Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador
Abstract
:1. Introduction
2. Results
2.1. Essential Oil Yield
2.2. Qualitative and Quantitative Analyses
2.3. Enantioselective Analysis
2.4. Antimicrobial Activity
2.5. Antioxidant Capacity
2.6. Anticholinesterase Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Essential Oil Distillation
4.3. Essential Oil Yield
4.4. Chemical Profiling
4.4.1. GC-MS (Qualitative Analysis)
4.4.2. GC-FID (Quantitative Analysis)
4.4.3. Enantioselective Analysis
4.5. Antimicrobial Activity
4.6. Antioxidant Capacity
4.6.1. The 2,2-Diphenyl-1-picrylhydrazyl Radical Scavenging Assay
4.6.2. The 2,2-Azinobis-3-ethylbenzothiazoline-6-sulfonic Acid Radical Scavenging Assay
4.7. Anticholinesterase Assay
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; Paes, A.M.A. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease Therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trang, A.; Khandhar, P.B. Physiology, Acetylcholinesterase. Updated 2022 May 8. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539735/ (accessed on 22 March 2023).
- Sánchez, G.; Salceda, R. Polyfunctional Enzymes: The Case of Acethylcholinesterase. Biochem. Educ. Mag. 2008, 27, 44–51. [Google Scholar]
- Owokotomo, I.A.; Ekundayo, O.; Abayomi, T.G.; Chukwuka, A.V. In-Vitro Anti-Cholinesterase Activity of Essential Oil from Four Tropical Medicinal Plants. Elsevier 2015, 2, 850–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, V. Ginkgo Extract or Cholinesterase Inhibitors in Patients with Dementia: What Clinical Trials and Guidelines Fail to Consider. Phytomedicine 2003, 10, 74–79. [Google Scholar] [CrossRef]
- Rincón, C.; Castaño, J.; Vázquez, E. Biological Activity of Essential Oils from Acmella ciliata (Kunth) Cass. Rev. Cuba. Plantas Med. 2012, 17, 160–171. [Google Scholar]
- Dohi, S.; Terasaki, M.; Makino, M. Acetylcholinesterase Inhibitory Activity and Chemical Composition of Commercial Essential Oils. J. Agric. Food Chem. 2009, 57, 4313–4318. [Google Scholar] [CrossRef]
- D’agostino, M.; Tesse, N.; Frippiat, J.P.; Machouart, M.; Debourgogne, A. Essential Oils and Their Natural Active Compounds Presenting Antifungal Properties. Molecules 2019, 24, 3713. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.C.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.R.; Oluwaseun Ademiluyi, A.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Mol. A J. Synth. Chem. Nat. Prod. Chem. 2017, 22, 70. [Google Scholar] [CrossRef]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef]
- Ferreira, M.J.; Pinto, D.C.G.A.; Cunha, Â.; Silva, H. Halophytes as Medicinal Plants against Human Infectious Diseases. Appl. Sci. 2022, 12, 7493. [Google Scholar] [CrossRef]
- Seidel, V. Plant-Derived Chemicals: A Source of Inspiration for New Drugs. Plants 2020, 9, 1562. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.K.; Irenaeus, T.K.S.; Gurung, M.R.; Pathak, P.K. Taxonomy and Importance of Myrtaceae. Acta Horticulturae. 2012, 959, 23–34. [Google Scholar] [CrossRef]
- Kew, R.B.G. Myrcianthes discolor (Kunth) McVaugh. In Plants of the World Online [Database]; Royal Botanic Gardens, Kew: Richmond, UK, 2022; Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:166084-2 (accessed on 22 March 2023).
