Effect of Antibiotic Compared to Non-Antibiotic Dry Cow Treatment on the Bacteriological Cure of Intramammary Infections during the Dry Period—A Retrospective Cross-Sectional Study
Abstract
:1. Introduction
2. Results
2.1. Data Selection
2.2. Descriptive Results
2.3. Generalized Linear Mixed Model
3. Discussion
3.1. Benefit of AB
3.2. Outcome Cure
3.3. Limitations and Significance of the Study
4. Materials and Methods
4.1. Data
4.2. Definitions
4.3. Statistical Analysis
- S. aureus;
- NAS;
- Streptococcus (Sc.) spp. including Sc. uberis, Sc. dysgalactiae, Sc. canis and other not further specified streptococcal bacteria;
- coliforms, including Escherichia coli, Klebsiella spp., Serratia marcescens, and other not further specified coliforms;
- other Gram-negative bacteria, including Aeromonas, Pseudomonas, Proteus, Alcaligenes, Bordetella, Moraxella, and Acinetobacter spp.;
- other Gram-positive bacteria, including Trueperella pyogenes, Corynebacteriaceae, Bacillus spp., and Enterococcus spp.;
- non-bacterial pathogens (yeasts, Prototheca spp.);
- mixed infection (pathogens from two different categories).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Soest, F.J.S.; Santman-Berends, I.; Lam, T.; Hogeveen, H. Failure and preventive costs of mastitis on Dutch dairy farms. J. Dairy Sci. 2016, 99, 8365–8374. [Google Scholar] [CrossRef] [Green Version]
- Huijps, K.; Hogeveen, H.; Lam, T.J.; Oude Lansink, A.G. Costs and efficacy of management measures to improve udder health on Dutch dairy farms. J. Dairy Sci. 2010, 93, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Krömker, V.; Leimbach, S. Mastitis treatment-Reduction in antibiotic usage in dairy cows. Reprod. Domest. Anim. Zuchthyg. 2017, 52 (Suppl. 3), 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seeth, M.; Hoedemaker, M.; Kromker, V. Physiological processes in the mammary gland tissue of dairy cows during the dry period. Berl. Und Münchener Tierärztliche Wochenschr. 2015, 128, 76–83. [Google Scholar]
- Zhao, X.; Ponchon, B.; Lanctot, S.; Lacasse, P. Invited review: Accelerating mammary gland involution after drying-off in dairy cattle. J. Dairy Sci. 2019, 102, 6701–6717. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and the Council of the European Union. Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, 7.1.2019, 43–167. Available online: https://eur-lex.europa.eu/eli/reg/2019/6/oj (accessed on 7 January 2023).
- Krömker, V.; Grabowski, N.T.; Friedrich, J. New infection rate of bovine mammary glands after application of an internal teat seal at dry-off. J. Dairy Res. 2014, 81, 54–58. [Google Scholar] [CrossRef]
- Krömker, V.; Pfannenschmidt, F.; Friedrich, J. Neuinfektionsrate der Milchdrüsen von Milchkühen in der Trockenperiode nach Anwendung eines internen Zitzenversieglers zum Trockenstellen [New infection rate of bovine mammary glands after application of an internal teat seal at dry off]. Berl. Und Munch. Tierarztl. Wochenschr. 2010, 123, 215–220. [Google Scholar]
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J. Randomized equivalence study comparing the efficacy of 2 commercial internal teat sealants in dairy cows. J. Dairy Sci. 2020, 103, 5398–5413. [Google Scholar] [CrossRef] [PubMed]
- McCubbin, K.D.; De Jong, E.; Lam, T.J.G.M.; Kelton, D.F.; Middleton, J.R.; McDougall, S.; De Vliegher, S.; Godden, S.; Rajala-Schultz, P.J.; Rowe, S.; et al. Invited review: Selective use of antimicrobials in dairy cattle at drying-off. J. Dairy Sci. 2022, 105, 7161–7189. [Google Scholar] [CrossRef]
