Antibiotic Utilization Patterns for Different Wound Types among Surgical Patients: Findings and Implications
Abstract
:1. Introduction
2. Results
2.1. Sociodemographic and Clinical Characteristics of Study Participants
2.2. Antimicrobial Utilization Patterns for Surgical Prophylaxis
3. Discussion
4. Materials and Methods
4.1. Study Setting and Design
4.2. Data Collection Process, Questionnaire and Statistical Analysis
- Patient demographic and medical data, e.g., age, gender, co-morbidities, chief complaint, diagnosis, length of hospital stay and duration of antibiotic prescription;
- Surgical data, i.e., type of surgery;
- Antimicrobial utilization data, e.g., name, antimicrobial class (ATC code), AWaRe classification, frequency and duration of administration [57,58,69]. Under the AWaRe classification, antibiotics in the ‘Access’ group should be used against commonly encountered infections, as they have a lower resistance rate, while those in the ‘Watch’ group should only be used in critical conditions, as they have a greater chance of resistance development. Antibiotics in the ‘Reserve’ group should only be prescribed in multi-drug resistance cases [57,58];
- Wound classification (clean, clean/contaminated, contaminated or dirty).
4.3. Antimicrobial Stewardship Programs to Reduce Inappropriate Antibiotic Prescription for SAP among LMICs
4.4. Ethical Approval
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labi, A.-K.; Obeng-Nkrumah, N.; Owusu, E.; Bjerrum, S.; Bediako-Bowan, A.; Sunkwa-Mills, G.; Akufo, C.; Fenny, A.P.; Opintan, J.A.; Enweronu-Laryea, C.; et al. Multi-centre point-prevalence survey of hospital-acquired infections in Ghana. J. Hosp. Infect. 2019, 101, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Barnett, A.G.; Page, K.; Campbell, M.; Martin, E.; Rashleigh-Rolls, R.; Halton, K.; Paterson, D.L.; Hall, L.; Jimmieson, N.; White, K.; et al. The increased risks of death and extra lengths of hospital and ICU stay from hospital-acquired bloodstream infections: A case–control study. BMJ Open 2013, 3, e003587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manoukian, S.; Stewart, S.; Dancer, S.; Graves, N.; Mason, H.; McFarland, A.; Robertson, C.; Reilly, J. Estimating excess length of stay due to healthcare-associated infections: A systematic review and meta-analysis of statistical methodology. J. Hosp. Infect. 2018, 100, 222–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health care–associated infections: A meta-analysis of costs and financial impact on the US health care system. JAMA Intern. Med. 2013, 173, 2039–2046. [Google Scholar] [CrossRef]
- Pouwels, K.B.; Vansteelandt, S.; Batra, R.; Edgeworth, J.; Wordsworth, S.; Robotham, J.V. Estimating the Effect of Healthcare-Associated Infections on Excess Length of Hospital Stay Using Inverse Probability-Weighted Sur-vival Curves. Clin. Infect. Dis. 2020, 71, e415–e420. [Google Scholar]
- Cassini, A.; Plachouras, D.; Eckmanns, T.; Abu Sin, M.; Blank, H.P.; Ducomble, T.; Haller, S.; Harder, T.; Klingeberg, A.; Sixtensson, M.; et al. Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. PLoS Med. 2016, 13, e1002150. [Google Scholar] [CrossRef] [Green Version]
- Saleem, Z.; Godman, B.; Hassali, M.A.; Hashmi, F.K.; Azhar, F.; Rehman, I.U. Point prevalence surveys of health-care-associated infections: A systematic review. Ann. Trop. Med. Parasitol. 2019, 113, 191–205. [Google Scholar] [CrossRef]
- Nelson, R.E.; Hatfield, K.M.; Wolford, H.; Samore, M.H.; Scott, R.D.; Reddy, S.C.; Olubajo, B.; Paul, P.; Jernigan, J.A.; Baggs, J. National Estimates of Healthcare Costs Associated with Multidrug-Resistant Bacterial Infections Among Hospitalized Patients in the United States. Clin. Infect. Dis. 2021, 72 (Suppl. 1), S17–S26. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Godman, B.; Hashmi, F.K.; Saleem, F. A multicenter point prevalence survey of healthcare–associated infections in Pakistan: Findings and implications. Am. J. Infect. Control 2019, 47, 421–424. [Google Scholar] [CrossRef] [Green Version]
- Ngaroua Ngah, J.E.; Bénet, T.; Djibrilla, Y. Incidence of surgical site infections in sub-Saharan Africa: Systematic review and meta-analysis. Pan. Afr. Med. J. 2016, 24, 171. [Google Scholar]
- Sefah, I.A.; Denoo, E.Y.; Bangalee, V.; Kurdi, A.; Sneddon, J.; Godman, B. Appropriateness of surgical antimicrobial prophylaxis in a teaching hospital in Ghana: Findings and implications. JAC-Antimicrob. Resist. 2022, 4, dlac102. [Google Scholar] [CrossRef] [PubMed]
- Rickard, J.; Beilman, G.; Forrester, J.; Sawyer, R.; Stephen, A.; Weiser, T.G.; Valenzuela, J. Surgical Infections in Low- and Middle-Income Countries: A Global Assessment of the Burden and Management Needs. Surg Infect. 2020, 21, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Mwita, J.C.; Souda, S.; Magafu, M.G.; Massele, A.; Godman, B.; Mwandri, M. Prophylactic antibiotics to prevent surgical site infections in Botswana: Findings and implications. Hosp. Pract. 2018, 46, 97–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, P.Y.; Khadaroo, R.G. Surgical site infections. Surg. Clin. N. Am. 2014, 94, 1245–1264. [Google Scholar] [CrossRef]