- Bussmann, R.W.; Glenn, A.; Douglas, S. Antibacterial activity of medicinal plants of Northern Perú—Can traditional aplications provide leads for modern science? Indian J. Tradit. Knowl. 2010, 9, 742–753. [Google Scholar]
- De la Torre, L.; Navarrete, H.; Muriel, M.P.; Macía, M.; Balslev, H. Enciclopedia de las Plantas Útiles del Ecuador; Herbario QCA de la Escuela de Ciencias Biológicas de la Pontificia Universidad Católica del Ecuador & Herbario AAU del Departamento de Ciencias Biológicas de la Universidad de Aarhus: Quito, Ecuador, 2008; ISBN 9789978771358. [Google Scholar]
- Adams, R. Identification of Essential Oil Components by Gas Chromatography_mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Armijos, C.; Valarezo, E.; Cartuche, L.; Zaragoza, T.; Finzi, P.; Mellerio, G.; Vidari, G. Chemical Composition and Antimicrobial Activity of Myrcianthes fragrans Essential Oil, a Natural Aromatizer of the Traditional Ecuadorian Beverage Colada Morada. J. Ethnopharmacol. 2018, 225, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.; Line, H.; Wanessa, D.C.; Araújo, C.; Iecher, M.; Gonçalves, J.; Barros, N.; Cristiani, Z.; Linde, G.A. Antioxidant and Antibacterial Activity of Myrcianthes pungens Leaf Essential Oil. Bol. Latinoam. Y Caribe Plantas Med. Y Aromat. 2021, 20, 147–161. [Google Scholar] [CrossRef]
- Montalván, M.; Peñafiel, M.A.; Ramírez, J.; Cumbicus, N.; Bec, N.; Larroque, C.; Bicchi, C.; Gilardoni, G. Chemical Composition, Enantiomeric Distribution, and Sensory Evaluation of the Essential Oils Distilled from the Ecuadorian Species Myrcianthes myrsinoides (Kunth) Grifo and Myrcia mollis (Kunth) DC. (Myrtaceae). Plants 2019, 8, 511. [Google Scholar] [CrossRef] [Green Version]
- Ospina, L.M.P.; Muñoz, P.B.; Matulevich, J.; Teherán, A.A.; Villamizar, L.B. Composition and Antimicrobial Activity of the Essential Oils of Three Plant Species from the Sabana of Bogota (Colombia): Myrcianthes leucoxyla, Vallea stipularis and Phyllanthus salviifolius. Nat. Prod. Commun. 2016, 11, 1913–1918. [Google Scholar] [CrossRef] [Green Version]
- Malagón, O.; Vila, R.; Iglesias, J.; Zaragoza, T.; Cañigueral, S. Composition of the Essential Oils of Four Medicinal Plants from Ecuador. Flavour Fragr. J. 2003, 18, 527–531. [Google Scholar] [CrossRef]
- Barra, A. Factors Affecting Chemical Variability of Essential Oils: A Review of Recent Developments. Nat. Prod. Commun. 2009, 4, 1147–1154. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Ganjewala, D. A Study on Developmental Changes in Essential Oil Content and Composition in Cymbopogon flexuosus Cultivar Suvarna. Acta Biol. Szeged. 2015, 59, 119–125. [Google Scholar]
- Lorenzo, D.; Dellacassa, E.; Bonaccorsi, I.; Mondello, L. Uruguayan Essential Oils. Composition of Leaf Oil of Myrcianthes cisplatensis (Camb.) Berg. (‘Guayabo Colorado’) (Myrtaceae). Flavour Fragr. J. 2001, 16, 97–99. [Google Scholar] [CrossRef]
