Chlorhexidine Resistance or Cross-Resistance, That Is the Question
Abstract
:1. Introduction
2. Mechanism of Action
3. Spectrum of Action
4. Mechanisms of Resistance to Biocides
5. Efflux Pump Activity
6. Mechanism of Resistance to CHX
- Increased efflux pump activity:
- i.
- Upregulation of RND efflux pumps. The mutation of genes encoding RND pumps, such as marA mutations, leads to the upregulation of RND protein pumps AcrAB-TolC through the overexpression of the MarA protein in E. coli [47]. This multidrug efflux pump system controls the efflux of antibiotics, oil solvents, and biocides, including CHX [48]. Clinical isolates of Acinetobacter baumanii showed a more than 10-fold increase in the CHX minimum inhibitory concentration (MIC) compared to susceptible isolates carrying RND efflux pump-encoding genes adeB, adeJ, and qacE. In the same study, inactivation of adeB and adeJ reduced the MIC by 8-fold and 2-fold, respectively [49]. These genes were found to play the same role in susceptibility to benzalkonium chloride, ethidium bromide, and acriflavine [50].
- ii.
- Acquisition of SMR pumps. The over-expression of these pumps, especially QacE, QacEΔ1, and EmrE efflux pumps, was seen in association with CHX MIC increase in E. coli biofilms when compared to planktonic and colony growth [50]. Deletion of adeS (encoding a putative SMR pump) in clinical isolates of A. baumanii showed a 2-fold increase in CHX susceptibility [51].
- iii.
- Acquisition of MFS pumps. QacA and QacB pumps are frequently identified in Staphylococcus isolates displaying reduced susceptibility to CHX. The genes encoding QacA and QacB are acquisitional plasmid-borne genes implicated in horizontal transfer between different species of Staphylococcus [52]. The genes that encode the two pumps are usually described as qacA/B in view of their high homology [53].
- iv.
- AceI pump. This recently discovered prototype of the Proteobacterial Chlorhexidine Efflux (PCE) family showed specificity to CHX amongst other substrates. In E. coli, aceI overexpression was associated with a reduced susceptibility to CHX [46].
- Change in membrane permeability [54]:
- i.
- Change in porin profile. Porins are channels for substrate transport formed by outer membrane proteins (OMP) [54]. Some porins can also play an important role in outer membrane integrity by interacting with peptidoglycans such as OmpA [55]. In Pseudomonas stutzeri, changes in OMP profile were associated with increased CHX MIC [54]. E. coli gradually adapted in CHX-containing culture medium showed >2-fold upregulation in ompX and ompA and downregulation of ompF and ompT compared to the non-CHX-adapted strain [56]. OmpF is one of the non-specific porins in the outer membrane that form a complex with MlaA and allow the uptake of hydrophilic substrates, such as β-lactam antibiotics and CHX [56,57].
- ii.
- Loss of MlaA. MlaA in E. coli binds to OmpC/F to form the Mla intermembrane phospholipid transport system. The main function of this complex is to maintain asymmetry of the outer membrane lipids in Gram −ve bacteria by retrograde transport of phospholipids from the outer membrane and retention of LPS [57,58]. Inactivation of this retrograde transport channel resulted in reduced susceptibility to CHX, thereby implicating it in CHX cellular uptake. [56,59].
- Bacterial biofilm formation [60]:
- i.
- Extracellular DNA (eDNA) is an important component of the biofilm. Its negative charge promotes non-specific binding to cationic antimicrobials, including CHX, which prevents CHX from reaching their target microorganism [61].
- ii.
- Biofilm formation promotes the upregulation of MDR efflux pumps [6], which bind a broad spectrum of antimicrobial agents. As outlined in the later section, the breadth of MDR substrate specificity is thought to underpin cross-resistance to biocides and antibiotics.
- iii.
- The high abundance of extracellular polysaccharides forms a mechanical obstacle to the penetration of CHX into deep layers of established bacterial biofilms [62]. Antimicrobial diffusion into thick layers of biofilm may be delayed, thus exposing bacteria to sub-bactericidal concentrations that give rise to spontaneous mutations, causing antimicrobial resistance [63]. These conditions can also induce the expression of antimicrobial deactivating enzymes in the polysaccharide matrix [64,65].