- Mangram, A.J.; Horan, T.C.; Pearson, M.L.; Silver, L.C.; Jarvis, W.R. Guideline for Prevention of Surgical Site Infection, 1999. Centers for Disease Control and Prevention (CDC) Hospital Infection Control Practices Advisory Committee. Am. J. Infect. Control 1999, 27, 97–132. [Google Scholar] [CrossRef]
- Wenzel, R.P. Health Care–Associated Infections: Major Issues in the Early Years of the 21st Century. Clin. Infect. Dis. 2007, 45 (Suppl. 1), S85–S88. [Google Scholar] [CrossRef] [Green Version]
- Mwita, J.C.; Ogunleye, O.O.; Olalekan, A.; Kalungia, A.C.; Kurdi, A.; Saleem, Z.; Sneddon, J.; Godman, B. Key Issues Surrounding Appro-priate Antibiotic Use for Prevention of Surgical Site Infections in Low- and Middle-Income Countries: A Narrative Review and the Implications. Int. J. Gen. Med. 2021, 14, 515–530. [Google Scholar] [CrossRef]
- Cooper, L.; Sneddon, J.; Afriyie, D.K.; Sefah, I.A.; Kurdi, A.; Godman, B.; Seaton, R.A. Supporting global antimicrobial stew-ardship: Antibiotic prophylaxis for the prevention of surgical site infection in low- and middle-income countries (LMICs): A scoping review and meta-analysis. JAC Antimicrob. Resist. 2020, 2, dlaa070. [Google Scholar] [CrossRef]
- Jenks, P.; Laurent, M.; McQuarry, S.; Watkins, R. Clinical and economic burden of surgical site infection (SSI) and predicted financial consequences of elimination of SSI from an English hospital. J. Hosp. Infect. 2014, 86, 24–33. [Google Scholar] [CrossRef]
- Biccard, B.M.; Madiba, T.E.; Kluyts, H.L.; Munlemvo, D.M.; Madzimbamuto, F.D.; Basenero, A.; Gordon, C.S.; Youssouf, C.; Rakotoarison, S.R.; Gobin, V.; et al. Perioperative patient outcomes in the African Surgical Outcomes Study: A 7-day prospective observational cohort study. Lancet 2018, 391, 1589–1598. [Google Scholar] [CrossRef] [Green Version]
- Badia, J.M.; Casey, A.L.; Petrosillo, N.; Hudson, P.; Mitchell, S.; Crosby, C. Impact of surgical site infection on healthcare costs and patient outcomes: A systematic review in six European countries. J. Hosp. Infect. 2017, 96, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korol, E.; Johnston, K.; Waser, N.; Sifakis, F.; Jafri, H.; Lo, M.; Kyaw, M.H. A Systematic Review of Risk Factors Associated with Surgical Site Infections among Surgical Patients. PLoS ONE 2013, 8, e83743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahuja, S.; Peiffer-Smadja, N.; Peven, K.; White, M.; Leather, A.J.M.; Singh, S.; Mendelson, M.; Holmes, A.; Birgand, G.; Sevdalis, N.; et al. Use of Feedback Data to Reduce Surgical Site Infections and Optimize Antibiotic Use in Surgery: A Systematic Scoping Review. Ann. Surg. 2022, 275, e345–e352. [Google Scholar] [CrossRef] [PubMed]
- Olowo-Okere, A.; Ibrahim, Y.E.; Olayinka, B.; Ehinmidu, J. Epidemiology of surgical site infections in Nigeria: A systematic review and meta-analysis. Niger. Postgrad. Med. J. 2019, 26, 143–151. [Google Scholar] [CrossRef]
- Aiken, A.M.; Wanyoro, A.K.; Mwangi, J.; Juma, F.; Mugoya, I.K.; Scott, J.A. Changing use of surgical antibiotic prophylaxis in Thika Hospital, Kenya: A quality improvement intervention with an interrupted time series design. PLoS ONE 2013, 8, e78942. [Google Scholar] [CrossRef]
- Mahmoud, N.N.; Turpin, R.S.; Yang, G.; Saunders, W.B. Impact of Surgical Site Infections on Length of Stay and Costs in Selected Colorectal Procedures. Surg. Infect. 2009, 10, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Sattar, F.; Sattar, Z.; Zaman, M.; Akbar, S. Frequency of Post-operative Surgical Site Infections in a Tertiary Care Hospital in Abbottabad, Pakistan. Cureus 2019, 11, e4243. [Google Scholar] [CrossRef] [Green Version]
- Malik, A.Z.; Ali, Q. Surgical Site Infections after Elective Surgery in Pakistan: Surgipak Study. J. Rawalpindi Med. Coll. 2015. [Google Scholar]
- Butt, S.Z.; Ahmad, M.; Saeed, H.; Saleem, Z.; Javaid, Z. Post-surgical antibiotic prophylaxis: Impact of pharmacist’s educational intervention on appropriate use of antibiotics. J. Infect. Public Health 2019, 12, 854–860. [Google Scholar] [CrossRef]
- Martinez-Sobalvarro, J.V.; Júnior, A.A.P.; Pereira, L.B.; Baldoni, A.O.; Ceron, C.S.; Dos Reis, T.M. Antimicrobial steward-ship for surgical antibiotic prophylaxis and surgical site infections: A systematic review. Int. J. Clin. Pharm. 2022, 44, 301–319. [Google Scholar] [CrossRef]
- Abubakar, U. Point-prevalence survey of hospital acquired infections in three acute care hospitals in Northern Nigeria. Antimicrob. Resist. Infect. Control 2020, 9, 63. [Google Scholar] [CrossRef] [PubMed]
- Culver, D.H.; Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G.; Banerjee, S.N.; Edwards, J.R.; Tolson, J.S.; Henderson, T.S.; et al. Surgical wound infection rates by wound class, operative procedure, and patient risk index. National Nosocomial Infections Surveillance System. Am. J. Med. 1991, 91, 152s–157s. [Google Scholar] [CrossRef] [PubMed]
- WHO. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book. 2022. Available online: https://www.who.int/publications/i/item/9789240062382 (accessed on 23 February 2023).