- Mestorino, N.; Martinez, M.; Persico, J.M.R.; Garcia, S.; Buldain, D.; Buchamer, A.; Aliverti, F.; Marchetti, L. Pharmacokinetics and Milk Residues. In Proceedings of the National Mastitis Council 57th Anual Meeting, Tucson, Arizona, USA, 30 January–2 February 2018. [Google Scholar]
- Kiesner, K.; Wente, N.; Volling, O.; Krömker, V. Selection of cows for treatment at dry-off on organic dairy farms. J. Dairy Res. 2016, 83, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Scherpenzeel, C.G.M.; Uijl, I.E.M.d.; van Schaik, G.; Riekerink, R.G.M.O.; Hogeveen, H.; Lam, T.J.G.M. Effect of different scenarios for selective dry-cow therapy on udder health, antimicrobial usage, and economics. J. Dairy Sci. 2016, 99, 3753–3764. [Google Scholar] [CrossRef] [Green Version]
- Petzer, I.-M.; Karzis, J.; Donkin, E.F.; Webb, E.C.; Etter, E.M.C. Somatic cell count thresholds in composite and quarter milk samples as indicator of bovine intramammary infection status. Onderstepoort J. Vet. Res. 2017, 84, e1–e10. [Google Scholar] [CrossRef] [Green Version]
- Sanford, C.J.; Keefe, G.P.; Sanchez, J.; Dingwell, R.T.; Barkema, H.W.; Leslie, K.E.; Dohoo, I.R. Test characteristics from latent-class models of the California Mastitis Test. Prev. Vet. Med. 2006, 77, 96–108. [Google Scholar] [CrossRef]
- Swinkels, J.M.; Leach, K.A.; Breen, J.E.; Payne, B.; White, V.; Green, M.J.; Bradley, A.J. Randomized controlled field trial comparing quarter and cow level selective dry cow treatment using the California Mastitis Test. J. Dairy Sci. 2021, 104, 9063–9081. [Google Scholar] [CrossRef]
- Cameron, M.; Keefe, G.P.; Roy, J.P.; Dohoo, I.R.; MacDonald, K.A.; McKenna, S.L. Evaluation of a 3M Petrifilm on-farm culture system for the detection of intramammary infection at the end of lactation. Prev. Vet. Med. 2013, 111, 1–9. [Google Scholar] [CrossRef]
- Tho Seeth, M. Selektives Trockenstellen von Milchkühen als Alternative zum Pauschalen Einsatz von Antibiotischen Trockenstellpräparaten. Ph.D. Thesis, Tierärztliche Hochschule Hannover, Hannover, Germany, 2018. [Google Scholar]
- Winder, C.B.; Sargeant, J.M.; Hu, D.; Wang, C.; Kelton, D.F.; Leblanc, S.J.; Duffield, T.F.; Glanville, J.; Wood, H.; Churchill, K.J.; et al. Comparative efficacy of antimicrobial treatments in dairy cows at dry-off to prevent new intramammary infections during the dry period or clinical mastitis during early lactation: A systematic review and network meta-analysis. Anim. Health Res. Rev. 2019, 20, 199–216. [Google Scholar] [CrossRef]
- Kabera, F.; Roy, J.P.; Afifi, M.; Godden, S.; Stryhn, H.; Sanchez, J.; Dufour, S. Comparing Blanket vs. Selective Dry Cow Treatment Approaches for Elimination and Prevention of Intramammary Infections During the Dry Period: A Systematic Review and Meta-Analysis. Front. Vet. Sci. 2021, 8, 688450. [Google Scholar] [CrossRef]
- Halasa, T.; Nielen, M.; Whist, A.C.; Osterås, O. Meta-analysis of dry cow management for dairy cattle. Part 2. Cure of existing intramammary infections. J. Dairy Sci. 2009, 92, 3150–3157. [Google Scholar] [CrossRef] [Green Version]
- Vanhoudt, A.; van Hees-Huijps, K.; van Knegsel, A.T.M.; Sampimon, O.C.; Vernooij, J.C.M.; Nielen, M.; van Werven, T. Effects of reduced intramammary antimicrobial use during the dry period on udder health in Dutch dairy herds. J. Dairy Sci. 2018, 101, 3248–3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemi, R.E.; Vilar, M.J.; Dohoo, I.R.; Hovinen, M.; Simojoki, H.; Rajala-Schultz, P.J. Antibiotic dry cow therapy, somatic cell count, and milk production: Retrospective analysis of the associations in dairy herd recording data using multilevel growth models. Prev. Vet. Med. 2020, 180, 105028. [Google Scholar] [CrossRef] [PubMed]