Enterococcus spp. | E. coli | Salmonella spp. | Pseudomonas aeruginosa | Acinetobacter baumanii | Staphylococci | K. pneumonia | |
---|---|---|---|---|---|---|---|
qacA/B | [66] | [52,67] | |||||
qacG | [68] | [69] | |||||
qacH | [70] | ||||||
qacE, qacED1 | [66] | [50] | [68] | [52] | |||
adeB, adeJ | [49,52] | ||||||
cepA | [68] | ||||||
aceI | [49] | [49,71] | |||||
acrA, acrB, tolC | [43] | [72] | |||||
mlaA | [59] | ||||||
ompF, ompC | [59] | ||||||
sigV | [66] | ||||||
gasp65 | [66] | ||||||
emeA | [66,73] | ||||||
mdeA | [74] | ||||||
mepA | [74] | ||||||
fabV | [75] | ||||||
fabI | [71] | ||||||
abeS | [54] | ||||||
abeM | [71] | ||||||
efrA/B | [73] | ||||||
ramA | [72] | ||||||
pmrC | [76] |
7. CHX Versus Other Biocides
Microorganism | Source of Isolates | Chlorhexidine | Benzalkonium Chloride | Cetylpyridinium Chloride | Formaldehyde | Triclosan | H2O2 | Ref. | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MIC90 | ECOFF | MIC | MIC90 | ECOFF | MIC | MIC90 | ECOFF | MIC | MIC90 | ECOFF | MIC | MIC90 | ECOFF | MIC | MIC90 | ECOFF | |||
Enterococcus Faecalis | Clinical and environmental | 8 µg/mL | 8 µg/mL | 16 µg/mL | 16 µg/mL | 256–512 µg/mL | 512 µg/mL | 16–32 µg/mL | 32 µg/mL | [77] | ||||||||||
Clinical | 64 g/L | 32 g/L | 8 g/L | 4 g/L | 16 g/L | 8 g/L | [78] | |||||||||||||
E. faecium | Clinical and environmental | 4–8 µg/mL | 8 µg/mL | 16 µg/mL | 16 µg/mL | 256–512 µg/mL | 512 µg/mL | 8–16 µg/mL | 32 µg/mL | [77] | ||||||||||
Clinical | 32 g/L | 16 g/L | 8 g/L | 8 g/L | 32 g/L | 8 g/L | [78] | |||||||||||||
Vancomycin susceptible Enterococci | Clinical | ≤4 mg/L | 2–8 mg/L | 45–65 mg/L | [75] | |||||||||||||||
Vancomycin Resistant Enterococci | Clinical | ≥4 mg/L | 4–8 mg/L | 40–64 mg/L | [75] | |||||||||||||||
Human wastewater | 2 µg/mL | 8 µg/mL | 128 µg/mL | 8 µg/mL | [87] | |||||||||||||||
C. tropicalis | Clinical | 75 µg/mL | 66 µg/mL | [79] | ||||||||||||||||
C. krusei | Clinical | 150 µg/mL | 33 mg/mL | [79] | ||||||||||||||||
C. albicans | Clinical | 16 g/L | 8 g/L | 16 g/L | 4 g/L | 16 g/L | 8 g/L | [78] | ||||||||||||
P. aeruginosa | Clinical | 64 µg/mL | 64 µg/mL | 1024 µg/mL | 1024 µg/mL | 512 µg/mL | 512 µg/mL | 512 µg/mL | 512 µg/mL | [85] | ||||||||||
Clinical (includes resistant to CHX and resistant to cetylpyridinium chloride) | 25 mg/L | 500–1500 mg/L | [54] | |||||||||||||||||
A. baumanni | Clinical | 8–128 µg/mL | 64 µg/mL | 4–32 µg/mL | 32 µg/mL | 2-> 256 µg/mL | 128 µg/mL | 47–376 µg/mL | 94 µg/mL | [87] | ||||||||||
E. coli | Clinical | 64 g/L | 16 g/L | 64 g/L | 32 g/L | 2 g/L | 0.5 g/L | [78] | ||||||||||||
P. stuzeri | Clinical (includes resistant to CHX and resistant to cetylpyridinium chloride) | 2.5–100 mg/L | 25–250 mg/L | [54] |
8. Cross-Resistance to Other Antibiotics
9. CHX Resistance in Intensive Care Units
10. CHX Resistance and Oral Biofilm
11. Discussion
12. Conclusions Regarding Potential Implications for Clinical Practice
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Information, National Center for Biotechnology. “PubChem Compound Summary for CID 9552079, Chlorhexidine” PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/chlorhexidine#section=Computed-Properties (accessed on 21 July 2022).
