.13 |
6 | 12.29 | Ocimene <(Z)-β-> | 1033 | 1032 | 2.32 | 0.19 | MH | C10H16 | 136.13 |
7 | 13.62 | Terpinene <γ-> | 1056 | 1054 | 0.37 | 0.11 | MH | C10H16 | 136.13 |
8 | 30.73 | Elemene <δ-> | 1335 | 1335 | 0.55 | 0.09 | SH | C15H24 | 204.19 |
9 | 31.35 | Cubebene <α-> | 1347 | 1348 | 0.28 | 0.08 | SH | C15H24 | 204.19 |
10 | 32.84 | Copaene <α-> | 1376 | 1374 | 1.94 | 0.50 | SH | C15H24 | 204.19 |
11 | 33.49 | Cubebene <β-> | 1388 | 1387 | 0.11 | 0.04 | SH | C15H24 | 204.19 |
12 | 33.60 | Elemene <β-> | 1390 | 1389 | 1.18 | 0.08 | SH | C15H24 | 204.19 |
13 | 34.58 | Cedrene <α-> | 1410 | 1410 | 0.10 | 0.02 | SH | C15H24 | 204.19 |
14 | 34.75 | Bergamotene <α-cis-> | 1413 | 1411 | 0.43 | 0.10 | SH | C15H24 | 204.19 |
15 | 35.04 | Caryophyllene <(E)-> | 1419 | 1417 | 8.56 | 1.24 | SH | C15H24 | 204.19 |
16 | 35.66 | Bergamotene <α-trans-> | 1434 | 1432 | 0.73 | 0.14 | SH | C15H24 | 204.19 |
17 | 35.92 | Aromadendrene | 1439 | 1439 | 0.82 | 0.02 | SH | C15H24 | 204.19 |
18 | 36.28 | Himachalene <α-> | 1447 | 1449 | 0.41 | 0.03 | SH | C15H24 | 204.19 |
19 | 36.43 | Muurola-3,5-diene <trans-> | 1451 | 1451 | 0.14 | 0.02 | SH | C15H24 | 204.19 |
20 | 36.74 | Humulene <α-> | 1456 | 1452 | 1.23 | 0.30 | SH | C15H24 | 204.19 |
21 | 36.92 | Santalene <β-> | 1461 | 1457 | 0.67 | 0.04 | SH | C15H24 | 204.19 |
22 | 37.37 | Aristolochene <4,5-di-epi-> | 1471 | 1471 | 3.18 | 0.03 | SH | C15H24 | 204.19 |
23 | 37.52 | Cadina-1(6),4-diene <trans-> | 1474 | 1475 | 0.42 | 0.06 | SH | C15H24 | 204.19 |
24 | 37.69 | Muurolene <γ-> | 1478 | 1478 | 0.60 | 0.02 | SH | C15H24 | 204.19 |
25 | 37.97 | Germacrene D | 1483 | 1480 | 17.87 | 1.20 | SH | C15H24 | 204.19 |
26 | 38.07 | Himachalene <γ-> | 1486 | 1481 | 0.78 | 0.15 | SH | C15H24 | 204.19 |
27 | 38.20 | Selinene <δ-> | 1489 | 1492 | 0.63 | 0.12 | SH | C15H24 | 204.19 |
28 | 38.36 | Viridiflorene | 1493 | 1496 | 2.44 | 0.22 | SH | C15H24 | 204.19 |
29 | 38.45 | Valencene | 1495 | 1496 | 0.91 | 0.10 | SH | C15H24 | 204.19 |
30 | 38.62 | Bicyclogermacrene | 1499 | 1500 | 14.27 | 0.97 | SH | C15H24 | 204.19 |
31 | 38.75 | Muurolene <α-> | 1502 | 1500 | 0.83 | 0.04 | SH | C15H24 | 204.19 |
32 | 38.90 | Epizonarene | 1505 | 1501 | 0.29 | 0.06 | SH | C15H24 | 204.19 |
33 | 39.00 | Farnesene <(E,E)-α-> | 1507 | 1505 | 2.60 | 0.18 | SH | C15H24 | 204.19 |
34 | 39.12 | Bisabolene <(Z)-α-> | 1509 | 1506 | 0.54 | 0.09 | SH | C15H24 | 204.19 |
35 | 39.39 | Cadinene <γ-> | 1516 | 1513 | 0.85 | 0.24 | SH | C15H24 | 204.19 |
36 | 39.60 | Cadinene <δ-> | 1522 | 1522 | 4.98 | 0.58 | SH | C15H24 | 204.19 |
37 | 39.82 | Calamenene <cis-> | 1528 | 1528 | 0.49 | 0.08 | SH | C15H22 | 202.17 |
38 | 40.12 | Liguloxide | 1535 | 1535 | tr | - | OS | C15H26O | 222.20 |
39 | 40.23 | Cadinene <α-> | 1537 | 1537 | 0.23 | 0.04 | SH | C15H24 | 204.19 |
40 | 41.45 | Longipinanol | 1567 | 1567 | 3.04 | 0.47 | OS | C15H26O | 222.20 |
41 | 42.19 | Spathulenol | 1582 | 1577 | 2.74 | 0.45 | OS | C15H24O | 220.18 |
42 | 42.51 | Thujopsan-2-β-ol | 1593 | 1588 | 1.12 | 0.16 | OS | C15H26O | 222.20 |
43 | 42.85 | Viridiflorol | 1598 | 1592 | 0.32 | 0.08 | OS | C15H26O | 222.20 |
44 | 42.93 | Guaiol | 1604 | 1600 | 0.41 | 0.15 | OS | C15H26O | 222.20 |
45 | 43.43 | Junenol | 1619 | 1618 | 0.68 | 0.03 | OS | C15H26O | 222.20 |
46 | 44.04 | Acorenol <α-> | 1638 | 1632 | 0.20 | 0.01 | OS | C15H26O | 222.20 |
47 | 44.14 | Cadin-4-en-7-ol <cis-> | 1640 | 1635 | 0.36 | 0.03 | OS | C15H26O | 222.20 |