- Maleknejad, A.; Dastyar, N.; Badakhsh, M.; Balouchi, A.; Rafiemanesh, H.; Al Rawajfah, O.; Keikhaie, K.R.; Sheyback, M. Surgical site infections in Eastern Mediterranean region: A systematic review and meta-analysis. Infect. Dis. 2019, 51, 719–729. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. Clinical Practice Guidelines for Antimicrobial Prophylaxis in Surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar] [CrossRef] [Green Version]
- Bull, A.L.; Worth, L.J.; Spelman, T.; Richards, M.J. Antibiotic Prescribing Practices for Prevention of Surgical Site In-fections in Australia: Increased Uptake of National Guidelines after Surveillance and Reporting and Impact on Infection Rates. Surg. Infect. 2017, 18, 834–840. [Google Scholar] [CrossRef]
- Crader, M.F.; Varacallo, M. Preoperative Antibiotic Prophylaxis. StatPearls; Treasure Island (FL): StatPearls Publishing Copyright © 2022; StatPearls Publishing LLC.: Tampa, FL, USA, 2022. [Google Scholar]
- Malhotra, N.R.; Piazza, M.; Demoor, R.; McClintock, S.D.; Hamilton, K.; Sharma, N.; Osiemo, B.; Berger, I.; Hossain, E.; Borovskiy, Y.; et al. Impact of Reduced Preincision Antibiotic Infusion Time on Surgical Site Infection Rates: A Retrospective Cohort Study. Ann. Surg. 2020, 271, 774–780. [Google Scholar] [CrossRef]
- Branch-Elliman, W.; O’Brien, W.; Strymish, J.; Itani, K.; Wyatt, C.; Gupta, K. Association of Duration and Type of Surgical Prophylaxis with Antimicrobial-Associated Adverse Events. JAMA Surg. 2019, 154, 590–598. [Google Scholar] [CrossRef]
- Harbarth, S.; Samore, M.H.; Lichtenberg, D.; Carmeli, Y. Prolonged antibiotic prophylaxis after cardiovascular surgery and its effect on surgical site infections and antimicrobial resistance. Circulation 2000, 101, 2916–2921. [Google Scholar] [CrossRef] [Green Version]
- Hawn, M.T.; Knowlton, L.M. Balancing the Risks and Benefits of Surgical Prophylaxis: Timing and Duration Do Matter. JAMA Surg. 2019, 154, 598–599. [Google Scholar] [CrossRef]
- Najjar, P.A.; Smink, D.S. Prophylactic Antibiotics and Prevention of Surgical Site Infections. Surg. Clin. N. Am. 2015, 95, 269–283. [Google Scholar] [CrossRef]
- de Jonge, S.W.; Gans, S.L.; Atema, J.J.; Solomkin, J.S.; Dellinger, P.E.; Boermeester, M.A. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection: A systematic review and meta-analysis. Medicine 2017, 96, e6903. [Google Scholar] [CrossRef] [PubMed]
- Alemkere, G. Antibiotic usage in surgical prophylaxis: A prospective observational study in the surgical ward of Nekemte referral hospital. PLoS ONE 2018, 13, e0203523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, J.P. Maximizing Appropriate Antibiotic Prophylaxis for Surgical Patients: An Update from LDS Hospital, Salt Lake City. Clin. Infect. Dis. 2001, 33, S78–S83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegranzi, B.; Zayed, B.; Bischoff, P.; Kubilay, N.Z.; de Jonge, S.; de Vries, F.; Gomes, S.M.; Gans, S.; Wallert, E.D.; Wu, X.; et al. New WHO recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016, 16, e288–e303. [Google Scholar] [CrossRef]
- Dellit, T.H.; Owens, R.C.; McGowan, J.E.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef]
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef]
- Ng, R.S.; Chong, C.P. Surgeons’ adherence to guidelines for surgical antimicrobial prophylaxis—A review. Australas Med. J. 2012, 5, 534–540. [Google Scholar] [CrossRef]
- Ayele, Y.; Taye, H. Antibiotic utilization pattern for surgical site infection prophylaxis at Dil Chora Referral Hospital Surgical Ward, Dire Dawa, Eastern Ethiopia. BMC Res. Notes 2018, 11, 537. [Google Scholar] [CrossRef]
- van Kasteren, M.E.; Kullberg, B.J.; de Boer, A.S.; Mintjes-de Groot, J.; Gyssens, I.C. Adherence to local hospital guidelines for surgical antimicrobial prophylaxis: A multicentre audit in Dutch hospitals. J. Antimicrob. Chemother 2003, 51, 1389–1396. [Google Scholar] [CrossRef] [Green Version]
- Saleem, Z.; Hassali, M.A.; Versporten, A.; Godman, B.; Hashmi, F.K.; Goossens, H.; Saleem, F. A multicenter point prevalence survey of antibiotic use in Punjab, Pakistan: Findings and implications. Expert Rev. Anti-Infect. Ther. 2019, 17, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Saleem, Z.; Hassali, M.A.; Hashmi, F.K.; Godman, B.; Ahmed, Z. Snapshot of antimicrobial stewardship programs in the hospitals of Pakistan: Findings and implications. Heliyon 2019, 5, e02159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mustafa, Z.U.; Majeed, H.K.; Latif, S.; Salman, M.; Hayat, K.; Mallhi, T.H.; Khan, Y.H.; Khan, A.H.; Abubakar, U.; Sultana, K.; et al. Adherence to Infection Prevention and Control Measures Among Health-Care Workers Serving in COVID-19 Treatment Centers in Punjab, Pakistan. Disaster Med. Public Health Prep. 2023, 17, e298. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Ahmed, N.; Rehman, A.; Khan, F.U.; Saqlain, M.; Martins, M.A.P.; Rahman, H. Audit of pre-operative antibiotic prophylaxis usage in elective surgical procedures in two teaching hospitals, Islamabad, Pakistan: An observational cross-sectional study. PLoS ONE 2020, 15, e0231188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, Z.; Haseeb, A.; Godman, B.; Batool, N.; Altaf, U.; Ahsan, U.; Khan, F.U.; Mustafa, Z.U.; Nadeem, M.U.; Farrukh, M.J.; et al. Point Prevalence Survey of Antimicrobial Use during the COVID-19 Pandemic among Different Hospitals in Pakistan: Findings and Implications. Antibiotics 2023, 12, 70. [Google Scholar] [CrossRef]
- Sharland, M.; Pulcini, C.; Harbarth, S.; Zeng, M.; Gandra, S.; Mathur, S.; Magrini, N. Classifying antibiotics in the WHO Essential Medicines List for optimal use-be AWaRe. Lancet Infect. Dis. 2018, 18, 18–20. [Google Scholar] [CrossRef] [Green Version]
- Sharland, M.; Gandra, S.; Huttner, B.; Moja, L.; Pulcini, C.; Zeng, M.; Mendelson, M.; Cappello, B.; Cooke, G.; Magrini, N.; et al. Encouraging AWaRe-ness and discouraging inappropriate antibiotic use—The new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. Lancet Infect. Dis. 2019, 19, 1278–1280. [Google Scholar] [CrossRef]
- Sharland, M.; Zanichelli, V.; Ombajo, L.A.; Bazira, J.; Cappello, B.; Chitatanga, R.; Chuki, P.; Gandra, S.; Getahun, H.; Harbarth, S.; et al. The WHO essential medicines list AWaRe book: From a list to a quality improvement system. Clin. Microbiol. Infect. 2022, 28, 1533–1535. [Google Scholar] [CrossRef]
- Sulis, G.; Sayood, S.; Katukoori, S.; Bollam, N.; George, I.; Yaeger, L.H.; Chavez, M.A.; Tetteh, E.; Yarrabelli, S.; Pulcini, C.; et al. Exposure to World Health Organization’s AWaRe antibiotics and isolation of multidrug resistant bacteria: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 1193–1202. [Google Scholar] [CrossRef]
- Pauwels, I.; Versporten, A.; Drapier, N.; Vlieghe, E.; Goossens, H.; Koraqi, A.; Hoxha, I.; Tafaj, S.; Cornistein, W.; Quiros, R.; et al. Hospital antibiotic prescribing patterns in adult patients according to the WHO Access, Watch and Reserve classification (AWaRe): Results from a worldwide point prevalence survey in 69 countries. J. Antimicrob. Chemother. 2021, 76, 1614–1624. [Google Scholar] [CrossRef]
- Saleem, Z.; Hassali, M.A.; Hashmi, F.K. Pakistan’s national action plan for antimicrobial resistance: Translating ideas into reality. Lancet Infect. Dis. 2018, 18, 1066–1067. [Google Scholar] [CrossRef]
- Mustafa, Z.U.; Saleem, M.S.; Ikram, M.N.; Salman, M.; Butt, S.A.; Khan, S.; Godman, B.; Seaton, R.A. Co-infections and antimicrobial use among hospitalized COVID-19 patients in Punjab, Pakistan: Findings from a multicenter, point prevalence survey. Pathog. Glob. Health 2022, 116, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Ramzan, K.; Shafiq, S.; Raees, I.; Mustafa, Z.U.; Salman, M.; Khan, A.H.; Meyer, J.C.; Godman, B. Co-Infections, Secondary Infections, and Antimicrobial Use in Patients Hospitalized with COVID-19 during the First Five Waves of the Pandemic in Pakistan; Findings and Implications. Antibiotics 2022, 11, 789. [Google Scholar] [CrossRef] [PubMed]
- Saleem, Z.; Godman, B.; Azhar, F.; Kalungia, A.C.; Fadare, J.; Opanga, S.; Markovic-Pekovic, V.; Hoxha, I.; Saeed, A.; Al-Gethamy, M.; et al. Progress on the national action plan of Pakistan on antimicrobial resistance (AMR): A narrative review and the implications. Expert Rev. Anti-Infect. Ther. 2022, 20, 71–93. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.A.; Vlieghe, E.; Mendelson, M.; Wertheim, H.; Ndegwa, L.; Villegas, M.V.; Gould, I.; Hara, G.L. Antibiotic stewardship in low- and middle-income countries: The same but different? Clin. Microbiol. Infect. 2017, 23, 812–818. [Google Scholar] [CrossRef] [Green Version]
- American College of Surgeons—ACS NSQIP Participant Use Data File. Available online: https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/participant-use-data-file/ (accessed on 20 February 2023).
- Nusrat, N.; Haque, M.; Chowdhury, K.; Adnan, N.; Lutfor, A.B.; Karim, E.; Hassan, M.; Rabbany, A.; BeguM, D.; Hasan, M.N. Pilot Study on the Current Management of Children with COVID-19 In Hospitals in Bangladesh; Findings and Implications. Bangladesh J. Med. Sci. 2021, 20, 188–198. [Google Scholar] [CrossRef]
- WHO Anatomical Therapeutic Chemical (ATC) Classification. 2021. Available online: https://www.who.int/tools/atc-ddd-toolkit/atc-classification (accessed on 20 February 2023).
