The Association between Previous Antibiotic Consumption and SARS-CoV-2 Infection: A Population-Based Case-Control Study
Abstract
:1. Introduction
1.1. The Pandemic
1.2. Risk Factors for SARS-CoV-2 Infection
1.3. Human Microbiome and COVID-19
1.4. Antibiotic Treatment
1.5. Aim of Study
2. Methods
2.1. Study Population
2.2. Definitions
2.3. Study Design
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. Demographic Characteristics of the Study Groups
3.3. Clinical Characteristics of the Study Groups
3.4. Laboratory Characteristics of the Study Groups
3.5. Previous Antibiotic Consumption and SARS-CoV-2 Infection
3.6. Multivariate Analysis
4. Discussion
4.1. New Findings and Their Discussion
4.2. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 4 February 2023).
- Msemburi, W.; Karlinsky, A.; Knutson, V.; Aleshin-Guendel, S.; Chatterji, S.; Wakefield, J. The WHO Estimates of Excess Mortality Associated with the COVID-19 Pandemic. Nature 2023, 613, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the Severity of Coronavirus Disease 2019: A Model-Based Analysis. Lancet Infect. Dis. 2020, 20, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Joshee, S.; Vatti, N.; Chang, C. Long-Term Effects of COVID-19. Mayo Clin. Proc. 2022, 97, 579–599. [Google Scholar] [CrossRef]
- Ludvigsson, J.F. Systematic Review of COVID-19 in Children Shows Milder Cases and a Better Prognosis than Adults. Acta Paediatr. 2020, 109, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, M.; Yavne, Y.; Shepshelovich, D. Predicting Which Patients Are at Risk for Clinical Deterioration in COVID-19: A Review of the Current Models in Use. Isr. Med. Assoc. J. 2022, 24, 699–704. [Google Scholar]
- Merzon, E.; Weiss, M.; Krone, B.; Cohen, S.; Ilani, G.; Vinker, S.; Cohen-Golan, A.; Green, I.; Israel, A.; Schneider, T.; et al. Clinical and Socio-Demographic Variables Associated with the Diagnosis of Long COVID Syndrome in Youth: A Population-Based Study. Int. J. Environ. Res. Public Health 2022, 19, 5993. [Google Scholar] [CrossRef]
- Seligman, B.; Ferranna, M.; Bloom, D.E. Social Determinants of Mortality from COVID-19: A Simulation Study Using NHANES. PLoS Med. 2021, 18, e1003490. [Google Scholar] [CrossRef]
- Jackson, S.E.; Brown, J.; Shahab, L.; Steptoe, A.; Fancourt, D. COVID-19, Smoking and Inequalities: A Study of 53 002 Adults in the UK. Tob. Control. 2020, 30, e111–e121. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lu, Y.; Huang, Y.M.; Wang, M.; Ling, W.; Sui, Y.; Zhao, H.L. Obesity in Patients with COVID-19: A Systematic Review and Meta-Analysis. Metabolism 2020, 113, 154378. [Google Scholar] [CrossRef]
- Merzon, E.; Tworowski, D.; Gorohovski, A.; Vinker, S.; Golan Cohen, A.; Green, I.; Frenkel-Morgenstern, M. Low Plasma 25(OH) Vitamin D Level Is Associated with Increased Risk of COVID-19 Infection: An Israeli Population-Based Study. FEBS J. 2020, 287, 3693–3702. [Google Scholar] [CrossRef]