- Poonam, S.; Rathore, K.; Khurana, D. Chlorhexidine—An antiseptic in periodontics. J. Dent. Med. Sci. 2014, 13, 85–88. [Google Scholar]
- Balagopal, S.; Radhika, A. Chlorhexidine: The gold standard antiplaque agent. J. Pharm. Sci. Res. 2013, 5, 270–274. [Google Scholar]
- Schroeder, H.E. Formation and Inhibition of Dental Calculus. J. Periodontol. 1969, 40, 643–646. [Google Scholar] [CrossRef] [PubMed]
- Buxser, S. Has resistance to chlorhexidine increased among clinically-relevant bacteria? A systematic review of time course and subpopulation data. PLoS ONE 2021, 16, e0256336. [Google Scholar] [CrossRef]
- Cieplik, F.; Jakubovics, N.S.; Buchalla, W.; Maisch, T.; Hellwig, E.; Al-Ahmad, A. Resistance toward chlorhexidine in oral bacteria-is there cause for concern? Front. Microbiol. 2019, 10, 587. [Google Scholar] [CrossRef] [PubMed]
- Athanassiadis, B.; Abbott, P.V.; Walsh, L.J. The use of calcium hydroxide, antibiotics and biocides as antimicrobial medicaments in endodontics. Aust. Dent. J. 2007, 52, S64–S82. [Google Scholar] [CrossRef]
- McDonnell, G.; Denver, A.R. Antiseptics and Disinfectants: Activity, Action and Resistance. Clin. Microbiol. Rev. 1999, 12, 147–179. [Google Scholar] [CrossRef]
- Cheung, H.-Y.; Wong, M.M.-K.; Cheung, S.-H.; Liang, L.Y.; Lam, Y.-W.; Chiu, S.-K. Differential actions of chlorhexidine on the cell wall of Bacillus subtilis and Escherichia coli. PLoS ONE 2012, 7, e36659. [Google Scholar] [CrossRef]
- Bobichon, H.; Bouchet, P. Action of chlorhexidine on budding Candida albicans: Scanning and transmission electron microscopic study. Mycopathologia 1987, 100, 27–35. [Google Scholar] [CrossRef]
- Walters, T.H.; Furr, J.R.; Russell, A.D. Antifungal action of Chlorhexidine. Microbios 1983, 38, 195–204. [Google Scholar]
- Hiom, S.J.; Furr, J.R.; Russell, A.D.; Dickinson, J.R. Effect of chlorhexidine diacetate and cetylpyridinium chloride on whole cells and protoplasts of Saccharomyces cerevisiae. Microbios 1993, 74, 111–120. [Google Scholar] [PubMed]
- Rikimaru, T.; Kondo, M.; Kondo, S.; Oizumi, K. Efficacy of common antiseptics against mycobacteria. Int. J. Tuberc. Lung Dis. 2000, 4, 570–576. [Google Scholar] [PubMed]
- Park, J.B.; Park, N.H. Effect of chlorhexidine on the in vitro and in vivo herpes simplex virus infection. Oral Surg. 1989, 67, 149–153. [Google Scholar] [CrossRef]
- Ranganthan, N.S. Chlorhexidine. In Handbook of Disinfectants and Antiseptics; Ascenzi, J.M., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1996; pp. 235–264. [Google Scholar]
- Jain, A.; Grover, V.; Singh, C.; Sharma, A.; Das, D.K.; Singh, P.; Thakur, K.G.; Ringe, R.P. Chlorhexidine: An effective anticovid mouth rinse. J. Indian Soc. Periodontol. 2021, 25, 86–88. [Google Scholar] [CrossRef]
- Kampf, G.; Todt, D.; Pfaender, S.; Steinmann, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.G.; Yoon, J.; Song, J.Y.; Yoon, S.Y.; Lim, C.S.; Seong, H.; Noh, J.Y.; Cheong, H.J.; Kim, W.J. Clinical Significance of a High SARS-CoV-2 Viral Load in the Saliva. J. Korean Med. Sci. 2020, 35, e195. [Google Scholar] [CrossRef] [PubMed]
- Bonn, E.; Rohrhofer, A.; Audebert, F.; Lang, H.; Auer, D.; Scholz, K.; Schuster, P.; Wenzel, J.; Hiller, K.-A.; Buchalla, W.; et al. Efficacy of a Mouthwash Containing CHX and CPC in SARS-CoV-2–Positive Patients: A Randomized Controlled Clinical Trial. J. Dent. Res. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Russell, A.D. factors influencing the efficacy of antimicrobial agents. In Principles and Practice of Disinfection, Preservation and Sterilization, 2nd ed.; Hugo, A.D., Ayliffe, W.B., Russell, G.A.J., Eds.; Blackwell Scientific: Oxford, UK, 1992; pp. 89–113. [Google Scholar]
- Saleem, H.G.; Seers, C.A.; Sabri, A.N.; Reynolds, E.C. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant. BMC Microbiol. 2016, 16, 214. [Google Scholar] [CrossRef]
- Denyer, S.P. Mechanisms of action of biocides. Int. Biodeterior. 1990, 26, 89–100. [Google Scholar] [CrossRef]
- Russell, A.D. Mechanisms of bacterial resistance to biocides. Int. Biodeterior. Biodegrad. 1995, 36, 247–265. [Google Scholar] [CrossRef]
- Russell, A.D. The bacterial spore and chemical sporicidal agents. Clin. Microbial. Rev. 1990, 3, 99–119. [Google Scholar] [CrossRef] [PubMed]
- Rubin, J. Agents for disinfection and control of tuberculosis. In Disinfection, Sterilization and Preservation, 3rd ed.; Block, S.S., Ed.; Lea & Febiger: Philadelphia, PA, USA, 1983; pp. 414–421. [Google Scholar]