- Ariyo, P.; Zayed, B.; Riese, V.; Anton, B.; Latif, A.; Kilpatrick, C.; Allegranzi, B.; Berenholtz, S. Implementation strategies to reduce surgical site infections: A systematic review. Infect. Control Hosp. Epidemiol. 2019, 40, 287–300. [Google Scholar] [CrossRef]
- Franco, L.M.; Cota, G.F.; Pinto, T.S.; Ercole, F.F. Preoperative bathing of the surgical site with chlorhexidine for infection prevention: Systematic review with meta-analysis. Am. J. Infect. Control 2017, 45, 343–349. [Google Scholar] [CrossRef]
- Shi, D.; Yao, Y.; Yu, W. Comparison of preoperative hair removal methods for the reduction of surgical site infections: A meta-analysis. J. Clin. Nurs. 2017, 26, 2907–2914. [Google Scholar] [CrossRef]
- Yao, R.; Tan, T.; Tee, J.W.; Street, J. Prophylaxis of surgical site infection in adult spine surgery: A systematic review. J. Clin. Neurosci. 2018, 52, 5–25. [Google Scholar] [CrossRef]
- Schreiber, P.W.; Sax, H.; Wolfensberger, A.; Clack, L.; Kuster, S.P.; Swissnoso. The preventable proportion of healthcare-associated infections 2005–2016: Systematic review and meta-analysis. Infect. Control Hosp. Epidemiol. 2018, 39, 1277–1295. [Google Scholar] [CrossRef] [Green Version]
- Boonchan, T.; Wilasrusmee, C.; McEvoy, M.; Attia, J.; Thakkinstian, A. Network meta-analysis of antibiotic prophylaxis for prevention of surgical-site infection after groin hernia surgery. Br. J. Surg. 2017, 104, e106–e117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Simone, B.; Sartelli, M.; Coccolini, F.; Ball, C.G.; Brambillasca, P.; Chiarugi, M.; Campanile, F.C.; Nita, G.; Corbella, D.; Leppaniemi, A.; et al. Intraoperative surgical site infection control and prevention: A position paper and future addendum to WSES intra-abdominal infections guidelines. World J. Emerg. Surg. 2020, 15, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godman, B.; Basu, D.; Pillay, Y.; Mwita, J.C.; Rwegerera, G.M.; Anand Paramadhas, B.D.; Tiroyakgosi, C.; Okwen, P.H.; Niba, L.L.; Nonvignon, J.; et al. Review of Ongoing Activities and Challenges to Improve the Care of Patients with Type 2 Diabetes Across Africa and the Implications for the Future. Front. Pharmacol. 2020, 11, 108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogunleye, O.O.; Basu, D.; Mueller, D.; Sneddon, J.; Seaton, R.A.; Yinka-Ogunleye, A.F.; Wamboga, J.; Miljkovic, N.; Mwita, J.C.; Rwegerera, G.M.; et al. Response to the Novel Co-rona Virus (COVID-19) Pandemic Across Africa: Successes, Challenges, and Implications for the Future. Front. Pharmacol. 2020, 11, 1205. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, A.S.; Versporten, A.; Nagalo, A.; Pauwels, I.; Goossens, H.; Ouedraogo, A.; Poda, A. The Global Point Prevalence Survey of Antimicrobial Consumption and Resistance (Global-PPS)—Results of Antimicrobial Prescribing in Burkina Faso. 2019. Available online: https://www.global-pps.com/wp-content/uploads/2021/02/The-Global-PPS_results-of-antimicrobial-prescribing-in-Burkina-Faso.pdf (accessed on 18 February 2023).
- Bunduki, G.K.; Mukululi, M.P.; Masumbuko, C.K.; Uwonda, S.A. Compliance of antibiotics used for surgical site infection prophylaxis among patients undergoing surgery in a Congolese teaching hospital. Infect. Prev. Pract. 2020, 2, 100075. [Google Scholar] [CrossRef]
- Ashour, R.H.; Abdelkader, E.A.; Hamdy, O.; Elmetwally, M.; Laimon, W.; Abd-Elaziz, M.A. The Pattern of Antimicrobial Prescription at a Tertiary Health Center in Egypt: A Point Survey and Implications. Infect. Drug Resist. 2022, 15, 6365–6378. [Google Scholar] [CrossRef]
- Fentie, A.M.; Degefaw, Y.; Asfaw, G.; Shewarega, W.; Woldearegay, M.; Abebe, E.; Gebretekle, G.B. Multicentre point-prevalence survey of antibiotic use and healthcare-associated infections in Ethiopian hospitals. BMJ Open 2022, 12, e054541. [Google Scholar] [CrossRef]
- Bediako-Bowan, A.A.A.; Owusu, E.; Labi, A.K.; Obeng-Nkrumah, N.; Sunkwa-Mills, G.; Bjerrum, S.; Opintan, J.A.; Bannerman, C.; Mølbak, K.; Kurtzhals, J.A.L.; et al. Antibiotic use in surgical units of selected hospitals in Ghana: A multi-centre point prevalence survey. BMC Public Health 2019, 19, 797. [Google Scholar] [CrossRef]
- D’Arcy, N.; Ashiru-Oredope, D.; Olaoye, O.; Afriyie, D.; Akello, Z.; Ankrah, D.; Asima, D.M.; Banda, D.C.; Barrett, S.; Brandish, C.; et al. Antibiotic Prescribing Patterns in Ghana, Uganda, Zambia and Tanzania Hospitals: Results from the Global Point Prevalence Survey (G-PPS) on Antimicrobial Use and Stewardship Interventions Implemented. Antibiotics 2021, 10, 1122. [Google Scholar] [CrossRef]