- Lopez, J.; Jean, F.; Gagnon, H.; Collin, G.; Garneau, F.; Pichette, A. Essential Oils from Bolivia. VII. Myrtaceae: Myrcianthes osteomeloides (Rusby) McVaugh and Myrcianthes pseudomato (Legrand) McVaugh. J. Essent. Oil Res. 2011, 17, 64–65. [Google Scholar] [CrossRef]
- Fidyt, K.; Fiedorowicz, A.; Strządała, L.; Szumny, A. β-caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med. 2016, 5, 007–3017. [Google Scholar] [CrossRef]
- Pinho-da-Silva, L.; Mendes-Maia, P.V.; Teófilo, T.M.; Barbosa, R.; Ceccatto, V.M.; Coelho-de-Souza, A.N.; Santos Cruz, J.; Leal-Cardoso, J.H. trans-Caryophyllene, a Natural Sesquiterpene, Causes Tracheal Smooth Muscle Relaxation Through Blockade of Voltage-Dependent Ca2⁺ Channels. Molecules 2012, 17, 11965–11977. [Google Scholar] [CrossRef]
- Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzym. Inhib. Med. Chem. 2010, 25, 622–628. [Google Scholar] [CrossRef] [Green Version]
- Araujo, L.; Rondón, M.; Morillo, A.; Páez, E.; Rojas-Fermín, L. Antimicrobial Activity of the Essential Oil of Myrcianthes myrcinoides (Kunth) Grifo (Myrtaceae) Collected in the Venezuelan Andes. Pharmacol. OnLine 2017, 2, 200–204. [Google Scholar]
- Van Vuuren, S.; Holl, D. Antimicrobial natural product research: A review from a South African perspective for the years 2009–2016. J. Ethnopharmacol. 2017, 208, 236–252. [Google Scholar] [CrossRef]
- Selestino, N.; Vittorazzi, C.; Guimarães, A.; Fronza, M.; Coutinho, D.; Scherer, R. Pharmaceutical Biology Effects of β-Caryophyllene and Murraya Paniculata Essential Oil in the Murine Hepatoma Cells and in the Bacteria and Fungi 24-h Time-Kill Curve Studies. Phamaceutical Biol. 2016, 55, 190–197. [Google Scholar] [CrossRef] [Green Version]
- Hung, N.H.; Quan, P.M.; Satyal, P.; Dai, D.N.; Hoa, V.V.; Huy, N.G.; Giang, L.D.; Ha, N.T.; Huong, L.T.; Hien, V.T.; et al. Acetylcholinesterase Inhibitory Activities of Essential Oils from Vietnamese Traditional Medicinal Plants. Molecules 2022, 27, 7092. [Google Scholar] [CrossRef]
- Cartuche, L.; Calva, J.; Valarezo, E.; Chuchuca, N.; Morocho, V. Chemical and Biological Activity Profiling of Hedyosmum strigosum Todzia Essential Oil, an Aromatic Native Shrub from Southern Ecuador. Plants 2022, 11, 2832. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; Pachar, P.; Trujillo, L.; Cartuche, L. Suillin: A Mixed-Type Acetylcholinesterase Inhibitor from Suillus luteus Which Is Used by Saraguros Indigenous, Southern Ecuador. PLoS ONE 2022, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
No. | Compounds | DB5-MS (5%-Phenyl-Methylpolysiloxane) | |||
---|---|---|---|---|---|
LRI a | LRI b | RAc (%) | CF | ||
1 | α-Pinene | 929 | 932 | 0.42 ± 0.002 | C10H16 |
