Efficacy of Environmental Cleaning Protocol Featuring Real-Time Feedback with and without PX-UV in Reducing the Contamination of Gram-Negative Microorganisms on High-Touch Surfaces in Four Intensive Care Units in Thailand
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Settings and Study Design
4.2. Data Collection
4.3. Protocol
4.4. Microbiology Method for Environmental Sampling
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Healthcare-Associated Infections (HAIs). Available online: https://www.cdc.gov/hai/prevent/environment/surfaces.html (accessed on 7 November 2022).
- Rutala, W.A.; Weber, D.J. Are Room Decontamination Units Needed to Prevent Transmission of Environmental Pathogens? Infect. Control. Hosp. Epidemiol. 2011, 32, 743–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Munoz-Price, L.S.; Birnbach, D.J.; Lubarsky, D.A.; Arheart, K.L.; Fajardo-Aquino, Y.; Rosalsky, M.; Cleary, T.; Depascale, D.; Coro, G.; Namias, N.; et al. Decreasing operating room environmental pathogen contamination through improved cleaning practice. Infect. Control. Hosp. Epidemiol. 2012, 33, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Kanamori, H.; Rutala, W.A.; Gergen, M.F.; Sickbert-Bennett, E.E.; Knelson, L.P.; Anderson, D.J.; Sexton, D.J.; Weber, D.J. Microbial Assessment of Health Care-Associated Pathogens on Various Environmental Sites in Patient Rooms After Terminal Room Disinfection. Open Forum Infect. Dis. 2021, 8, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Shams, A.M.; Rose, L.J.; Edwards, J.R.; Cali, S.; Harris, A.D.; Jacob, J.T.; LaFae, A.; Pineles, L.L.; Thom, K.A.; McDonald, L.C.; et al. Assessment of the Overall and Multidrug-Resistant Organism Bioburden on Environmental Surfaces in Healthcare Facilities. Infect. Control. Hosp. Epidemiol 2016, 37, 1426–1432. [Google Scholar] [CrossRef]
- Tomczyk, S.; Zanichelli, V.; Grayson, M.L.; Twyman, A.; Abbas, M.; Pires, D.; Allegranzi, B.; Harbarth, S. Control of Carbapenem-resistant Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas aeruginosa in Healthcare Facilities: A Systematic Review and Reanalysis of Quasi-experimental Studies. Clin. Infect. Dis 2019, 68, 873–884. [Google Scholar] [CrossRef] [Green Version]
- Rutala, W.A.; Weber, D.J. Best practices for disinfection of noncritical environmental surfaces and equipment in health care facilities: A bundle approach. Am. J. Infect. Control. 2019, 47, 96–105. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Weber, D.J. Environmental Cleaning in Resource-Limited Settings. Curr. Treat. Options Infect. Dis. 2018, 10, 48–54. [Google Scholar] [CrossRef]
- Nerandzic, M.M.; Thota, P.; Sankar, C.T.; Jencson, A.; Cadnum, J.L.; Ray, A.J.; Salata, R.A.; Watkins, R.R.; Donskey, C.J. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect. Control. Hosp. Epidemiol. 2015, 36, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Stead, W.W. Clearing the air: The theory and application of ultraviolet air disinfection. Am. Rev. Respir. Dis. 1989, 140, 1832. [Google Scholar] [CrossRef]
- Ramos, C.C.R.; Roque, J.L.A.; Sarmiento, D.B.; Suarez, L.E.G.; Sunio, J.T.P.; Tabungar, K.I.B.; Tengco, G.S.C.; Rio, P.C.; Hilario, A.L. Use of ultraviolet-C in environmental sterilization in hospitals: A systematic review on efficacy and safety. Int. J. Health Sci. 2020, 14, 52–65. [Google Scholar]