- Treskova-Schwarzbach, M.; Haas, L.; Reda, S.; Pilic, A.; Borodova, A.; Karimi, K.; Koch, J.; Nygren, T.; Scholz, S.; Schönfeld, V.; et al. Pre-Existing Health Conditions and Severe COVID-19 Outcomes: An Umbrella Review Approach and Meta-Analysis of Global Evidence. BMC Med. 2021, 19, 212. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cao, Y.; Du, T.; Zhi, Y. Prevalence of Comorbid Asthma and Related Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 693–701. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.M.; Slaughter, J.C.; Duffus, S.H.; Smith, T.J.; LeStourgeon, L.M.; Jaser, S.S.; McCoy, A.B.; Luther, J.M.; Giovannetti, E.R.; Boeder, S.; et al. COVID-19 Severity Is Tripled in the Diabetes Community: A Prospective Analysis of the Pandemic’s Impact in Type 1 and Type 2 Diabetes. Diabetes Care 2020, 44, 526–532. [Google Scholar] [CrossRef]
- Adams, M.L.; Katz, D.L.; Grandpre, J. Population-Based Estimates of Chronic Conditions Affecting Risk for Complications from Coronavirus Disease, United States. Emerg. Infect. Dis. 2020, 26, 1831. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Zhou, F.; Hou, W.; Silver, Z.; Wong, C.Y.; Chang, O.; Huang, E.; Zuo, Q.K. The Prevalence of Depression, Anxiety, and Sleep Disturbances in COVID-19 Patients: A Meta-Analysis. Ann. N. Y. Acad. Sci. 2021, 1486, 90–111. [Google Scholar] [CrossRef]
- Merzon, E.; Weiss, M.D.; Cortese, S.; Rotem, A.; Schneider, T.; Craig, S.G.; Vinker, S.; Golan Cohen, A.; Green, I.; Ashkenazi, S.; et al. The Association between ADHD and the Severity of COVID-19 Infection. J. Atten. Disord. 2022, 26, 491–501. [Google Scholar] [CrossRef]
- Yamamoto, S.; Saito, M.; Tamura, A.; Prawisuda, D.; Mizutani, T.; Yotsuyanagi, H. The Human Microbiome and COVID-19: A Systematic Review. PLoS ONE 2021, 16, e0253293. [Google Scholar] [CrossRef]
- Merenstein, C.; Liang, G.; Whiteside, S.A.; Cobián-Güemes, A.G.; Merlino, M.S.; Taylor, L.J.; Glascock, A.; Bittinger, K.; Tanes, C.; Graham-Wooten, J.; et al. Signatures of COVID-19 Severity and Immune Response in the Respiratory Tract Microbiome. MBio 2021, 12, e0177721. [Google Scholar] [CrossRef]
- Reinold, J.; Farahpour, F.; Fehring, C.; Dolff, S.; Konik, M.; Korth, J.; van Baal, L.; Hoffmann, D.; Buer, J.; Witzke, O.; et al. A Pro-Inflammatory Gut Microbiome Characterizes SARS-CoV-2 Infected Patients and a Reduction in the Connectivity of an Anti-Inflammatory Bacterial Network Associates with Severe COVID-19. Front. Cell. Infect. Microbiol. 2021, 11, 747816. [Google Scholar] [CrossRef]
- Zuo, T.; Zhang, F.; Lui, G.C.Y.; Yeoh, Y.K.; Li, A.Y.L.; Zhan, H.; Wan, Y.; Chung, A.; Cheung, C.P.; Chen, N.; et al. Alterations in Gut Microbiota of Patients with COVID-19 during Time of Hospitalization. Gastroenterology 2020, 159, 1302–1310.e5. [Google Scholar] [CrossRef]
- Moreira-Rosário, A.; Marques, C.; Pinheiro, H.; Araújo, J.R.; Ribeiro, P.; Rocha, R.; Mota, I.; Pestana, D.; Ribeiro, R.; Pereira, A.; et al. Gut Microbiota Diversity and C-Reactive Protein Are Predictors of Disease Severity in COVID-19 Patients. Front. Microbiol. 2021, 12, 705020. [Google Scholar] [CrossRef] [PubMed]
- Schult, D.; Reitmeier, S.; Koyumdzhieva, P.; Lahmer, T.; Middelhoff, M.; Erber, J.; Schneider, J.; Kager, J.; Frolova, M.; Horstmann, J.; et al. Gut Bacterial Dysbiosis and Instability Is Associated with the Onset of Complications and Mortality in COVID-19. Gut Microbes 2022, 14, 2031840. [Google Scholar] [CrossRef] [PubMed]
- Gang, J.; Wang, H.; Xue, X.; Zhang, S. Microbiota and COVID-19: Long-Term and Complex Influencing Factors. Front. Microbiol. 2022, 13, 963488. [Google Scholar] [CrossRef]