- Okoth, C.; Opanga, S.; Okalebo, F.; Oluka, M.; Baker Kurdi, A.; Godman, B. Point prevalence survey of antibiotic use and resistance at a referral hospital in Kenya: Findings and implications. Hosp. Pract. 2018, 46, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Momanyi, L.; Opanga, S.; Nyamu, D.; Oluka, M.; Kurdi, A.; Godman, B. Antibiotic Prescribing Patterns at a Leading Referral Hospital in Kenya: A Point Prevalence Survey. J. Res. Pharm. Pract. 2019, 8, 149–154. [Google Scholar] [PubMed]
- Oduyebo, O.O.; Olayinka, A.T.; Iregbu, K.C.; Versporten, A.; Goossens, H.; Nwajiobi-Princewill, P.; Jimoh, O.; Ige, T.O.; Aigbe, A.I.; Ola-Bello, O.I.; et al. A point prevalence survey of antimicrobial prescribing in four Nigerian Tertiary Hospitals. Ann. Trop. Pathol. 2017, 8, 42–46. [Google Scholar] [CrossRef]
- Aboderin, A.O.; Adeyemo, A.T.; Olayinka, A.A.; Oginni, A.S.; Adeyemo, A.T.; Oni, A.A.; Olabisi, O.F.; Fayomi, O.D.; Anuforo, A.C.; Egwuenu, A.; et al. Antimicrobial use among hospitalized patients: A multi-center, point prevalence survey across public healthcare facilities, Osun State, Nigeria. Germs 2021, 11, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Ogunleye, O.O.; Oyawole, M.R.; Odunuga, P.T.; Kalejaye, F.; Yinka-Ogunleye, A.F.; Olalekan, A.; Ogundele, S.O.; Ebruke, B.E.; Richard, A.K.; Paramadhas, B.D.; et al. A multicentre point prevalence study of antibiotics utilization in hospitalized patients in an urban secondary and a tertiary healthcare facilities in Nigeria: Findings and implications. Expert Rev. Anti-Infect. Ther. 2022, 20, 297–306. [Google Scholar] [CrossRef]
- Nkurunziza, T.; Kateera, F.; Sonderman, K.; Gruendl, M.; Nihiwacu, E.; Ramadhan, B.; Cherian, T.; Nahimana, E.; Ntakiyiruta, G.; Habiyakare, C.; et al. Prevalence and predictors of surgical-site infection after caesarean section at a rural district hospital in Rwanda. Br. J. Surg. 2019, 106, e121–e128. [Google Scholar] [CrossRef] [Green Version]
- Horumpende, P.G.; Mshana, S.E.; Mouw, E.F.; Mmbaga, B.T.; Chilongola, J.O.; de Mast, Q. Point prevalence survey of antimicrobial use in three hospitals in North-Eastern Tanzania. Antimicrob. Resist. Infect. Control 2020, 9, 149. [Google Scholar] [CrossRef]
- Ayed, H.B.; Yaich, S.; Trigui, M.; Jemaa, M.B.; Hmida, M.B.; Karray, R.; Kassis, M.; Mejdoub, Y.; Feki, H.; Jedidi, J.; et al. Prevalence and risk factors of health care-associated infections in a limited resources country: A cross-sectional study. Am. J. Infect. Control 2019, 47, 945–950. [Google Scholar] [CrossRef]
- Kiggundu, R.; Wittenauer, R.; Waswa, J.P.; Nakambale, H.N.; Kitutu, F.E.; Murungi, M.; Okuna, M.; Morries, S.; Lawry, L.L.; Joshi, M.P.; et al. Point Prevalence Survey of Antibiotic Use across 13 Hospitals in Uganda. Antibiotics 2022, 11, 199. [Google Scholar] [CrossRef]
- Nassr, O.A.; Abd Alridha, A.M.; Naser, R.A.; Abbas, R.S. Antibiotic prescribing in the acute care in Iraq. Int. J. Pharmacol. Pharm. Sci. 2018, 12, 485–489. [Google Scholar]
- Kurmanji, J.M.; Hassali, A.; Versporten, A.; Younus, M.; Pauwels, I.; Goossens, H.; Alnedawi, Z. Global Point Prevalence Survey in Five Teaching Hospitals in Baghdad, Iraq. Mediterr. J. Infect. Microbes Antimicrob.-Als/Infect. Dis. Clin. Microbiol. Spec. Soc. Turk. 2021, 10, 17. [Google Scholar] [CrossRef]
- Abu Hammour, K.; Al-Heyari, E.; Allan, A.; Versporten, A.; Goossens, H.; Abu Hammour, G.; Manaseer, Q. Antimicrobial Consumption and Resistance in a Tertiary Care Hospital in Jordan: Results of an Internet-Based Global Point Prevalence Survey. Antibiotics 2020, 9, 598. [Google Scholar] [CrossRef] [PubMed]
- Skosana, P.P.; Schellack, N.; Godman, B.; Kurdi, A.; Bennie, M.; Kruger, D.; Meyer, J.C. A point prevalence survey of antimicrobial utilisation patterns and quality indices amongst hospitals in South Africa; findings and implications. Expert Rev. Anti-Infect. Ther. 2021, 19, 1353–1366. [Google Scholar] [CrossRef] [PubMed]
- Skosana, P.P.; Schellack, N.; Godman, B.; Kurdi, A.; Bennie, M.; Kruger, D.; Meyer, J.C. A national, multicentre, web-based point prevalence survey of antimicrobial use and quality indices among hospitalised paediatric patients across South Africa. J. Glob. Antimicrob. Resist. 2022, 29, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Adekoya, I.; Maraj, D.; Steiner, L.; Yaphe, H.; Moja, L.; Magrini, N.; Cooke, G.; Loeb, M.; Persaud, N. Comparison of antibiotics included in national essential medicines lists of 138 countries using the WHO Access, Watch, Reserve (AWaRe) classification: A cross-sectional study. Lancet Infect. Dis. 2021, 21, 1429–1440. [Google Scholar] [CrossRef] [PubMed]