2 | β-Pinene | 994 | 974 | 1.74 ± 0.010 | C10H16 |
3 | α-Phellandrene | 1012 | 1002 | 0.31 ± 0.003 | C10H16 |
4 | Limonene | 1033 | 1024 | 2.63 ± 0.015 | C10H16 |
5 | β-Phellandrene | 1035 | 1025 | 0.03 ± 0.001 | C10H16 |
6 | (Z)-β-Ocimene | 1040 | 1032 | 1.69 ± 0.020 | C10H16 |
7 | (E)-β-Ocimene | 1050 | 1044 | 0.61 ± 0.004 | C10H16 |
8 | Linalool | 1108 | 1095 | 0.71 ± 0.010 | C10H18O |
9 | δ-Elemene | 1339 | 1335 | 0.27 ± 0.004 | C15H24 |
10 | α-Cubebene | 1351 | 1348 | 6.06 ± 0.053 | C15H24 |
11 | α-Copaene | 1379 | 1374 | 0.58 ± 0.002 | C15H24 |
12 | β-Cubebene | 1391 | 1387 | 0.30 ± 0.020 | C15H24 |
13 | β-Elemene | 1393 | 1389 | 6.93 ± 0.499 | C15H24 |
14 | α-Gurjunene | 1409 | 1409 | 1.03 ± 0.006 | C15H24 |
15 | Methyl eugenol | 1417 | 1403 | 0.21 ± 0.038 | C11H14O2 |
16 | E-Caryophyllene | 1425 | 1417 | 29.40 ± 0.217 | C15H24 |
17 | β-Copaene | 1432 | 1430 | 0.04 ± 0.008 | C15H24 |
18 | β-Gurjunene | 1434 | 1431 | 0.29 ± 0.008 | C15H24 |
19 | E-α-Bergamotene | 1438 | 1432 | 0.21 ± 0.045 | C15H24 |
20 | Aromadendrene | 1443 | 1439 | 0.42 ± 0.003 | C15H24 |
21 | 6,9-Guaiadiene | 1446 | 1442 | 0.24 ± 0.174 | C15H24 |
22 | (Z)-Muurola-3,5-diene | 1454 | 1448 | 0.39 ± 0.006 | C15H24 |
23 | α-Humulene | 1461 | 1452 | 3.96 ± 0.023 | C15H24 |
24 | 9-epi-E-Caryophyllene | 1465 | 1464 | 1.05 ± 0.007 | C15H24 |
25 | Dauca-5,8-diene | 1478 | 1471 | 1.26 ± 0.033 | C15H24 |
26 | γ-Muurolene | 1481 | 1478 | 0.31 ± 0.002 | C15H24 |
27 | Amorpha-4,7(11)-diene | 1487 | 1479 | 2.28 ± 0.023 | C15H24 |
28 | γ-Himachalene | 1483 | 1481 | 1.74 ± 0.014 | C15H24 |
29 | Viridiflorene | 1490 | 1496 | 1.57 ± 0.219 | C15H24 |
30 | Bicyclogermacrene | 1502 | 1500 | 7.45 ± 0.162 | C15H24 |
31 | α-Muurolene | 1505 | 1500 | 0.43 ± 0.020 | C15H24 |
32 | δ-Amorphene | 1509 | 1511 | 0.54 ± 0.008 | C15H24 |
33 | E,E-α-Farnesene | 1511 | 1505 | 1.64 ± 0.419 | C15H24 |
34 | β-Bisabolene | 1514 | 1505 | 1.16 ± 0.038 | C15H24 |
35 | γ-Cadinene | 1520 | 1513 | 0.13 ± 0.009 | C15H24 |
36 | δ-Cadinene | 1526 | 1522 | 3.02 ± 0.002 | C15H24 |
37 | Z-Calamenene | 1531 | 1528 | 0.86 ± 0.009 | C15H22 |
38 | E-Cadina-1,4-diene | 1541 | 1533 | 0.61 ± 0.010 | C15H24 |
39 | Germacrene B | 1567 | 1559 | 0.64 ± 0.046 | C15H24 |
40 | E-Nerolidol | 1571 | 1561 | 0.15 ± 0.010 | C15H26O |
41 | Palustrol | 1575 | 1567 | 0.93 ± 0.021 | C15H26O |
42 | Spathulenol | 1585 | 1577 | 0.66 ± 0.015 | C15H24O |
43 | Caryophyllene oxide | 1591 | 1582 | 1.09 ± 0.015 | C15H24O |
44 | Globulol | 1595 | 1590 | 1.17 ± 0.011 | C15H26O |
45 | Viridiflorol | 1606 | 1592 | 0.89 ± 0.008 | C15H26O |
46 | Guaiol | 1608 | 1600 | 0.45 ± 0.015 | C15H26O |
47 | Ledol | 1617 | 1602 | 0.32 ± 0.010 | C15H26O |
48 | 5-epi-7-epi-α-Eudesmol | 1620 | 1607 | 0.38 ± 0.014 | C15H26O |
49 | 10-epi-γ-Eudesmol | 1633 | 1622 | 0.35 ± 0.035 | C15H26O |
