Impact of Pharmacist-Led Multidisciplinary Team to Attain Targeted Vancomycin Area under the Curved Monitoring in a Tertiary Care Center in Thailand
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jumah, M.T.B.; Vasoo, S.; Menon, S.R.; De, P.P.; Neely, M.; Teng, C.B. Pharmacokinetic/Pharmacodynamic Determinants of Vancomycin Efficacy in Enterococcal Bacteremia. Antimicrob. Agents Chemother. 2018, 62, e01602–e01617. [Google Scholar] [CrossRef]
- Milosavljevic, M.N.; Milosavljevic, J.Z.; Kocovic, A.G.; Stefanovic, S.M.; Jankovic, S.M.; Djesevic, M.; Milentijevic, M.N. Antimicrobial treatment of Corynebacterium striatum invasive infections: A systematic review. Rev. Inst. Med. Trop. Sao Paulo 2021, 63, e49. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [PubMed]
- Moise-Broder, P.A.; Forrest, A.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharm. 2004, 43, 925–942. [Google Scholar] [CrossRef]
- Men, P.; Li, H.B.; Zhai, S.D.; Zhao, R.S. Association between the AUC0-24/MIC Ratio of Vancomycin and Its Clinical Effectiveness: A Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0146224. [Google Scholar] [CrossRef]
- Tsutsuura, M.; Moriyama, H.; Kojima, N.; Mizukami, Y.; Tashiro, S.; Osa, S.; Enoki, Y.; Taguchi, K.; Oda, K.; Fujii, S.; et al. The monitoring of vancomycin: A systematic review and meta-analyses of area under the concentration-time curve-guided dosing and trough-guided dosing. BMC Infect. Dis. 2021, 21, 153. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R., Jr.; Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Pai, M.P.; Rodvold, K.A.; Lomaestro, B.; Drusano, G.L.; Lodise, T.P. Vancomycin: We can’t get there from here. Clin. Infect. Dis. 2011, 52, 969–974. [Google Scholar] [CrossRef]
- Hale, C.M.; Seabury, R.W.; Steele, J.M.; Darko, W.; Miller, C.D. Are Vancomycin Trough Concentrations of 15 to 20 mg/L Associated With Increased Attainment of an AUC/MIC ≥ 400 in Patients With Presumed MRSA Infection? J. Pharm. Pract. 2017, 30, 329–335. [Google Scholar] [CrossRef]
- Abdelmessih, E.; Patel, N.; Vekaria, J.; Crovetto, B.; SanFilippo, S.; Adams, C.; Brunetti, L. Vancomycin area under the curve versus trough only guided dosing and the risk of acute kidney injury: Systematic review and meta-analysis. Pharmacotherapy 2022, 42, 741–753. [Google Scholar] [CrossRef]
- Pai, M.P.; Neely, M.; Rodvold, K.A.; Lodise, T.P. Innovative approaches to optimizing the delivery of vancomycin in individual patients. Adv. Drug Deliv. Rev. 2014, 77, 50–57. [Google Scholar] [CrossRef]
- Turner, R.B.; Kojiro, K.; Shephard, E.A.; Won, R.; Chang, E.; Chan, D.; Elbarbry, F. Review and Validation of Bayesian Dose-Optimizing Software and Equations for Calculation of the Vancomycin Area Under the Curve in Critically Ill Patients. Pharmacotherapy 2018, 38, 1174–1183. [Google Scholar] [CrossRef]