- Nerandzic, M.M.; Cadnum, J.L.; Pultz, M.J.; Donskey, C.J. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect. Dis 2010, 10, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morikane, K.; Suzuki, S.; Yoshioka, J.; Yakuwa, J.; Nakane, M.; Nemoto, K. Clinical and microbiological effect of pulsed xenon ultraviolet disinfection to reduce multidrug-resistant organisms in the intensive care unit in a Japanese hospital: A before-after study. BMC Infect. Dis 2020, 20, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, J.M.; Havill, N.L.; Moore, B.A. Terminal decontamination of patient rooms using an automated mobile UV light unit. Infect. Control. Hosp. Epidemiol 2011, 32, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Hosein, I.; Madeloso, R.; Nagaratnam, W.; Villamaria, F.; Stock, E.; Jinadatha, C. Evaluation of a pulsed xenon ultraviolet light device for isolation room disinfection in a United Kingdom hospital. Am. J. Infect. Control. 2016, 44, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.J.; Chen, L.F.; Weber, D.J.; Moehring, R.W.; Lewis, S.S.; Triplett, P.F.; Blocker, M.; Becherer, P.; Schwab, J.C.; Knelson, L.P.; et al. CDC Prevention Epicenters Program. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal Room Disinfection study): A cluster-randomised, multicentre, crossover study. Lancet 2017, 25, 805–814. [Google Scholar] [CrossRef]
- Raggi, R.; Archulet, K.; Haag, C.W.; Tang, W. Clinical, operational, and financial impact of an ultraviolet-C terminal disinfection intervention at a community hospital. Am. J. Infect. Control. 2018, 46, 1224–1229. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Anderson, D.J.; Chen, L.F.; Sickbert-Bennett, E.E.; Boyce, J.M. Effectiveness of ultraviolet devices and hydrogen peroxide systems for terminal room decontamination: Focus on clinical trials. Am. J. Infect. Control. 2016, 44, e77–e84. [Google Scholar] [CrossRef]
- Jinadatha, C.; Villamaria, F.C.; Restrepo, M.I.; Ganachari-Mallappa, N.; Liao, I.C.; Stock, E.M.; Copeland, L.A.; Zeber, J.E. Is the pulsed xenon ultraviolet light no-touch disinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning? Am. J. Infect. Control. 2015, 43, 878–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutala, W.A.; Gergen, M.F.; Weber, D.J. Room decontamination with UV radiation. Infect. Control. Hosp. Epidemiol 2010, 31, 1025–1029. [Google Scholar] [CrossRef]
- Carling, P.C.; Parry, M.F.; Von Beheren, S.M. Healthcare Environmental Hygiene Study Group. Identifying opportunities to enhance environmental cleaning in 23 acute care hospitals. Infect. Control. Hosp. Epidemiol 2008, 29, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Carling, P.C.; Von Beheren, S.; Kim, P.; Woods, C. Healthcare Environmental Hygiene Study Group. Intensive care unit environmental cleaning: An evaluation in sixteen hospitals using a novel assessment tool. J. Hosp. Infect. 2008, 68, 39–44. [Google Scholar] [CrossRef]
- Apisarnthanarak, A.; Weber, D.J.; Ratz, D.; Saint, S.; Khawcharoenporn, T.; Greene, M.T. National Survey of Environmental Cleaning and Disinfection in Hospitals in Thailand. Infect. Control. Hosp. Epidemiol 2017, 38, 1250–1253. [Google Scholar] [CrossRef]
- Kitagawa, H.; Mori, M.; Hara, T.; Kashiyama, S.; Shigemoto, N.; Ohge, H. Effectiveness of pulsed xenon ultraviolet disinfection for Clostridioides (Clostridium) difficile surface contamination in a Japanese hospital. Am. J. Infect. Control. 2021, 49, 55–58. [Google Scholar] [CrossRef]