- Hanson, P.J.V. Mycobacteria and AIDS. Br. J. Hosp. Med. 1988, 40, 149. [Google Scholar] [PubMed]
- Carpentier, B.; Cerf, O. Biofilms and their consequences, with particular reference to hygiene in the food industry. J. Appl. Bacteriol. 1993, 75, 499–511. [Google Scholar] [CrossRef]
- Brown, M.R.W.; Gilbert, P. Sensitivity of biofilms to antimicrobial agents. J. Appl. Bacteriol. 1993, 74, 87s–97s. [Google Scholar] [CrossRef]
- Alibert, S.; N’gompaza Diarra, J.; Hernandez, J.; Stutzmann, A.; Fouad, M.; Boyer, G.; Pages, J.-M. Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: A pharmacodynamic perspective. Expert Opin. Drug Metab. Toxicol. 2017, 13, 301–309. [Google Scholar] [CrossRef]
- Piddock, L.J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin. Microbiol. Rev. 2006, 19, 382–402. [Google Scholar] [CrossRef] [PubMed]
- Frimodt-Møller, J.; Rossi, E.; Haagensen, J.A.J.; Falcone, M.; Molin, S.; Johansen, H.K. Mutations causing low level antibiotic resistance ensure bacterial survival in antibiotic-treated hosts. Sci. Rep. 2018, 8, 12512. [Google Scholar] [CrossRef] [PubMed]
- El Meouche, I.; Dunlop, M.J. Heterogeneity in efflux pump expression predisposes antibiotic-resistant cells to mutation. Science 2018, 362, 686–690. [Google Scholar] [CrossRef]
- Orelle, C.; Mathieu, K.; Jault, J.M. Multidrug ABC transporters in bacteria. Res. Microbiol. 2019, 170, 381–391. [Google Scholar] [CrossRef]
- van Veen, H.W.; Venema, K.; Bolhuis, H.; Oussenko, I.; Kok, J.; Poolman, B.; Driessen, A.J.; Konings, W.N. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 1996, 93, 10668–10672. [Google Scholar] [CrossRef]
- Kobayashi, N.; Nishino, K.; Yamaguchi, A. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J. Bacteriol. 2001, 183, 5639–5644. [Google Scholar] [CrossRef] [PubMed]
- Silver, S. Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 2003, 27, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Heir, E.; Sundheim, G.; Holck, A.L. Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int. J. Food Microbiol. 1999, 48, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Littlejohn, T.G.; Paulsen, I.T.; Gillespie, M.T.; Tennent, J.M.; Midgley, M.; Jones, I.G.; Purewal, A.S.; Skurray, R.A. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 1992, 95, 259–266. [Google Scholar] [CrossRef]
- Leelaporn, A.; Paulsen, I.T.; Tennent, J.M.; Littlejohn, T.G.; Skurray, R.A. Multidrug resistance to antisep- tics and disinfectants in coagulase-negative staphylococci. J. Med. Microbiol. 1994, 40, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr. Molecular phylogeny as a basis for the classification of transport proteins from bacteria, archaea and eukarya. Adv. Microb. Physiol. 1998, 40, 81–136. [Google Scholar] [CrossRef]
- Blair, J.M.; Piddock, L.J. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: An update. Curr. Opin. Microbiol. 2009, 12, 512–519. [Google Scholar] [CrossRef]
- Hobbs, E.C.; Yin, X.; Paul, B.J.; Astarita, J.L.; Storz, G. Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance. Proc. Natl. Acad. Sci. USA 2012, 109, 16696–16701. [Google Scholar] [CrossRef]
- Webber, M.A.; Randall, L.P.; Cooles, S.; Woodward, M.J.; Piddock, L.J. Triclosan resistance in Salmonella enterica serovar Typhimurium. J. Antimicrob. Chemother. 2008, 62, 83–91. [Google Scholar] [CrossRef]
- Brown, M.H.; Paulsen, I.T.; Skurray, R.A. The multidrug efflux protein NorM is a prototype of a new family of transporters. Mol. Microbiol. 1999, 31, 393–395. [Google Scholar] [CrossRef]
- He, G.X.; Kuroda, T.; Mima, T.; Morita, Y.; Mizushima, T.; Tsuchiya, T. An H+-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J. Bacteriol. 2004, 186, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.A.; Jackson, S.M.; Penesyan, A.; Patching, S.G.; Tetu, S.G.; Eijkelkamp, B.A. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proc. Natl. Acad. Sci. USA 2013, 110, 20254–20259. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; McMurry, L.M.; Levy, S.B. The marA locus causes decreased expression of OmpF porin in multiple antibiotic resistant (Mar) mutants of Escherichia coli. J. Bacteriol. 1988, 170, 5416–5422. [Google Scholar] [CrossRef]
- Levy, S.B. Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 2002, 92, 65S–71S. [Google Scholar] [CrossRef] [PubMed]