- Ramirez, J.; Guarner, F.; Bustos Fernandez, L.; Maruy, A.; Sdepanian, V.L.; Cohen, H. Antibiotics as Major Disruptors of Gut Microbiota. Front. Cell. Infect. Microbiol. 2020, 10, 572912. [Google Scholar] [CrossRef] [PubMed]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of Antibiotics on the Human Microbiome and Consequences for Host Health. MicrobiologyOpen 2022, 11, e1260. [Google Scholar] [CrossRef]
- McDonald, L.C. Effects of Short- and Long-Course Antibiotics on the Lower Intestinal Microbiome as They Relate to Traveller’s Diarrhea. J. Travel Med. 2017, 24 (Suppl. 1), S35–S38. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.H.; Bhargava, P.; McCloskey, D.; Mao, N.; Palsson, B.O.; Collins, J.J. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell Host Microbe 2017, 22, 757–765.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venditto, V.J.; Haydar, D.; Abdel-Latif, A.; Gensel, J.C.; Anstead, M.I.; Pitts, M.G.; Creameans, J.; Kopper, T.J.; Peng, C.; Feola, D.J. Immunomodulatory Effects of Azithromycin Revisited: Potential Applications to COVID-19. Front. Immunol. 2021, 12, 574425. [Google Scholar] [CrossRef]
- Mainguy-Seers, S.; Vargas, A.; Labrecque, O.; Bédard, C.; Hélie, P.; Lavoie, J.-P. Randomised Study of the Immunomodulatory Effects of Azithromycin in Severely Asthmatic Horses. Vet. Rec. 2019, 185, 143. [Google Scholar] [CrossRef]
- Schild, K.; Knobloch, J.; Yakin, Y.; Jungck, D.; Urban, K.; Müller, K.; Koch, A. IL-5 Release of CD4+ Non-Effector Lymphocytes Is Increased in COPD—Modulating Effects of Moxifloxacin and Dexamethasone. Int. Immunopharmacol. 2011, 11, 444–448. [Google Scholar] [CrossRef]
- Galley, H.F.; Dhillon, J.K.; Paterson, R.L.; Webster, N.R. Effect of Ciprofloxacin on the Activation of the Transcription Factors Nuclear Factor KappaB, Activator Protein-1 and Nuclear Factor-Interleukin-6, and Interleukin-6 and Interleukin-8 MRNA Expression in a Human Endothelial Cell Line. Clin. Sci. 2000, 99, 405–410. [Google Scholar] [CrossRef]
- Shalit, I.; Kletter, Y.; Halperin, D.; Waldman, D.; Vasserman, E.; Nagler, A.; Fabian, I. Immunomodulatory Effects of Moxifloxacin in Comparison to Ciprofloxacin and G-CSF in a Murine Model of Cyclophosphamide-Induced Leukopenia+. Eur. J Haematol. 2001, 66, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Yuhas, Y.; Berent, E.; Ashkenazi, S. Effect of Rifampin on Production of Inflammatory Mediators in HepG2 Liver Epithelial Cells. Antimicrob. Agents Chemother. 2011, 55, 5541–5546. [Google Scholar] [CrossRef] [Green Version]
- Guh, A.Y.; Kutty, P.K. Clostridioides Difficile Infection. Ann. Intern. Med. 2018, 169, ITC49. [Google Scholar] [CrossRef]
- Sagie, S.; Na’amnih, W.; Frej, J.; Cohen, D.; Alpert, G.; Muhsen, K. Correlates of Hospitalizations in Internal Medicine Divisions among Israeli Adults of Different Ethnic Groups with Hypertension, Diabetes and Cardiovascular Diseases. PLoS ONE 2019, 14, e0215639. [Google Scholar] [CrossRef] [PubMed]
- Merenstein, C.; Bushman, F.D.; Collman, R.G. Alterations in the Respiratory Tract Microbiome in COVID-19: Current Observations and Potential Significance. Microbiome 2022, 10, 165. [Google Scholar] [CrossRef]