- Chan, J.O.S.; Baysari, M.T.; Carland, J.E.; Sandaradura, I.; Moran, M.; Day, R.O. Barriers and facilitators of appropriate vancomycin use: Prescribing context is key. Eur. J. Clin. Pharm. 2018, 74, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Katawethiwong, P.; Apisarnthanarak, A.; Jantarathaneewat, K.; Weber, D.J.; Warren, D.K.; Suwantarat, N. Effectiveness of a vancomycin dosing protocol guided by area under the concentration-time curve to minimal inhibitory concentration (AUC/MIC) with multidisciplinary team support to improve hospital-wide adherence to a vancomycin dosing protocol: A pilot study. Infect. Control Hosp. Epidemiol. 2022, 43, 1043–1048. [Google Scholar] [CrossRef] [PubMed]
- Jantarathaneewat, K.; Montakantikul, P.; Weber, D.J.; Nanthapisal, S.; Rutjanawech, S.; Apisarnthanarak, A. Impact of an infectious diseases pharmacist-led intervention on antimicrobial stewardship program guideline adherence at a Thai medical center. Am. J. Health Syst. Pharm. 2022, 79, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Pongchaidecha, M.; Changpradub, D.; Bannalung, K.; Seejuntra, K.; Thongmee, S.; Unnual, A.; Santimaleeworagun, W. Vancomycin Area under the Curve and Pharmacokinetic Parameters during the First 24 Hours of Treatment in Critically Ill Patients using Bayesian Forecasting. Infect. Chemother. 2020, 52, 573–582. [Google Scholar] [CrossRef]
- Chattaweelarp, T.; Changpradub, D.; Punyawudho, B.; Thunyaharn, S.; Santimaleeworagun, W. Is Early Monitoring Better? Impact of Early Vancomycin Exposure on Treatment Outcomes and Nephrotoxicity in Patients with Methicillin-Resistant Staphylococcus aureus Infections. Antibiotics 2020, 9, 672. [Google Scholar] [CrossRef]
- Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO 2012 Clinical Practice Guideline for Acute Kidney Injury. Kidney Int. Suppl. 2012, 2, 1–138. [Google Scholar]
- Timsit, J.F.; de Kraker, M.E.A.; Sommer, H.; Weiss, E.; Bettiol, E.; Wolkewitz, M.; Nikolakopoulos, S.; Wilson, D.; Harbarth, S. Appropriate endpoints for evaluation of new antibiotic therapies for severe infections: A perspective from COMBACTE’s STAT-Net. Intensive Care Med. 2017, 43, 1002–1012. [Google Scholar] [CrossRef]
- Falbo Dos Reis, P.; Barretti, P.; Marinho, L.; Balbi, A.L.; Awdishu, L.; Ponce, D. Pharmacokinetics of Intraperitoneal Vancomycin and Amikacin in Automated Peritoneal Dialysis Patients With Peritonitis. Front. Pharm. 2021, 12, 658014. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Horita, Y.; Asaoka, M.; Iida, M.; Kato, H.; Wachino, C.; Mitamura, K.; Ohashi, K.; Mimura, Y.; Hotta, Y.; Kataoka, T.; et al. Development and Evaluation of a Novel Software Program, SAKURA-TDM, for Area Under the Concentration-Time Curve-Guided Vancomycin Dosing: A Short Communication. Ther Drug Monit. 2022; Advance online publication. [Google Scholar] [CrossRef]
- Meng, L.; Wong, T.; Huang, S.; Mui, E.; Nguyen, V.; Espinosa, G.; Desai, J.; Holubar, M.; Deresinski, S. Conversion from Vancomycin Trough Concentration-Guided Dosing to Area Under the Curve-Guided Dosing Using Two Sample Measurements in Adults: Implementation at an Academic Medical Center. Pharmacotherapy 2019, 39, 433–442. [Google Scholar] [CrossRef]