48 | 44.26 | Acorenol <β-> | 1641 | 1636 | 0.84 | 0.09 | OS | C15H26O | 222.20 |
49 | 44.48 | Agarospirol | 1651 | 1646 | 0.05 | 0.00 | OS | C15H26O | 222.20 |
50 | 44.57 | Himachalol | 1654 | 1652 | 0.44 | 0.11 | OS | C15H26O | 222.20 |
51 | 44.65 | Cadinol <α-> | 1656 | 1652 | 1.84 | 0.48 | OS | C15H26O | 222.20 |
52 | 45.02 | Intermedeol <neo-> | 1664 | 1658 | 1.24 | 0.10 | OS | C15H26O | 222.20 |
53 | 45.15 | Intermedeol | 1669 | 1665 | 0.14 | 0.01 | OS | C15H26O | 222.20 |
54 | 45.57 | Cedranol <5-neo-> | 1684 | 1684 | 1.63 | 0.30 | OS | C15H26O | 222.20 |
55 | 45.68 | Germacrone | 1688 | 1693 | 0.54 | 0.03 | OS | C15H22O | 218.17 |
56 | 52.72 | Bifloratriene | 1982 | 1977 | 0.26 | 0.04 | DH | C20H32 | 272.25 |
Monoterpene hydrocarbons | 14.34 | ||||||||
Sesquiterpene hydrocarbons | 69.06 | ||||||||
Oxygenated sesquiterpene | 15.59 | ||||||||
Diterpene hydrocarbons | 0.26 | ||||||||
Total identified | 99.25 |
RT | Enantiomers | RI | ED (%) | e.e. (%) |
---|---|---|---|---|
4.12 | (+)-α-Pinene | 935 | 0.19 | 99.63 |
4.25 | (−)-α-Pinene | 940 | 99.81 | |
5.82 | (+)-β-Pinene | 997 | 95.60 | 91.20 |
6.07 | (−)-β-Pinene | 1004 | 4.40 | |
26.81 | (+/−)-α-Copaene | 1375 | 8.98 | 82.04 |
27.04 | 1379 | 91.02 | ||
30.06 | (+/−)-α-trans-Bergamotene | 1429 | 19.06 | 61.88 |
30.28 | 1433 | 80.94 | ||
35.49 | (+/−)-Bicyclogermacrene | 1522 | 91.05 | 82.09 |
35.73 | 1526 | 8.95 | ||
43.52 | (+/−)-Spathulenol | 1665 | 15.20 | 69.61 |
43.77 | 1670 | 84.80 |
Microorganism | Essential oil | Positive control | Negative control |
---|---|---|---|
MIC (µg/mL) | |||
Gram-positive cocci | |||
Enterococcus faecalis (ATCC 19433) | 1000 | 0.78 | + |
Enterococcus faecium (ATCC 27270) | 250 | 0.39 | + |
Staphylococcus aureus (ATCC 25923) | 1000 | 0.39 | + |
Gram-positive bacilli | |||
Listeria monocytogenes ATCC 19115 | 2000 | 1.56 | + |
Gram-negative bacilli | |||
Escherichia coli O157:H7 (ATCC 43888) | >4000 | 1.56 | + |
Pseudomonas aeruginosa (ATCC 10145) | >4000 | 0.39 | + |
Salmonella enterica subs enterica serovar Thypimurium WDCM 00031, derived (ATCC 14028) | >4000 | 0.39 | + |
Sample | DPPH | ABTS |
---|---|---|
SC50 (µg/mL) ± SD | ||
Bixa orellana essential oil | 224.24 ± 6,4 | 61.49 ± 0.04 |
Trolox | 29.99 ± 1.1 | 23.27 ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valarezo, E.; Torres-Torres, S.; Pineda-Guarnizo, N.; Jaramillo-Fierro, X.; Cartuche, L.; Morocho, V.; Meneses, M.A. Study of Essential Oil Isolated from Achiote (Bixa orellana) Leaves: Chemical Composition, Enantiomeric Distribution and Antimicrobial, Antioxidant and Anticholinesterase Activities. Antibiotics 2023, 12, 710. https://doi.org/10.3390/antibiotics12040710
Valarezo E, Torres-Torres S, Pineda-Guarnizo N, Jaramillo-Fierro X, Cartuche L, Morocho V, Meneses MA. Study of Essential Oil Isolated from Achiote (Bixa orellana) Leaves: Chemical Composition, Enantiomeric Distribution and Antimicrobial, Antioxidant and Anticholinesterase Activities. Antibiotics. 2023; 12(4):710. https://doi.org/10.3390/antibiotics12040710
Chicago/Turabian StyleValarezo, Eduardo, Silvia Torres-Torres, Nohely Pineda-Guarnizo, Ximena Jaramillo-Fierro, Luis Cartuche, Vladimir Morocho, and Miguel Angel Meneses. 2023. "Study of Essential Oil Isolated from Achiote (Bixa orellana) Leaves: Chemical Composition, Enantiomeric Distribution and Antimicrobial, Antioxidant and Anticholinesterase Activities" Antibiotics 12, no. 4: 710. https://doi.org/10.3390/antibiotics12040710