- Rajamohan, G.; Srinivasan, V.B.; Gebreyes, W.A. Novel role of Acinetobacter baumannii RND efflux transporters in mediating decreased susceptibility to biocides. J. Antimicrob. Chemother. 2010, 65, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Slipski, C.; Jamieson-Datzkiw, T.; Zhanel, G.; Bay, D. Characterization of proteobacterial plasmid integron-encoded qac efflux pump sequence diversity and quaternary ammonium compound antiseptic selection in E. coli grown planktonically and as biofilms. Antimicrob. Agents Chemother. 2021, 65, AAC0106921. [Google Scholar] [CrossRef]
- Srinivasan, V.B.; Rajamohan, G.; Gebreyes, W.A. Role of AbeS, a novel efflux pump of the SMR family of transporters, in resistance to antimicrobial agents in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2009, 53, 5312–5316. [Google Scholar] [CrossRef]
- Smith, K.; Gemmell, C.G.; Hunter, I. The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J. Antimicrob. Chemother. 2008, 61, 78–84. [Google Scholar] [CrossRef]
- Muñoz-Gallego, I.; Infiesta, L.; Viedma, E.; Perez-Montarelo, D.; Chaves, F. Chlorhexidine and mupirocin susceptibilities in methicillin-resistant Staphylococcus aureus isolates from bacteraemia and nasal colonisation. J. Glob. Antimicrob. Resist. 2016, 4, 65–69. [Google Scholar] [CrossRef]
- Tattawasart, U.; Maillard, J.; Furr, J.; Russell, A. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int. J. Antimicrob. Agents 2000, 16, 233–238. [Google Scholar] [CrossRef]
- Samsudin, F.; Ortiz-Suarez, M.L.; Piggot, T.J.; Bond, P.J.; Khalid, S. OmpA: A flexible clamp for bacterial cell wall attachment. Structure 2016, 24, 2227–2235. [Google Scholar] [CrossRef] [PubMed]
- Gregorchuk, B.S.J.; Reimer, S.L.; Green, K.A.C.; Cartwright, N.H.; Beniac, D.R.; Hiebert, S.L.; Booth, T.F.; Chong, P.M.; Westmacott, G.R.; Zhanel, G.G.; et al. Phenotypic and multi-omics characterization of Escherichia coli adapted to chlorhexidine identifies the role of lipid transporter MlaA and other cell envelope alterations regulated by stress inducible pathways. Front. Mol. Biosci. 2021, 19, 659058. [Google Scholar] [CrossRef] [PubMed]
- Chong, Z.S.; Woo, W.F.; Chng, S.S. Osmoporin OmpC forms a complex with MlaA to maintain outer membrane lipid asymmetry in Escherichia coli. Mol. Microbiol. 2015, 98, 1133–1146. [Google Scholar] [CrossRef]
- Hughes, G.W.; Hall, S.C.L.; Laxton, C.S.; Sridhar, P.; Mahadi, A.H.; Hatton, C.; Piggot, T.J.; Wotherspoon, P.J.; Leney, A.C.; Ward, D.G.; et al. Evidence for phospholipid export from the bacterial inner membrane by the Mla ABC transport system. Nat. Microbiol. 2019, 4, 1692–1705. [Google Scholar] [CrossRef]
- Gregorchuk, B.S.J.; Reimer, S.L.; Slipski, C.J.; Milner, K.A.; Hiebert, S.L.; Beniac, D.R.; Booth, T.F.; Zhanel, G.G.; Bay, D.C. Applying fluorescent dye assays to discriminate Escherichia coli chlorhexidine resistance phenotypes from porin and mlaA deletions and efflux pumps. Nat. Sci. Rep. 2022, 12, 12149. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Okshevsky, M.; Meyer, R.L. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit. Rev. Microbiol. 2015, 41, 341–352. [Google Scholar] [CrossRef]
- Zaura-Arite, E.; van Marle, J.; ten Cate, J.M. Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J. Dent. Res. 2001, 80, 1436–1440. [Google Scholar] [CrossRef]
- Jefferson, K.K.; Goldmann, D.A.; Pier, G.B. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2005, 49, 2467–2473. [Google Scholar] [CrossRef]
- Dibdin, G.H.; Assinder, S.J.; Nichols, W.W.; Lambert, P.A. Mathematical model of beta-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released beta-lactamases. J. Antimicrob. Chemother. 1996, 38, 757–769. [Google Scholar] [CrossRef]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Macias, J.H.; Alvarez, M.F.; Arreguin, V.; Muñoz, J.M.; Macias, A.E.; Alvarez, J.A. Chlorhexidine avoids skin bacteria recolonization more than triclosan. Am. J. Infect. Control 2016, 44, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, K.; Mukhopadhya, I.; Abbott, F.; Milne, K.; Al-Jabri, Z.J.; Oggioni, M.R.; Gould, I.M. Susceptibility to chlorhexidine amongst multidrug-resistant clinical isolates of Staphylococcus epidermidis from bloodstream infections. Int. J. Antimicrob. Agents 2016, 48, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Liew, S.M.; Rajasekaram, G.; Puthucheary, S.D.A.; Chua, K.H. Antimicrobial susceptibility and virulence genes of clinical and environmental isolates of Pseudomonas aeruginosa. PeerJ 2019, 7, e6217. [Google Scholar] [CrossRef]
- Heir, E.; Sundheim, G.; Holck, A.L. The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J. Appl. Microbiol. 1999, 86, 378–388. [Google Scholar] [CrossRef]