- Neely, M.N.; Kato, L.; Youn, G.; Kraler, L.; Bayard, D.; van Guilder, M.; Schumitzky, A.; Yamada, W.; Jones, B.; Minejima, E. Prospective Trial on the Use of Trough Concentration versus Area under the Curve To Determine Therapeutic Vancomycin Dosing. Antimicrob. Agents Chemother. 2018, 62, e02042-17. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, V.; Huot, J.; Perreault, C.; Haraoui, L.P.; Delorme, C.; Poudrette, J.; Marsot, A.; Crevier, B. VANCOmycin dose adjustments comparing trough levels to the ratio of the area under de curve to the minimum inhibitory concentration method using a BAYESian approach: A feasibility study. J. Clin. Pharm. 2022, 47, 2335–2344. [Google Scholar] [CrossRef] [PubMed]
- Goto, R.; Muraki, Y.; Inose, R.; Kusama, Y.; Ono, A.; Koizumi, R.; Ishikane, M.; Ohmagari, N. Influence of pharmacists and infection control teams or antimicrobial stewardship teams on the safety and efficacy of vancomycin: A Japanese administrative claims database study. PLoS ONE 2022, 17, e0274324. [Google Scholar] [CrossRef]
- Al-Sulaiti, F.K.; Nader, A.M.; Saad, M.O.; Shaukat, A.; Parakadavathu, R.; Elzubair, A.; Al-Badriyeh, D.; Elewa, H.; Awaisu, A. Clinical and Pharmacokinetic Outcomes of Peak-Trough-Based Versus Trough-Based Vancomycin Therapeutic Drug Monitoring Approaches: A Pragmatic Randomized Controlled Trial. Eur. J. Drug Metab. Pharm. 2019, 44, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Finch, N.A.; Zasowski, E.J.; Murray, K.P.; Mynatt, R.P.; Zhao, J.J.; Yost, R.; Pogue, J.M.; Rybak, M.J. A Quasi-Experiment To Study the Impact of Vancomycin Area under the Concentration-Time Curve-Guided Dosing on Vancomycin-Associated Nephrotoxicity. Antimicrob. Agents Chemother. 2017, 61, e01293-17. [Google Scholar] [CrossRef]
- Oda, K.; Jono, H.; Nosaka, K.; Saito, H. Reduced nephrotoxicity with vancomycin therapeutic drug monitoring guided by area under the concentration-time curve against a trough 15–20 μg/mL concentration. Int. J. Antimicrob. Agents 2020, 56, 106109. [Google Scholar] [CrossRef]
- Niwa, T.; Yasue, M.; Harada, S.; Yamada, Y.; Otsubo, M.; Yamada, M.; Matsuoka, S.; Yamamoto, T.; Mizusaki, Y.; Suzuki, A. Comparison of single trough-based area under the concentration-time curve versus trough concentration for the incidence of vancomycin-associated nephrotoxicity. J. Infect. Chemother. 2022, 28, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Drusano, G.L.; Zasowski, E.; Dihmess, A.; Lazariu, V.; Cosler, L.; McNutt, L.A. Vancomycin exposure in patients with methicillin-resistant Staphylococcus aureus bloodstream infections: How much is enough? Clin. Infect. Dis. 2014, 59, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Katip, W.; Oberdorfer, P. A Monocentric Retrospective Study of AUC/MIC Ratio of Vancomycin Associated with Clinical Outcomes and Nephrotoxicity in Patients with Enterococcal Infections. Pharmaceutics 2021, 13, 1378. [Google Scholar] [CrossRef]