- de Castilhos, J.; Zamir, E.; Hippchen, T.; Rohrbach, R.; Schmidt, S.; Hengler, S.; Schumacher, H.; Neubauer, M.; Kunz, S.; Müller-Esch, T.; et al. Severe Dysbiosis and Specific Haemophilus and Neisseria Signatures as Hallmarks of the Oropharyngeal Microbiome in Critically III Coronavirus Disease 2019 (COVID-19) Patients. Clin. Infect. Dis. 2021, 75, e1063–e1071. [Google Scholar] [CrossRef] [PubMed]
- Finlay, B.B.; Amato, K.R.; Azad, M.; Blaser, M.J.; Bosch, T.C.G.; Chu, H.; Dominguez-Bello, M.G.; Ehrlich, S.D.; Elinav, E.; Geva-Zatorsky, N.; et al. The Hygiene Hypothesis, the COVID Pandemic, and Consequences for the Human Microbiome. Proc. Natl. Acad Sci. USA 2021, 118, e2010217118. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, V.; Mani, I. Dysbiosis of human microbiome and infectious diseases. Prog. Mol. Biol. Transl. Sci. 2022, 192, 33–51. [Google Scholar] [CrossRef]
- Niu, J.; Cui, M.; Yang, X.; Li, J.; Yao, Y.; Guo, Q.; Lu, A.; Qi, X.; Zhou, D.; Zhang, C.; et al. Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat. Commun. 2023, 14, 642. [Google Scholar] [CrossRef]
- Hernández-Terán, A.; Vega-Sánchez, A.E.; Mejía-Nepomuceno, F.; Serna-Muñoz, R.; Rodríguez-Llamazares, S.; Salido-Guadarrama, I.; Romero-Espinoza, J.A.; Guadarrama-Pérez, C.; Sandoval-Gutierrez, J.L.; Campos, F.; et al. Microbiota composition in the lower respiratory tract is associated with severity in patients with acute respiratory distress by influenza. Virol. J. 2023, 20, 19. [Google Scholar] [CrossRef]
- Hemmi, J.; Makino, S.; Yokoo, T.; Kano, H.; Asami, Y.; Takeda, K.; Suzuki, Y.; Kawai, S.; Nagaoka, I.; Sawaki, K.; et al. Consumption of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 augments serum antibody titers against seasonal influenza vaccine in healthy adults. Biosci. Microbiota Food Health 2023, 42, 73–80. [Google Scholar] [CrossRef]
- Hu, Q.; Liu, B.; Fan, Y.; Zheng, Y.; Wen, F.; Yu, U.; Wang, W. Multi-omics association analysis reveals interactions between the oropharyngeal microbiome and the metabolome in pediatric patients with influenza A virus pneumonia. Front. Cell Infect. Microbiol. 2022, 12, 1011254. [Google Scholar] [CrossRef] [PubMed]
- Green, I.; Merzon, E.; Vinker, S.; Golan-Cohen, A.; Israel, A.; Scheinowitz, M.; Ishai, R.; Ashkenazi, S.; Magen, E. A Higher Frequency of Physical Activity Is Associated with Reduced Rates of SARS-CoV-2 Infection. Eur. J. Gen. Pract. 2022, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Kournoutou, G.G.; Dinos, G. Azithromycin through the Lens of the COVID-19 Treatment. Antibiotics 2022, 11, 1063. [Google Scholar] [CrossRef]
- Tran, D.H.; Sugamata, R.; Hirose, T.; Suzuki, S.; Noguchi, Y.; Sugawara, A.; Ito, F.; Yamamoto, T.; Kawachi, S.; Akagawa, K.S.; et al. Azithromycin, a 15-Membered Macrolide Antibiotic, Inhibits Influenza A(H1N1)Pdm09 Virus Infection by Interfering with Virus Internalization Process. J. Antibiot. 2019, 72, 759–768. [Google Scholar] [CrossRef] [PubMed]
- Quadery, S.R.; John, T.; Samuel, T.; Ramanna, S.; Chattopadhyay, G.; Malapanjudi, C.; Sodha, A.; Lawrence, R.; Dutta, S.; Varney, V. Improved Outcomes with Trimethoprim or Cotrimoxazole in Patients with Severe COVID-19: A District Hospital Experience. Soc. Sci. Res. Netw. 2020. Available online: http://medicinaycirugiaoralymaxilofacial.info/wp-content/uploads/2020/06/Improved.pdf (accessed on 3 February 2023).