- Heir, E.; Sundheim, G.; Holck, A.L. The Staphylococcus qacH gene product: A new member of the SMR family encoding multidrug resistance. FEMS Microbiol. Lett. 1998, 163, 49–56. [Google Scholar] [CrossRef]
- Lin, F.; Xu, Y.; Chang, Y.; Liu, C.; Jia, X.; Ling, B. Molecular Characterization of Reduced Susceptibility to Biocides in Clinical Isolates of Acinetobacter baumannii. Front. Microbiol. 2017, 26, 1836. [Google Scholar] [CrossRef]
- Curiao, T.; Marchi, E.; Viti, C.; Oggioni, M.R.; Baquero, F.; Martinez, J.L.; Coque, T.M. Polymorphic variation in susceptibility and metabolism of triclosan-resistant mutants of Escherichia coli and Klebsiella pneumoniae clinical strains obtained after exposure to biocides and antibiotics. Antimicrob. Agents Chemother. 2015, 59, 3413–3423. [Google Scholar] [CrossRef]
- Suller, M.T.; Russell, A.D. Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococcus. J. Hosp. Infect. 1999, 43, 281–291. [Google Scholar] [CrossRef]
- Wand, M.E.; Darby, E.M.; Blair, J.M.A.; Sutton, J.M. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and other biocides in Klebsiella spp. J. Med. Microbiol. 2022, 71, 001496. [Google Scholar] [CrossRef]
- Alotaibi, S.M.I.; Ayibiekea, A.; Pedersen, A.F.; Jakobsen, L.; Pinholt, M.; Gumpert, H.; Hammerum, A.M.; Westh, H.; Ingmer, H. Susceptibility of vancomycin-resistant and -sensitive Enterococcus faecium obtained from Danish hospitals to benzalkonium chloride, chlorhexidine and hydrogen peroxide biocides. J. Med. Microbiol. 2017, 66, 1744–1751. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Ribeiro, A.A.; Lin, S.; Cotter, R.J.; Miller, S.I.; Raetz, C.R. Lipid a modifications in polymyxin-resistant Salmonella typhimurium PmrA-dependent 4-amino-4-deoxy-l-arabinose, and phosphoethanolamine incorporation. J. Biol. Chem. 2001, 276, 43111–43121. [Google Scholar] [CrossRef] [PubMed]
- Namaki Kheljan, M.; Teymorpour, R.; Peeri Doghaheh, H.; Arzanlou, M. Antimicrobial Biocides Susceptibility and Tolerance-Associated Genes in Enterococcus faecalis and Enterococcus faecium Isolates Collected from Human and Environmental Sources. Curr. Microbiol. 2022, 79, 170. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, I.; Oggioni, M.R.; Knight, D.; Curiao, T.; Coque, T.; Kalkanci, A.; Martinez, J.L.; the BIOHYPO Consortium. Evaluation of Epidemiological Cut-Off Values Indicates that Biocide Resistant Subpopulations Are Uncommon in Natural Isolates of Clinically-Relevant Microorganisms. PLoS ONE 2014, 9, e86669. [Google Scholar] [CrossRef]
- Fathilah, A.R.; Himratul-Aznita, W.H.; Fatheen, A.R.N.; Suriani, K.R. The antifungal properties of chlorhexidine digluconate and cetylpyrinidinium chloride on oral Candida. J. Dent. 2012, 40, 609–615. [Google Scholar] [CrossRef]
- Food and Drug Administration. Safety and Effectiveness of Health Care Antiseptics; Topical Antimicrobial Drug Products for Over-the-Counter Human Use. Final Rule. Fed. Regist. 2017, 82, 60474–60503. [Google Scholar]
- Gloux, K.; Guillemet, M.; Soler, C.; Morvan, C.; Halpern, D.; Pourcel, C.; Vu Thien, H.; Lamberet, G.; Gruss, A. Clinical Relevance of Type II Fatty Acid Synthesis Bypass in Staphylococcus aureus. Antimicrob. Agents Chemother. 2017, 61, e02515-16. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Draft Guidance for Industry on Gingivitis: Development and Evaluation of Drugs for Treatment or Prevention; Availability. Notice 2005, 70, FR 37102–37103. [Google Scholar]
- Han, J.; Qiu, W.; Campbell, E.C.; White, J.C.; Xing, B. Nylon Bristles and Elastomers Retain Centigram Levels of Triclosan and Other Chemicals from Toothpastes: Accumulation and Uncontrolled Release. Environ. Sci. Technol. 2017, 51, 12264–12273. [Google Scholar] [CrossRef]
- Hua, M.; Huang, W.; Chen, A.; Rehmet, M.; Jin, C.; Huang, Z. Comparison of Antimicrobial Resistance Detected in Environmental and Clinical Isolates from Historical Data for the US. BioMed Res. Int. 2020, 2020, 4254530. [Google Scholar] [CrossRef]
- Namaki, M.; Habibzadeh, S.; Vaez, H.; Arzanlou, M.; Safarirad, S.; Bazghandi, S.A.; Sahebkar, A.; Khademi, F. Prevalence of resistance genes to biocides in antibiotic resistant Pseudomonas aeruginosa clinical isolates. Mol. Biol. Rep. 2022, 49, 2149–2155. [Google Scholar] [CrossRef] [PubMed]
- Huet, A.A.; Raygada, J.L.; Mendiratta, K.; Seo, S.M.; Kaatz, G.W. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology 2008, 154, 3144. [Google Scholar] [CrossRef] [PubMed]