50 | Junenol | 1636 | 1618 | 0.12 ± 0.007 | C15H26O |
51 | β-Eudesmol | 1639 | 1649 | 0.31 ± 0.011 | C15H26O |
52 | 1-epi-Cubenol | 1642 | 1627 | 0.71 ± 0.013 | C15H26O |
53 | Z-Cadin-4-en-7-ol | 1649 | 1635 | 0.37 ± 0.012 | C15H26O |
54 | Cubenol | 1658 | 1645 | 0.71 ± 0.010 | C15H26O |
55 | α-Cadinol | 1661 | 1652 | 0.41 ± 0.006 | C15H26O |
56 | α-Muurolol (Torreyol) | 1663 | 1644 | 0.26 ± 0.010 | C15H26O |
57 | 8-hydroxy-Isobornyl isobutanoate | 1672 | 1674 | 1.73 ± 0.021 | C14H24O3 |
58 | Selin-11-en-4-α-ol | 1675 | 1658 | 0.14 ± 0.040 | C15H26O |
MH | 7.42 | ||||
OM | 0.71 | ||||
SH | 75.31 | ||||
OS | 11.13 | ||||
Others | 0.21 | ||||
Total | 94.80 |
No. | Enantiomers | LRI a | ED b (%) | e.e. c (%) |
---|---|---|---|---|
1 | (1S,5S)-(−)-β-pinene | 1015 | 100.00 | 100.00 |
2 | (R)-(−)-α-Phellandrene | 1032 | 100.00 | 100.00 |
3 | (4S)-(−)-Limonene | 1055 | 58.514 | 17.028 |
4 | (4R)-(+)-Limonene | 1061 | 41.486 |
Microorganism | M. discolor | Antimicrobial Agent |
---|---|---|
MIC µg/mL | ||
Gram-positive bacteria | Ampicillin (1 mg/mL) | |
Enterococcus faecalis ATCC® 19433 | 125 | 0.7812 |
Enterococcus faecium ATCC® 27270 | 62.5 | <0.3906 |
Staphylococcus aureus ATCC® 25923 | 4000 | <0.3906 |
Gram-negative bacteria | Ciprofloxacin (1 mg/mL) | |
Escherichia coli (O157:H7) ATCC® 43888 | - | 1.5625 |
Pseudomonas aeruginosa ATCC® 10145 | - | <0.3906 |
Yeasts and sporulated fungi | Amphotericin B (250 µg/mL) | |
Candida albicans ATTC® 10231 | 4000 | <0.098 |
Aspergillus niger ATCC® 6275 | - | <0.098 |
EO | ABTS | DPPH |
---|---|---|
Myrcianthes discolor | SC50 (µg/mL–µM *) ± SD | |
144.93 ± 0.1754 | 3599.6 ± 0.324 | |
Trolox * | 29.09 ± 1.05 | 35.54 ± 1.04 |
EO | Acetilcolinesterasa |
---|---|
Myrcianthes discolor | IC50 (µg/mL—nM *) ± SD |
6.68 ± 1.07 | |
Donepezil * | 12.40 ± 1.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero, D.; Cartuche, L.; Valarezo, E.; Cumbicus, N.; Morocho, V. Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador. Antibiotics 2023, 12, 677. https://doi.org/10.3390/antibiotics12040677
Romero D, Cartuche L, Valarezo E, Cumbicus N, Morocho V. Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador. Antibiotics. 2023; 12(4):677. https://doi.org/10.3390/antibiotics12040677
Chicago/Turabian StyleRomero, Diana, Luis Cartuche, Eduardo Valarezo, Nixon Cumbicus, and Vladimir Morocho. 2023. "Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador" Antibiotics 12, no. 4: 677. https://doi.org/10.3390/antibiotics12040677
APA StyleRomero, D., Cartuche, L., Valarezo, E., Cumbicus, N., & Morocho, V. (2023). Chemical Profiling, Anticholinesterase, Antioxidant, and Antibacterial Potential of the Essential Oil from Myrcianthes discolor (Kunth) McVaugh, an Aromatic Tree from Southern Ecuador. Antibiotics, 12(4), 677. https://doi.org/10.3390/antibiotics12040677