- Kitagawa, H.; Tadera, K.; Mori, M.; Kashiyama, S.; Nomura, T.; Omori, K.; Shigemoto, N.; Ohge, H. The effect of pulsed-xenon ultraviolet disinfection on surfaces contaminated with vancomycin-resistant Enterococci in a Japanese hospital. J. Infect. Chemother 2021, 27, 1665–1668. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, H.; Mori, M.; Kashiyama, S.; Sasabe, Y.; Ukon, K.; Shimokawa, N.; Shime, N.; Ohge, H. Effect of pulsed xenon ultraviolet disinfection on methicillin-resistant Staphylococcus aureus contamination of high-touch surfaces in a Japanese hospital. Am. J. Infect. Control. 2020, 48, 139–142. [Google Scholar] [CrossRef]
- Ling, M.L.; Apisarnthanarak, A.; Thu le, T.A.; Villanueva, V.; Pandjaitan, C.; Yusof, M.Y. APSIC Guidelines for environmental cleaning and decontamination. Antimicrob. Resist. Infect. Control. 2015, 29, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huslage, K.; Rutala, W.A.; Gergen, M.F.; Sickbert-Bennett, E.E.; Weber, D.J. Microbial assessment of high-, medium-, and low-touch hospital room surfaces. Infect. Control. Hosp. Epidemiol 2013, 34, 211–212. [Google Scholar] [CrossRef] [PubMed]
- Huslage, K.; Rutala, W.A.; Sickbert-Bennett, E.E.; Weber, D.J. A quantitative approach to defining “high-touch” surfaces in hospitals. Infect. Control. Hosp. Epidemiol 2010, 31, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.A.; Khan, S. Defining multidrug resistance in Gram-negative bacilli. Indian J. Med. Res. 2015, 141, 491. [Google Scholar] [CrossRef] [Green Version]
No. Room Positive/No. Room (%) | ||||||
---|---|---|---|---|---|---|
Median CFU/cm2 (Range, Min-Max) | ||||||
MDR A. baumannii | MDR P. aeruginosa | E. coli (CRE) | K. pneumoniae (CRE) | P. mirabilis (ESBL) | Other Gram-Negative Microorganisms | |
Intervention arm (Units A and B) (n = 50 rooms) | ||||||
Baseline | 6/50 (12) | 2/50 (4) | 0/50 (0) | 4/50 (8) | 2/50 (4) | 6/50 (12) |
80 (10–200) | 40 (30–50) | 0 (0) | 40 (10–70) | 20 (10–30) | 40 (10–200) | |
After terminal cleaning | 4/50 (8) | 0/50 (0) | 0/50 (0) | 2/50 (4) | 0/50 (0) | 4/50 (8) |
42 (10–100) | 0 (0) | 0 (0) | 20 (10–30) | 0 (0) | 30 (10–50) | |
After PX-UV | 0/50 (0) | 0/50 (0) | 0/50 (0) | 0/50 (0) | 0/50 (0) | 0/50 (0) |
0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Control arm (Units C and D) (n = 50 rooms) | ||||||
Baseline | 6/50 (12) | 2/50 (4) | 2/50 (4) | 4/50 (8) | 0/50 (0) | 6/50 (12) |
60 (10–250) | 60 (40–80) | 20 (10–30) | 40 (10–70) | 0 (0) | 60 (10–400) | |
After terminal cleaning | 4/50 (8) | 0/50 (0) | 0/50 (0) | 2/50 (4) | 0/50 (0) | 4/50 (8) |
30 (10–50) | 0 (0) | 0 (0) | 20 (10–30) | 0 (0) | 30 (20–50) |
Surface Locations | Number of Rooms | Baseline | Standard Terminal Cleaning | PX-UV Disinfection | ||
---|---|---|---|---|---|---|
Mean CFU/cm2 (±SD) | Mean CFU/cm2 (±SD) | Mean CFU/cm2 (±SD) | ||||
Intervention arm (Units A and B) | ||||||
Infusion pump | 50 | 19.2 ± 20.1 | 1.9 ± 1.5 | p = 0.005 | 0 | p < 0.001 |
Medication cart | 50 | 30.4 ± 15.1 | 11.6 ± 4.8 | p = 0.004 | 0 | p < 0.001 |
Bedside table | 50 | 27.9 ± 11.5 | 9.4 ±12.2 | p = 0.003 | 0 | p < 0.001 |
Overbed table | 50 | 31.2 ± 32.2 | 10.9 ± 9.4 | p = 0.006 | 0 | p < 0.001 |
Vital sign Screen | 50 | 11.9 ± 11.5 | 3.9 ± 4.1 | p = 0.005 | 0 | p < 0.001 |