- Beier, R.C.; Duke, S.E.; Ziprin, R.L.; Harvey, R.B.; Hume, M.E.; Poole, T.L.; Scott, H.M.; Highfield, L.D.; Alali, W.Q.; Andrews, K.; et al. Antibiotic and disinfectant susceptibility profiles of vancomycin-resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas. Bull. Environ. Contam. Toxicol. 2008, 80, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Dadda-Garcia, R.; de Valles-Fernandez, J.; Solaz-Garcia, A. Oral hygiene with chlorhexidine and bacterial resistance in intubated patients. Enferm. Intensiv. 2022, 33, 52–53. [Google Scholar] [CrossRef]
- Wand, M.E.; Bock, L.J.; Bonney, L.C.; Sutton, J.M. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella. Antimicrob. Agents Chemother. 2017, 61, e01162-16. [Google Scholar] [CrossRef]
- Kampf, G. Adaptive bacterial response to low level chlorhexidine exposure and its implications for hand hygiene. Microb. Cell 2019, 6, 307–320. [Google Scholar] [CrossRef]
- Sobhanipoor, M.H.; Ahmadrajabi, R.; Nave, H.H.; Saffari, F. Reduced Susceptibility to Biocides among Enterococci from Clinical and Non-Clinical Sources. Infect. Chemother. 2021, 53, 696–704. [Google Scholar] [CrossRef]
- Falagas, M.E.; Lourida, P.; Poulikakos, P.; Rafailidis, P.I.; Tansarli, G.S. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: Systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 2014, 58, 654–663. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef]
- Lee, H.; Hsu, F.F.; Turk, J.; Groisman, E.A. The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid and polymyxin resistance in Salmonella enterica. J. Bacteriol. 2004, 186, 4124–4133. [Google Scholar] [CrossRef]
- Tamayo, R.; Choudhury, B.; Septer, A.; Merighi, M.; Carlson, R.; Gunn, J. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J. Bacteriol. 2005, 187, 3391–3399. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D.; Mills, A.P. Comparative sensitivity and resistance of some strains of Pseudomonas aeruginosa and Pseudomonas stutzeri to antibacterial agents. J. Clin. Pathol. 1974, 27, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Tattawasart, U.; Maillard, J.Y.; Furr, J.R.; Russell, A.D. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J. Hosp. Infect. 1999, 42, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Tattawasart, U.; Hann, A.C.; Maillard, J.Y.; Furr, J.R.; Russell, A.D. Cytological changes in chlorhexidine-resistant isolates of Pseudomonas stutzeri. J. Antimicrob. Chemother. 2000, 45, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Jonas, B.M.; Murray, B.E.; Weinstock, G.M. Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob. Agents Chemother. 2001, 45, 3574–3579. [Google Scholar] [CrossRef] [PubMed]
- Paulsen, I.T.; Brown, M.H.; Dunstan, S.J.; Skurray, R.A. Molecular characterization of the staphylococcal multidrug resistance export protein QacC. J. Bacteriol. 1995, 177, 2827–2833. [Google Scholar] [CrossRef]
- Paulsen, I.T.; Brown, M.H.; Littlejohn, T.G.; Mitchell, B.A.; Skurray, R.A. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: Membrane topology and identification of residues involved in substrate specificity. Proc. Natl. Acad. Sci. USA 1996, 93, 3630–3635. [Google Scholar] [CrossRef]
- Choi, U.; Lee, C.R. Distinct Roles of Outer Membrane Porins in Antibiotic Resistance and Membrane Integrity in Escherichia coli. Front. Microbiol. 2019, 10, 953. [Google Scholar] [CrossRef]
- Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Heim, L.; Gombosev, A.; Avery, T.R.; Haffenreffer, K.; Shimelman, L.; et al. Chlorhexidine versus routine bathing to prevent multidrug-resistant organisms and all-cause bloodstream infections in general medical and surgical units (ABATE Infection trial): A cluster-randomised trial. Lancet 2019, 393, 1205–1215. [Google Scholar] [CrossRef]
- Huang, S.S.; Septimus, E.; Kleinman, K.; Moody, J.; Hickok, J.; Avery, T.R.; Lankiewicz, J.; Gombosev, A.; Terpstra, L.; Hartford, F.; et al. Targeted versus universal decolonization to prevent ICU infection. N. Engl. J. Med. 2013, 368, 2255–2265. [Google Scholar] [CrossRef]
- Climo, M.W.; Yokoe, D.S.; Warren, D.K.; Perl, T.M.; Bolon, M.; Herwaldt, L.A.; Weinstein, R.A.; Sepkowitz, K.A.; Jernigan, J.A.; Sanogo, K.; et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N. Engl. J. Med. 2013, 368, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Webster, J.; Osborne, S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst. Rev. 2015, 2, CD004985. [Google Scholar] [CrossRef] [PubMed]