- Sohn, Y.; Rim, J.H.; Cho, Y.; Hyun, J.; Baek, Y.; Kim, M.; Kim, J.H.; Seong, H.; Ahn, J.Y.; Lee, S.G.; et al. Association of vancomycin trough concentration on the treatment outcome of patients with bacteremia caused by Enterococcus species. BMC Infect. Dis. 2021, 21, 1099. [Google Scholar] [CrossRef] [PubMed]
- Nakakura, I.; Sakakura, K.; Imanishi, K.; Sako, R.; Yamazaki, K. Association between vancomycin pharmacokinetic/pharmacodynamic parameters, patient characteristics, and mortality in patients with bacteremia caused by vancomycin-susceptible Enterococcus faecium: A single-center retrospective study. J. Pharm. Health Care Sci. 2019, 5, 8. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.T.; Liu, M.P.; Sun, H.C. Evaluation of Therapeutic Vancomycin Monitoring in Taiwan. Microbiol. Spectr. 2022, 10, e0156221. [Google Scholar] [CrossRef]
- Miyai, T.; Imai, S.; Yoshimura, E.; Kashiwagi, H.; Sato, Y.; Ueno, H.; Takekuma, Y.; Sugawara, M. Machine Learning-Based Model for Estimating Vancomycin Maintenance Dose to Target the Area under the Concentration Curve of 400–600 mg·h/L in Japanese Patients. Biol. Pharm. Bull. 2022, 45, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 210) No (%) | Pre-PMT Period (n = 105) No (%) | Post-PMT Period (n = 105) No (%) | p-Value |
---|---|---|---|---|
Male | 107 (51) | 56 (53.3) | 51 (48.6) | 0.490 |
Age, mean years ± SD | 59 ± 19.4 | 59 ± 20.7 | 59.1 ± 18.1 | 0.969 |
Body Mass Index, mean Kg/M2 ± SD | 23.2 ± 5.5 | 22.6 ± 5.2 | 23.8 ± 5.7 | 0.108 |
Comorbidities | ||||
Hypertension | 100 (47.6) | 47 (44.8) | 53 (50.5) | 0.407 |
Dyslipidemia | 63 (30) | 27 (25.7) | 36 (34.3) | 0.175 |
Diabetes mellitus | 54 (25.7) | 26 (24.8) | 28 (26.7) | 0.752 |
Chronic kidney disease | 13 (6.2) | 4 (3.8) | 9 (8.6) | 0.251 |
Charlson comorbidities index, median (IQR) | 3 (2–5) | 3 (2–5) | 3 (1–5) | 0.464 |
Serum creatinine, mean mg/dL ± SD | 0.82 ± 0.35 | 0.82 ± 0.35 | 0.81 ± 0.34 | 0.902 |
Creatinine clearance, median mL/min (IQR) | 76 (52.5–98) | 70.3 (51.3–93.2) | 80.3 (55.2–99.1) | 0.118 |
Protein plasma level, mean g/dL ± SD | 2.8 ± 0.6 | 2.8 ± 0.6 | 2.9 ± 0.6 | 0.480 |
Volume of distribution, mean L ± SD | 48.1 ± 19.4 | 45.8 ± 19 | 50.4 ± 19.7 | 0.086 |
Vancomycin clearance, mean L/hr ± SD | 4.0 ± 2.2 | 3.8 ± 2.3 | 4.2 ± 2 | 0.175 |
Elimination constant rate, mean 1/hr | 0.09 ± 0.05 | 0.09 ± 0.06 | 0.09 ± 0.04 | 0.935 |
Half-life, mean hr ± SD | 10.9 ± 9 | 11.8 ± 11 | 10 ± 6.5 | 0.148 |
Indication | ||||
Skin and soft tissue infection | 51 (24.9) | 22 (21) | 29 (27.6) | 0.260 |
Bacteremia | 34 (16.2) | 13 (12.4) | 21 (20) | 0.134 |
Respiratory tract infections | 33 (15.7) | 21 (20) | 12 (11.4) | 0.088 |
Study Outcomes | Total (n = 210) No (%) | Pre-PMT Period (n = 105) No (%) | Post-PMT Period (n = 105) No (%) | p-Value |
---|---|---|---|---|
Achieved therapeutic target | 106 (50.5) | 36 (34.3) | 70 (66.7) | <0.001 |