- Allegranzi, B.; Aiken, A.M.; Zeynep Kubilay, N.; Nthumba, P.; Barasa, J.; Okumu, G.; Mugarura, R.; Elobu, A.; Jombwe, J.; Maimbo, M.; et al. A multimodal infection control and patient safety intervention to reduce surgical site infections in Africa: A multicentre, before-after, cohort study. Lancet Infect. Dis. 2018, 18, 507–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saied, T.; Hafez, S.F.; Kandeel, A.; El-kholy, A.; Ismail, G.; Aboushady, M.; Attia, E.; Hassaan, A.; Abdel-Atty, O.; Elfekky, E.; et al. Antimicrobial stewardship to optimize the use of antimicrobials for surgical prophylaxis in Egypt: A multicenter pilot intervention study. Am. J. Infect. Control. 2015, 43, e67–e71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, R. Implementation of the WHO Surgical Safety Checklist at a teaching hospital in India and evaluation of the effects on perioperative complications. Int. J. Health Plann. Manag. 2018, 33, 836–846. [Google Scholar] [CrossRef]
- Mahmoudi, L.; Ghouchani, M.; Mahi-Birjand, M.; Bananzadeh, A.; Akbari, A. Optimizing compliance with surgical antimicrobial prophylaxis guidelines in patients undergoing gastrointestinal surgery at a referral teaching hospital in southern Iran: Clinical and economic impact. Infect. Drug Resist. 2019, 12, 2437–2444. [Google Scholar] [CrossRef] [Green Version]
- Ntumba, P.; Mwangi, C.; Barasa, J.; Aiken, A.; Kubilay, Z.; Allegranzi, B. Multimodal approach for surgical site infection prevention—Results from a pilot site in Kenya. Antimicrob. Resist. Infect. Control 2015, 4, P87. [Google Scholar] [CrossRef] [Green Version]
- Kim, R.Y.; Kwakye, G.; Kwok, A.C.; Baltaga, R.; Ciobanu, G.; Merry, A.F.; Funk, L.M.; Lipsitz, S.R.; Gawande, A.A.; Berry, W.R.; et al. Sustainability and long-term effectiveness of the WHO surgical safety checklist combined with pulse oximetry in a resource-limited setting: Two-year update from Moldova. JAMA Surg. 2015, 150, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Abubakar, U.; Syed Sulaiman, S.A.; Adesiyun, A.G. Impact of pharmacist-led antibiotic stewardship interventions on compliance with surgical antibiotic prophylaxis in obstetric and gynecologic surgeries in Nigeria. PLoS ONE 2019, 14, e0213395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alam, A.; Rehman, A.U.; Waheed, D.; Khan, M.H.; Ahmad, W.; Bashir, I.; Ullah, A.; Khan, I.U. Post-operative oral antibiotics in reducing frequency of surgical site infection following non-perforated appendectomy in population of South Waziristan Agency, Pakistan. Gomal J. Med. Sci. 2021, 19, 53–57. [Google Scholar] [CrossRef]
- Brink, A.J.; Messina, A.P.; Feldman, C.; Richards, G.A.; van den Bergh, D. From guidelines to practice: A pharma-cist-driven prospective audit and feedback improvement model for peri-operative antibiotic prophylaxis in 34 South African hospitals. J Antimicrob. Chemother 2017, 72, 1227–1234. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, F.; Kaya, S.; Tekin, R.; Gulsun, S.; Deveci, O.; Dayan, S.; Hoşoglu, S. Analysis of antimicrobial consumption and cost in a teaching hospital. J. Infect. Public Health 2014, 7, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaali, C.; Emiroglu, M.; Atalay, S.; Sert, I.; Dursun, A.; Kose, S.; Akbulut, G.; Aydın, C. A new antibiotic stewardship program approach is effective on inappropriate surgical prophylaxis and discharge prescription. J. Infect. Dev. Ctries 2019, 13, 961–967. [Google Scholar] [CrossRef]
Variable | Frequency (N = 583) |
---|---|
Demographics | |
Age | 42.2 ± 18.4 |
Sex | |
Male | 299 (51.3%) |
Female | 284 (48.7%) |
Comorbidities | |
Diabetes mellitus | 27 (4.6%) |
Hypertension | 16 (2.7%) |
Hepatitis | 14 (2.4%) |
Heart disease | 5 (0.9%) |
Clinical Presentation | |
Ward | |
General surgery | 268 (50%) |
Orthopedic | 214 (36.7%) |
Gynecological | 101 (17.3%) |
Top Three Complaints on Hospital Admission | |
Pain | 70 (12%) |
Swelling | 45 (7.7%) |
Pus discharge | 12 (2.1%) |
Diagnosis | |
Bone Infections | |
Osteomyelitis | 160 (27.4%) |
Internal Fracture | 54 (9.2%) |
Intra-abdominal Infections | |
Cholelithiasis | 78 (13.4%) |