- Siddiqui, K.N.; Das, M.K.; Alapan, B. Cotrimoxazole in the Domiciliary Management of Patients with Severe COVID-19: A Case Series. J. Indian Med. Assoc. 2020, 118, 34–38. [Google Scholar]
- Quadery, S.R.; John, T.; Sinha, P.; Bhattacharjee, M.; Bose, S.; Ghosh, U.C.; Bhattacharyya, B.; Tripathi, S.K.; Saha, B. Cotrimoxazole in Hospitalised Patients with Severe COVID-19—Interim Results from the CoTroxCov Study. Eur. Respir. J. 2022, 60 (Suppl. 66), 1544. [Google Scholar] [CrossRef]
- Marciniec, K.; Beberok, A.; Pęcak, P.; Boryczka, S.; Wrześniok, D. Ciprofloxacin and Moxifloxacin Could Interact with SARS-CoV-2 Protease: Preliminary in Silico Analysis. Pharmacol. Rep. 2020, 72, 1553–1561. [Google Scholar] [CrossRef]
- Karampela, I.; Dalamaga, M. Could Respiratory Fluoroquinolones, Levofloxacin and Moxifloxacin Prove to Be Beneficial as an Adjunct Treatment in COVID-19? Arch. Med. Res. 2020, 51, 741–742. [Google Scholar] [CrossRef]
- Green, I.; Merzon, E.; Vinker, S.; Golan-Cohen, A.; Magen, E. COVID-19 Susceptibility in Bronchial Asthma. J. Allergy Clin. Immunol. Pract. 2021, 9, 684–692.e1. [Google Scholar] [CrossRef] [PubMed]
Variable | Variable Sub-Group | Documented Infection with SARS-CoV-2 (Cases) | No Documented INFECTION with SARS-CoV-2 (Controls) |
---|---|---|---|
All group, N | 31,260 | 125,039 | |
Gender n (%) | Male | 15,512 (49.6%) | 62,048 (49.6%) |
Female | 15,748 (50.4%) | 62,991 (50.4%) | |
Age (years), mean (SD) | 30.17 (20.13) | 30.13 (20.19) | |
Age category, n (%) | 0–2 years | 1227 (3.9%) | 4908 (3.9%) |
3–9 years | 3544 (11.3%) | 14,176 (11.3%) | |
10–18 years | 6178 (19.8%) | 24,712 (19.8%) | |
19–29 years | 6611 (21.1%) | 26,444 (21.1%) | |
30–39 years | 4184 (13.4%) | 16,736 (13.4%) | |
40–49 years | 3460 (11.1%) | 13,840 (11.1%) | |
50–59 years | 2894 (9.3%) | 11,576 (9.3%) | |
60–69 years | 1915 (6.1%) | 7659 (6.1%) | |
70–79 years | 796 (2.5%) | 3184 (2.5%) | |
80–89 years | 357 (1.1%) | 1428 (1.1%) | |
≥90 years | 94 (0.3%) | 376 (0.3%) | |
Family status, n (%) | Married | 9080 (29.0%) | 34,475 (27.6%) |
Single | 1989 (6.4%) | 9306 (7.4%) | |
Divorced | 379 (1.2%) | 1999 (1.6%) | |
Widower/Widow | 179 (0.6%) | 757 (0.6%) | |
Unknown | 19,633 (62.8%) | 78,502 (62.8%) | |
Ethnic group n (%) | Arab | 6721 (21.5%) | 26,884 (21.5%) |
Secular Jews | 13,842 (44.3%) | 55,368 (44.3%) | |
Ultra-orthodox Jews | 10,697 (34.2%) | 42,787 (34.2%) | |
Level of socioeconomic status, mean (SD) | 7.19 (3.49) | 7.54 (3.63) |
Variable | Variable Sub-Group | Documented Infection with SARS-CoV-2 (Cases) | No Documented Infection with SARS-CoV-2 (Controls) |
---|---|---|---|
Smoking status n (%) | Non-smoker | 17,569 (87.3%) | 69,875 (87.2%) |
Past smoker | 123 (0.6%) | 501 (0.6%) | |
Smoker | 2436 (12.1%) | 9747 (12.2%) | |
missing | 11,132 (35.6%) | 44,916 (35.9%) | |
Weight (Kg), mean (SD) | 61.46 (26.29) | 61.11 (26.45) | |
missing | 2175 (6.96%) | 8509 (6.81%) | |
Height (cm), mean (SD) | 158.03 (21.55) | 157.69 (22.11) | |