- Urbanic, K.F.; Mårtensson, J.; Glassford, N.; Eyeington, C.; Robbins, R.; Ward, P.B.; Williams, D.; Johnson, P.D.R.; Bellomo, R. Impact of unit-wide chlorhexidine bathing in intensive care on bloodstream infection and drug-resistant organism acquisition. Crit. Care Resusc. 2018, 20, 109–116. [Google Scholar]
- Kengen, R.; Thoonen, E.; Daveson, K.; Loong, B.; Rodgers, H.; Beckingham, W.; Kennedy, K.; Suwandarathne, R.; van Haren, F. Chlorhexidine washing in intensive care does not reduce bloodstream infections, blood culture contamination and drug-resistant microorganism acquisition: An interrupted time series analysis. Crit. Care Resusc. 2018, 20, 231–240. [Google Scholar] [PubMed]
- Zamudio, R.; Oggioni, M.R.; Gould, I.M.; Hijazi, K. Time for biocide stewardship? Nat. Microbiol. 2019, 4, 732–733. [Google Scholar] [CrossRef]
- Lee, J.Y.H.; Monk, I.R.; Gonçalves da Silva, A.; Seemann, T.; Chua, K.Y.L.; Kearns, A.; Hill, R.; Woodford, N.; Bartels, M.D.; Strommenger, B.; et al. Global spread of three multidrug-resistant lineages of Staphylococcus epidermidis. Nat. Microbiol. 2018, 3, 1175–1185. [Google Scholar] [CrossRef]
- Seneviratne, C.J.; Zhang, C.F.; Samaranayake, L.P. Dental plaque biofilm in oral health and disease. Chin. J. Dent. Res. 2011, 14, 87–94. [Google Scholar]
- Thurnheer, T.; Gmür, R.; Shapiro, S.; Guggenheim, B. Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl. Environ. Microbiol. 2003, 69, 1702–1709. [Google Scholar] [CrossRef]
- Russell, A.D. Biocide use and antibiotic resistance: The relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 2003, 3, 794–803. [Google Scholar] [CrossRef]
- Stoll, C.R.T.; Izadi, S.; Fowler, S.; Green, P.; Suls, J.; Colditz, G.A. The value of a second reviewer for study selection in systematic reviews. Res. Synth. Methods 2019, 10, 539–545. [Google Scholar] [CrossRef]
- Horner, C.; Mawer, D.; Wilcox, M. Reduced susceptibility to chlorhexidine in staphylococci: Is it increasing and does it matter? J. Antimicrob. Chemother. 2012, 67, 2547–2559. [Google Scholar] [CrossRef] [PubMed]
- Andersen, E. Bacterial resistance to biocides. In Handbook of Hygiene Control in the Food Industry; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- One Health Commission. 2018. What is One Health? Available online: https://www.onehealthcommission.org/en/why_one_health/what_is_one_health/ (accessed on 17 February 2023).
Efflux Pump Family | Type of Energy Needed | Efflux Pumps in Gram +ve (Location of Gene Encoding the Efflux Pump) | Efflux Pumps in Gram −ve (Location of Gene Encoding the Efflux Pump) | Biocide Substrate [Ref.] |
---|---|---|---|---|
ATP-binding cassette family (ABC) | Primary active transporter | EmrA (Chromosome) | MacAB-TolC (Chromosome) | Silver [36] |
Small multidrug resistance (SMR) family | Secondary active transporter | QacC (Plasmid) | Quaternary ammonium compounds [37,38,39] | |
Multidrug and toxin extrusion (MATE) family | Secondary active transporter | NorM (Chromosome) | PmpM (Plasmid) | Benzalkonium chloride [44] |
Major facilitator superfamily (MFS) | Secondary active transporter | QacA (Plasmid) | EmrAB-TolC (Chromosome) | Benzalkonium chloride, CHX [38,39] |
Resistance nodulation cell division family (RND) | Secondary active transporter | AcrAB-TolC (Chromosome) | Triclosan [43] |
Mechanism of Cross-Resistance | Genes Implicated in Cross-Resistance | References |
---|---|---|
Loss or decrease OMP | ompA, ompC and ompF | [102] |
Change in LPS profile | pmrK | [76,94,95] |
Activation of MDR efflux pumps | efrA/b, acrAB, ramA, mepA, mdeA, norA, norC, lmrS, sdrM, sepA, qacA/B, qacG, qacH, qacJ, and smr (qacC) | [69,70,74,91,99,100,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbood, H.M.; Hijazi, K.; Gould, I.M. Chlorhexidine Resistance or Cross-Resistance, That Is the Question. Antibiotics 2023, 12, 798. https://doi.org/10.3390/antibiotics12050798
Abbood HM, Hijazi K, Gould IM. Chlorhexidine Resistance or Cross-Resistance, That Is the Question. Antibiotics. 2023; 12(5):798. https://doi.org/10.3390/antibiotics12050798
Chicago/Turabian StyleAbbood, Hadeel Mohammed, Karolin Hijazi, and Ian M. Gould. 2023. "Chlorhexidine Resistance or Cross-Resistance, That Is the Question" Antibiotics 12, no. 5: 798. https://doi.org/10.3390/antibiotics12050798
APA StyleAbbood, H. M., Hijazi, K., & Gould, I. M. (2023). Chlorhexidine Resistance or Cross-Resistance, That Is the Question. Antibiotics, 12(5), 798. https://doi.org/10.3390/antibiotics12050798