Mean Total sites | 250 | 24.1 ± 12.4 | 7.5 ± 5.9 | p = 0.002 | 0 | p < 0.001 |
Intervention arm Nursing station | ||||||
Computer monitor | 16 | 10.5 ± 8.9 | 0 | p < 0.001 | NA | |
Keyboard | 16 | 9.9 ± 8.4 | 0 | p < 0.001 | NA | |
Nursing station chair | 16 | 5.9 ± 5.1 | 0 | p < 0.001 | NA | |
Nursing station table | 16 | 2.4 ± 2.6 | 0 | p < 0.001 | NA | |
Walky talky | 16 | 3.9 ± 3.4 | 0 | p < 0.001 | NA | |
Mean Total sites | 80 | 7.9 ± 6.4 | 0 | p < 0.001 | NA | |
Control arm (Units C and D) | ||||||
Infusion pump | 50 | 30.1 ± 15.9 | 4.9 ± 2.5 | p = 0.005 | NA | |
Medication cart | 50 | 31.2 ± 10.4 | 2.4 ± 2.1 | p = 0.004 | NA | |
Bedside table | 50 | 40.4 ± 30.4 | 3.9 ± 2.9 | p = 0.002 | NA | |
Overbed table | 50 | 32.2 ± 20.4 | 10.4 ± 8.9 | p = 0.003 | NA | |
Vital sign screen | 50 | 24.9 ± 21.9 | 14.5 ± 12.9 | p = 0.006 | NA | |
Mean Total sites | 250 | 31.8 ± 24.2 | 7.2 ± 2.9 | p = 0.004 | NA | |
Control arm Nursing station | ||||||
Computer monitor | 16 | 12.9 ± 11.5 | 2.1 ± 2.1 | p = 0.02 | NA | |
Keyboard | 16 | 10.9 ± 9.4 | 3.5 ± 3.9 | p = 0.04 | NA | |
Nursing station chair | 16 | 4.9 ± 4.1 | 2.4 ± 2.1 | p = 0.03 | NA | |
Nursing station table | 16 | 1.6 ± 1.9 | 0 | p = 0.001 | NA | |
Walky talky | 16 | 2.9 ± 2.4 | 0 | p = 0.002 | NA | |
Mean Total sites | 80 | 6.9 ± 5.4 | 2.4 ± 2.2 | p = 0.03 | NA |
Process | Mean ± SD (min) | Median (Min-Max) (min) |
---|---|---|
Transport to room time | 15.3 ± 1.5 | 15 (5–25) |
Retrieval time | 6.4 ± 1.7 | 5 (3–10) |
Waiting time to use | 8.9 ± 2.0 | 10 (2–15) |
In-room use time | 15.6 ± 5.6 | 15 (7–25) |
Return to storage time | 8.5 ± 1.4 | 7 (3–11) |
Total time | 39.4 ± 2.4 | 37 (15–46) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathitakorn, O.; Jantarathaneewat, K.; Weber, D.J.; Apisarnthanarak, P.; Rutjanawech, S.; Apisarnthanarak, A. Efficacy of Environmental Cleaning Protocol Featuring Real-Time Feedback with and without PX-UV in Reducing the Contamination of Gram-Negative Microorganisms on High-Touch Surfaces in Four Intensive Care Units in Thailand. Antibiotics 2023, 12, 438. https://doi.org/10.3390/antibiotics12030438
Sathitakorn O, Jantarathaneewat K, Weber DJ, Apisarnthanarak P, Rutjanawech S, Apisarnthanarak A. Efficacy of Environmental Cleaning Protocol Featuring Real-Time Feedback with and without PX-UV in Reducing the Contamination of Gram-Negative Microorganisms on High-Touch Surfaces in Four Intensive Care Units in Thailand. Antibiotics. 2023; 12(3):438. https://doi.org/10.3390/antibiotics12030438
Chicago/Turabian StyleSathitakorn, Ornnicha, Kittiya Jantarathaneewat, David J Weber, Piyaporn Apisarnthanarak, Sasinuch Rutjanawech, and Anucha Apisarnthanarak. 2023. "Efficacy of Environmental Cleaning Protocol Featuring Real-Time Feedback with and without PX-UV in Reducing the Contamination of Gram-Negative Microorganisms on High-Touch Surfaces in Four Intensive Care Units in Thailand" Antibiotics 12, no. 3: 438. https://doi.org/10.3390/antibiotics12030438
APA StyleSathitakorn, O., Jantarathaneewat, K., Weber, D. J., Apisarnthanarak, P., Rutjanawech, S., & Apisarnthanarak, A. (2023). Efficacy of Environmental Cleaning Protocol Featuring Real-Time Feedback with and without PX-UV in Reducing the Contamination of Gram-Negative Microorganisms on High-Touch Surfaces in Four Intensive Care Units in Thailand. Antibiotics, 12(3), 438. https://doi.org/10.3390/antibiotics12030438