missing | 3614 (11.56%) | 14,524 (11.62%) | |
Body mass index (BMI), mean (SD) | 24.22 (6.30) | 24.19 (6.29) | |
missing | 3633 (11.62%) | 14,604 (11.68%) | |
Body mass index (BMI) category, N (%) | <18.5 Underweight | 5498 (20.0%) | 22,017 (20.0%) |
18.5–24, normal | 9874 (35.9%) | 39,433 (35.9%) | |
25–29, overweight | 7247 (26.3%) | 28,906 (26.3%) | |
30–34, obese I | 3524 (12.8%) | 14,084 (12.8%) | |
35–40, obese II | 1012 (3.7%) | 4051 (3.7%) | |
>40, obese III | 349 (1.3%) | 1393 (1.3%) | |
missing | 3756 (12.0%) | 15,155 (12.1%) | |
Diabetes mellitus, n (%) | 1876 (6.0%) | 7504 (6.0%) | |
Systolic blood pressure (mmHg), mean (SD) | 118.76 (15.61) | 118.64 (15.77) | |
missing | 8205 (26.25%) | 32,653 (26.11%) | |
Diastolic blood pressure (mmHg), mean (SD) | 72.29 (10.07) | 72.33 (10.14) | |
missing | 8207 (26.25%) | 32,658 (26.12%) | |
Pulse (n/min), mean | 79.44 (14.01) | 79.25 (14.19) | |
missing | 9657 (30.89%) | 38,084 (30.46%) | |
Blood pressure category | Hypertension | 5959 (25.81%) | 23,959 (25.89%) |
Normal blood pressure | 17,132 (74.2%) | 68,558 (74.1%) | |
missing | 8169 (26.1%) | 32,522 (26.0%) |
Variable | Variable Sub-Group | Documented Infection with SARS-CoV-2 (Cases) | No Documented Infection with SARS-CoV-2 (Controls) |
---|---|---|---|
Serum creatinine (mg/dl), mean (SD) | 0.69 (0.33) | 0.69 (0.37) | |
missing | 7462 (23.87%) | 28,975 (23.17%) | |
eGFR * (mL/min), mean (SD) | 147.25 (114.08) | 148.75 (121.76) | |
missing | 7475 (23.91%) | 29,015 (23.20%) | |
eGFR * category (mL/min), N (%) | <15 | 37 (0.2%) | 190 (0.2%) |
16–29 | 51 (0.2%) | 193 (0.2%) | |
30–44 | 114 (0.5%) | 548 (0.6%) | |
45–59 | 308 (1.3%) | 1398 (1.5%) | |
60–89 | 4124 (17.7%) | 17,347 (18.5%) | |
(Normal) | 18,655 (80.1%) | 73,930 (79.0%) | |
missing | 7971 (25.5%) | 31,433 (25.1%) | |
Hemoglobin A1C, % mean (SD) | 5.51 (0.88) | 5.49 (0.84) | |
missing | 18,133 (58.01%) | 72,126 (57.68%) | |
HDL * (mg/dl), mean (SD) | 49.06 (11.89) | 49.15 (11.95) | |
missing | 11,097 (35.50%) | 43,207 (34.55%) | |
LDL * (mg/dl), mean (SD) | 108.73 (33.36) | 109.29 (33.76) | |
missing | 11,133 (35.61%) | 43,321 (34.65%) | |
Triglycerides (mg/dl), mean (SD) | 109.47 (71.91) | 110.66 (72.37) | |
missing | 10,549 (33.75%) | 41,036 (32.82%) |
Antimicrobial Agent or Class | Use in Cases N (%) | Use in Controls N (%) | Odds Ratio [95% CI] | p-Value |
---|---|---|---|---|
A. The association between antibiotic consumption 30–365 days before SARS-CoV-2 testing and SARS-CoV-2 infection. For convenience, significant associations with decreased rates of SARS-CoV-2 infection are colored in light green and those associated with increased rates are colored in pink. | ||||
Trimethoprim-sulfamethoxazole | 100 (0.32) | 532 (0.46) | 0.751 [0.600, 0.932] | 0.0082 |
Fluoroquinolones, all | 1024 (3.28) | 4425 (3.54) | 0.923 [0.861, 0.989] | 0.0229 |
Levofloxacin | 153 (0.49) | 724 (0.58) | 0.845 [0.704, 1.007] | 0.0624 |
Ciprofloxacin | 756 (2.42) | 3272 (2.62) | 0.922 [0.850, 1.000] | 0.0482 |