Calculated AUC, mean mg × hr/L ± SD | 603.4 ± 182 | 638 ± 179.7 | 568.9 ± 178.5 | 0.006 |
Predicted AUC, mean mg × hr/L ± SD | 615.6 ± 227.9 | 668.5 ± 257.4 | 562.7 ± 227.9 | 0.007 |
Calculated AUC range | ||||
AUC less than 400 mg × hr/L | 17 (8.1) | 9 (8.8) | 8 (8.6) | 1.000 |
AUC within range (400–600 mg × hr/L) | 105 (50) | 36 (34.3) | 69 (56.7) | <0.001 |
AUC more than 600 mg × hr/L | 88 (41.9) | 60 (57.1) | 28 (26.7) | <0.001 |
Trough concentration, mean mg/L ± SD | 15.5 ± 6.3 | 16.6 ± 6.5 | 14.4 ± 5.9 | 0.011 |
Clinical cure | 170 (81) | 73 (69.5) | 97 (92.4) | <0.001 |
30-days infectious diseases mortality | 16 (7.6) | 13 (12.4) | 3 (2.9) | 0.017 |
Nephrotoxicity event | 7 (3.3) | 3 (2.9) | 4 (3.8) | 1.000 |
Proportion of patient who achieved therapeutic range within 48 h | 53 (25.2) | 18 (17.1) | 35 (33.3) | 0.005 |
Time to target, median days (IQR) * | 3 (2–5) | 3 (2–5.5) | 3 (1–5) | 0.398 |
Vancomycin consumption, median DDD per 1000 patient-day (IQR) | 8.5 (5.3–14.5) | 8 (4.8–13.3) | 9.5 (5.5) | 0.095 |
Length of stay, median days (IQR) | 31 (20–50) | 31 (20–47) | 33 (20–51) | 0.436 |
Univariate Analysis | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Post-PMT period | 0.21 | 0.06–0.75 | 0.017 | 0.22 | 0.06–0.84 | 0.027 |
Bacteremia | 2.59 | 0.84–7.99 | 0.099 | 3.78 | 1.07–13.39 | 0.039 |
Male | 4.61 | 1.27–16.69 | 0.020 | 4.51 | 1.21–16.84 | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jantarathaneewat, K.; Phodha, T.; Singhasenee, K.; Katawethiwong, P.; Suwantarat, N.; Camins, B.; Wongphan, T.; Rutjanawech, S.; Apisarnthanarak, A. Impact of Pharmacist-Led Multidisciplinary Team to Attain Targeted Vancomycin Area under the Curved Monitoring in a Tertiary Care Center in Thailand. Antibiotics 2023, 12, 374. https://doi.org/10.3390/antibiotics12020374
Jantarathaneewat K, Phodha T, Singhasenee K, Katawethiwong P, Suwantarat N, Camins B, Wongphan T, Rutjanawech S, Apisarnthanarak A. Impact of Pharmacist-Led Multidisciplinary Team to Attain Targeted Vancomycin Area under the Curved Monitoring in a Tertiary Care Center in Thailand. Antibiotics. 2023; 12(2):374. https://doi.org/10.3390/antibiotics12020374
Chicago/Turabian StyleJantarathaneewat, Kittiya, Tuangrat Phodha, Kankanit Singhasenee, Panipak Katawethiwong, Nuntra Suwantarat, Bernard Camins, Thanawat Wongphan, Sasinuch Rutjanawech, and Anucha Apisarnthanarak. 2023. "Impact of Pharmacist-Led Multidisciplinary Team to Attain Targeted Vancomycin Area under the Curved Monitoring in a Tertiary Care Center in Thailand" Antibiotics 12, no. 2: 374. https://doi.org/10.3390/antibiotics12020374
APA StyleJantarathaneewat, K., Phodha, T., Singhasenee, K., Katawethiwong, P., Suwantarat, N., Camins, B., Wongphan, T., Rutjanawech, S., & Apisarnthanarak, A. (2023). Impact of Pharmacist-Led Multidisciplinary Team to Attain Targeted Vancomycin Area under the Curved Monitoring in a Tertiary Care Center in Thailand. Antibiotics, 12(2), 374. https://doi.org/10.3390/antibiotics12020374