Hernia | 50 (8.6%) |
Appendicitis | 33 (5.7%) |
Full term delivery | 80 (13.8%) |
Fibroids | 21 (3.7%) |
Skin and Soft Tissue Infections | |
Abscess | 71 (12.1%) |
Diabetic foot | 36 (6.1%) |
Hospital Stay | |
Total duration in hospital (days), including pre-operatively | 4.9 ± 3.8 |
Surgical Procedures | Frequency (%) |
---|---|
Implant Fixation Due to Removal of Dead Bone (Dirty Wound) | 160 (27.4) |
Caesarean section (Clean Contaminated Wound) | 80 (13.8) |
Lap Cholecystectomy (Clean Contaminated Wound) | 78 (13.4) |
Abscess Drainage (Dirty Wound) | 71 (12.3) |
Implant Fixation Due to Fracture (Clean Wound) | 54 (9.2) |
Hernia Repair (Clean Wound) | 50 (8.6) |
Amputation Due to Diabetic Foot Necrosis (Dirty Wound) | 36 (6.1) |
Appendectomy (Contaminated Wound) | 33 (5.6) |
Hysterectomy (Clean Contaminated Wound) | 21 (3.6) |
Antibiotics | WHO AwaRe Classification | Wound Types | Total N (%) | |||
---|---|---|---|---|---|---|
Clean N (%) | Clean/Contaminated n (%) | Contaminated n (%) | Dirty n (%) | |||
Penicillins | ||||||
Piperacillin + Tazobactam (J01CR05) | Watch | 2 (1) | 25 (7.1) | 2 (4) | 111 (20.1) | 140 (12.1) |
Co-amoxiclav (J01CR02) | Access | 38 (19) | 18 (5.1) | 12 (24.4) | 5 (0.9) | 73 (6.3) |
Cephalosporins | ||||||
Cefoperazone + Sulbactam (J01DD62) | Watch | 20 (10) | 78(22.2) | 12 (24.4) | 120 (21.8) | 230 (20) |
Ceftriaxone (J01DD04) | Watch | 10 (5) | 15 (4.2) | 6 (12.2) | 61 (11) | 92 (8) |
Cefazolin (J01DB04) | Access | 40 (20) | 26 (7.4) | - | - | 66 (5.7) |
Cefuroxime (J01DC02) | Watch | 10 (5) | 30 (8.5) | - | 10 (1.8) | 50 (4.3) |
Cephradine (J01DB09) | Access | 22 (11) | 8 (2.2) | - | - | 30 (2.6) |
Cefixime (J01DD08) | Watch | 16 (8) | 13 (3.7) | - | - | 29 (2.5) |
Fluoroquinolones | ||||||
Ciprofloxacin (J01MA02) | Watch | 16 (9) | 30 (8.5) | 8 (16.2) | 3 (0.5) | 59 (5.1) |
Moxifloxacin (J01MA14) | Watch | 4 (2) | 20 (5.7) | 3 (6.1) | - | 27 (2.3) |
Aminoglycosides | ||||||
Amikacin (J01GB06) | Access | 8 (4) | 26 (7.4) | - | 120 (21.8) | 154 (13.4) |
Others | ||||||
Metronidazole (J01XD01) | Access | 12 (6) | 61 (17.4) | 4 (8.1) | 95 (17.2) | 172 (14.9) |
Vancomycin (J01XA01) | Watch | - | - | 2 (4) | 25 (4.5) | 27 (2.3) |
Total antimicrobials | 200 (17.4) | 350 (30.4) | 49 (4.2) | 550 (47.8) | 1149 (100) |
Wound Type | Definition |
---|---|
Clean | Uninfected operative wounds without inflammation or involvement of the respiratory, alimentary, genital or uninfected urinary tracts |
Clean/Contaminated | Operative wounds in which the respiratory, alimentary, genital or urinary tract is entered under controlled conditions and without unusual contamination |
Contaminated | Open, fresh, accidental wounds; operations with major breaks in sterile technique or gross spillage from the gastrointestinal tract; and incisions in which acute, non-purulent inflammation is encountered |
Dirty | Old traumatic wounds with retained devitalized tissue and involvement of existing clinical infection or perforated viscera |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, Z.; Ahsan, U.; Haseeb, A.; Altaf, U.; Batool, N.; Rani, H.; Jaffer, J.; Shahid, F.; Hussain, M.; Amir, A.; et al. Antibiotic Utilization Patterns for Different Wound Types among Surgical Patients: Findings and Implications. Antibiotics 2023, 12, 678. https://doi.org/10.3390/antibiotics12040678
Saleem Z, Ahsan U, Haseeb A, Altaf U, Batool N, Rani H, Jaffer J, Shahid F, Hussain M, Amir A, et al. Antibiotic Utilization Patterns for Different Wound Types among Surgical Patients: Findings and Implications. Antibiotics. 2023; 12(4):678. https://doi.org/10.3390/antibiotics12040678
Chicago/Turabian StyleSaleem, Zikria, Umar Ahsan, Abdul Haseeb, Ummara Altaf, Narjis Batool, Hira Rani, Javeria Jaffer, Fatima Shahid, Mujahid Hussain, Afreenish Amir, and et al. 2023. "Antibiotic Utilization Patterns for Different Wound Types among Surgical Patients: Findings and Implications" Antibiotics 12, no. 4: 678. https://doi.org/10.3390/antibiotics12040678
APA StyleSaleem, Z., Ahsan, U., Haseeb, A., Altaf, U., Batool, N., Rani, H., Jaffer, J., Shahid, F., Hussain, M., Amir, A., Rehman, I. U., Saleh, U., Shabbir, S., Qamar, M. U., Altowayan, W. M., Raees, F., Azmat, A., Imam, M. T., Skosana, P. P., & Godman, B. (2023). Antibiotic Utilization Patterns for Different Wound Types among Surgical Patients: Findings and Implications. Antibiotics, 12(4), 678. https://doi.org/10.3390/antibiotics12040678