Macrolides, all | 2039 (6.52) | 8850 (7.08) | 0.916 [0.871, 0.963] | 0.0005 |
Azithromycin | 1297 (4.15) | 5919 (4.73) | 0.871 [0.819, 0.926] | <0.0001 |
Penicillins, all | 7686 (24.59) | 30,412 (24.32) | 1.014 [0.986, 1.044] | 0.3310 |
Amoxicillin | 4728 (15.13) | 18,729 (14.98) | 1.012 [0.977, 1.047] | 0.5181 |
Penicillin-beta-lactamase Inhibitor | 2994 (9.58) | 12,186 (9.75) | 0.981 [0.940, 1.023] | 0.3755 |
Phenoxymethylpenicillin | 1044 (3.34) | 3784 (3.03) | 1.107 [1.032, 1.187] | 0.0046 |
First generation cephalosporins | 1245 (3.98) | 5008 (4.01) | 0.994 [0.932, 1.059] | 0.8718 |
Second generation cephalosporins | 1306 (4.18) | 5502 (4.40) | 0.947 [0.890, 1.008] | 0.0855 |
Third generation cephalosporins | 129 (0.41) | 439 (0.35) | 1.176 [0.958, 1.435] | 0.1147 |
B. The association between antibiotic consumption 30–180 days before SARS-CoV-2 testing and SARS-CoV-2 infection. For convenience, significant associations with decreased rates of SARS-CoV-2 infection are colored in light green and those associated with increased rates are colored in pink. | ||||
Trimethoprim-sulfamethoxazole | 42 (0.13) | 290 (0.23) | 0.579 [0.408, 0.802] | 0.0005 |
Fluoroquinolones, all | 461 (1.47) | 2073(1.65) | 0.888 [0.800, 0.983] | 0.0212 |
Levofloxacin | 38 (0.12) | 264 (0.21) | 0.575 [0.398, 0.811] | 0.0008 |
Ciprofloxacin | 365 (1.16) | 1547 (1.23) | 0.943 [0.839, 1.058] | 0.3281 |
Macrolides, all | 538 (1.72) | 2411 (1.92) | 0.891 [0.809, 0.979] | 0.0156 |
Azithromycin | 276 (0.88) | 1291 (1.03) | 0.854 [0.747, 0.974] | 0.0172 |
Penicillins, all | 3245 (10.38) | 12,685 (10.14) | 1.026 [0.985, 1.069] | 0.2175 |
Amoxicillin | 1826 (5.84) | 7092 (5.67) | 1.032 [0.978, 1.088] | 0.2466 |
Penicillin-beta-lactamase Inhibitors | 1294 (4.12) | 5245 (4.19) | 0.986 [0.926, 1.050] | 0.6698 |
Phenoxymethylpenicillin | 363 (1.16) | 1273 (1.01) | 1.142 [1.013, 1.285] | 0.0273 |
First generation Cephalosporins | 573 (1.83) | 2329 (1.86) | 0.984 [0.896, 1.079] | 0.7430 |
Second generation cephalosporins | 503 (1.61) | 2114 (1.69) | 0.951 [0.860, 1.049] | 0.3243 |
Third generation Cephalosporins | 49 (0.15) | 179 (0.14) | 1.095 [0.781, 1.510] | 0.5623 |
C. The association between antibiotic consumption 15–365 days before SARS-CoV-2 testing and SARS-CoV-2 infection. For convenience, significant associations with decreased rates of SARS-CoV-2 infection are colored in light green and those associated with increased rates are colored in pink. | ||||
Trimethoprim-sulfamethoxazole | 105 (0.36) | 551 (0.44) | 0.761 [0.612, 0.940] | 0.0095 |
Fluoroquinolones, all | 1059 (3.38) | 4606 (3.68) | 0.917 [0.856, 0.982] | 0.0122 |
Levofloxacin | 157 (0.50) | 743 (0.59) | 0.844 [0.706,1.005] | 0.0545 |
Ciprofloxacin | 783 (2.50) | 3421 (2.73) | 0.913 [0.843, 0.988] | 0.0233 |
Macrolides, all | 2082 (6.66) | 9026 (7.21) | 0.917 [0.873, 0.964] | 0.0005 |
Azithromycin | 1317 (4.21) | 5995 (4.79) | 0.873 [0.821, 0.929] | <0.0001 |
Penicillins, all | 7871 (25.17) | 31,126 (24.89) | 1.015 [0.987, 1.045] | 0.2960 |
Amoxicillin | 4853 (15.52) | 19,172 (15.33) | 1.015 [0.980, 1.050] | 0.4000 |
Combinations of Penicillins and beta-lactamase Inhibitors | 3080 (9.85) | 12,596 (10.07) | 0.976 [0.936, 1.017] | 0.2469 |
Phenoxymethylpenicillin | 1072 (3.42) | 3878 (3.10) | 1.109 [1.035, 1.189] | 0.0034 |
First generation Cephalosporins | 1295 (4.14) | 5244 (4.19) | 0.987 [0.927, 1.051] | 0.6930 |
Second generation Cephalosporins | 1347 (4.30) | 5673 (4.53) | 0.947 [0.891, 1.007] | 0.0818 |
Third generation Cephalosporins | 130 (0.14) | 449 (0.35) | 1.159 [0.945, 1.412] | 0.1449 |
Antimicrobial Agent or Underlying Disease | Use in Cases N (%) | Use in Controls N (%) | Adjusted Odds Ratio [95% CI] | p-Value |
---|---|---|---|---|
Trimethoprim-sulfamethoxazole | 100 (0.32) | 532 (0.46) | 0.783 [0.632, 0.971] | 0.0256 |
Fluoroquinolones, all | 1024 (3.28) | 4425 (3.54) | 0.955 [0.891, 1.024] | 0.1986 |
Azithromycin | 1297 (4.15) | 5919 (4.73) | 0.882 [0.829, 0.938] | <0.0001 |
Phenoxymethylpenicillin | 1044 (3.34) | 3784 (3.03) | 1.110 [1.036, 1.191] | 0.0032 |
Attention deficit-hyperactivity disorder | 2811 (8.99) | 11,937 (9.55) | 0.930 [0.891, 0.971] | 0.0011 |
Asthma | 1988 (6.36) | 8512 (6.81) | 0.943 [0.896, 0.992] | 0.0240 |
Ischemic heart Disease | 694 (2.22) | 3191 (2.63) | 0.859 (0.787, 0.038) | 0.0007 |
Congestive heart failure | 225 (0.72) | 1063 (0.85) | 0.921 (0.791, 1.073) | 0.2904 |
Chronic obstructive pulmonary disease | 473 (1.51) | 2140 (1.71) | 0.944 (0.851, 1.047) | 0.2745 |
Inflammatory bowel disease | 188 (0.60) | 892 (0.71) | 0.859 (0.733, 1.006) | 0.0587 |
Dementia | 248 (0.79) | 807 (0.65) | 1.306 91.146, 1.489) | <0.0001 |
Solid tumors | 518 (1.7) | 2536 (2.0) | 0.831 [0.755, 0.916] | 0.0002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugot, M.; Merzon, E.; Ashkenazi, S.; Vinker, S.; Green, I.; Golan-Cohen, A.; Israel, A. The Association between Previous Antibiotic Consumption and SARS-CoV-2 Infection: A Population-Based Case-Control Study. Antibiotics 2023, 12, 587. https://doi.org/10.3390/antibiotics12030587
Dugot M, Merzon E, Ashkenazi S, Vinker S, Green I, Golan-Cohen A, Israel A. The Association between Previous Antibiotic Consumption and SARS-CoV-2 Infection: A Population-Based Case-Control Study. Antibiotics. 2023; 12(3):587. https://doi.org/10.3390/antibiotics12030587
Chicago/Turabian StyleDugot, Matan, Eugene Merzon, Shai Ashkenazi, Shlomo Vinker, Ilan Green, Avivit Golan-Cohen, and Ariel Israel. 2023. "The Association between Previous Antibiotic Consumption and SARS-CoV-2 Infection: A Population-Based Case-Control Study" Antibiotics 12, no. 3: 587. https://doi.org/10.3390/antibiotics12030587
APA StyleDugot, M., Merzon, E., Ashkenazi, S., Vinker, S., Green, I., Golan-Cohen, A., & Israel, A. (2023). The Association between Previous Antibiotic Consumption and SARS-CoV-2 Infection: A Population-Based Case-Control Study. Antibiotics, 12(3), 587. https://doi.org/10.3390/antibiotics12030587