- Cameron, M.; McKenna, S.L.; MacDonald, K.A.; Dohoo, I.R.; Roy, J.P.; Keefe, G.P. Evaluation of selective dry cow treatment following on-farm culture: Risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J. Dairy Sci. 2014, 97, 270–284. [Google Scholar] [CrossRef] [PubMed]
- McMullen, C.K.; Sargeant, J.M.; Kelton, D.F.; O'Connor, A.M.; Reedman, C.N.; Hu, D.; Glanville, J.; Wood, H.; Winder, C.B. Relative Efficacy of Dry-Off Antimicrobial Treatments in Dairy Cattle to Cure Existing Intramammary Infections: A Systematic Review and Network Meta-Analysis. Front. Anim. Sci. 2021, 29, 726401. [Google Scholar] [CrossRef]
- Vasquez, A.K.; Nydam, D.V.; Foditsch, C.; Wieland, M.; Lynch, R.; Eicker, S.; Virkler, P.D. Use of a culture-independent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy. J. Dairy Sci. 2018, 101, 5345–5361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, A.J.; Vliegher, S.d.; Green, M.J.; Larrosa, P.; Payne, B.; van de Leemput, E.S.; Samson, O.; Valckenier, D.; van Werven, T.; Waldeck, H.W.F.; et al. An investigation of the dynamics of intramammary infections acquired during the dry period on European dairy farms. J. Dairy Sci. 2015, 98, 6029–6047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gundelach, Y.; Kalscheuer, E.; Hamann, H.; Hoedemaker, M. Risk factors associated with bacteriological cure, new infection, and incidence of clinical mastitis after dry cow therapy with three different antibiotics. J. Vet. Sci. 2011, 12, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Leelahapongsathon, K.; Piroon, T.; Chaisri, W.; Suriyasathaporn, W. Factors in Dry Period Associated with Intramammary Infection and Subsequent Clinical Mastitis in Early Postpartum Cows. Asian Australas. J. Anim. Sci. 2016, 29, 580–585. [Google Scholar] [CrossRef] [Green Version]
- Nitz, J.; Wente, N.; Zhang, Y.; Klocke, D.; Tho Seeth, M.; Krömker, V. Dry Period or Early Lactation-Time of Onset and Associated Risk Factors for Intramammary Infections in Dairy Cows. Pathogens 2021, 10, 224. [Google Scholar] [CrossRef]
- Freu, G.; Tomazi, T.; Monteiro, C.P.; Barcelos, M.M.; Alves, B.G.; Santos, M.V.D. Internal Teat Sealant Administered at Drying off Reduces Intramammary Infections during the Dry and Early Lactation Periods of Dairy Cows. Animals 2020, 10, 1522. [Google Scholar] [CrossRef]
- Krömker, V.; Friedrich, F.; Klocke, D. Ausscheidung und Nachweis von Staphylococcus aureus über Milch aus infizierten Milchdrüsenvierteln. Tierärztliche Prax. Ausg. G Großtiere Nutztiere 2008, 36, 389–392. [Google Scholar] [CrossRef]
- Dingwell, R.T.; Leslie, K.E.; Schukken, Y.H.; Sargeant, J.M.; Timms, L.L.; Duffield, T.F.; Keefe, G.P.; Kelton, D.F.; Lissemore, K.D.; Conklin, J. Association of cow and quarter-level factors at drying-off with new intramammary infections during the dry period. Prev. Vet. Med. 2004, 63, 75–89. [Google Scholar] [CrossRef] [PubMed]
- Vitali, A.; Felici, A.; Lees, A.M.; Giacinti, G.; Maresca, C.; Bernabucci, U.; Gaughan, J.B.; Nardone, A.; Lacetera, N. Heat load increases the risk of clinical mastitis in dairy cattle. J. Dairy Sci. 2020, 103, 8378–8387. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, X.P.; Yang, F.; Luo, J.Y.; Wang, X.R.; Liu, L.H.; Li, H.S. Influences of season, parity, lactation, udder area, milk yield, and clinical symptoms on intramammary infection in dairy cows. J. Dairy Sci. 2016, 99, 6484–6493. [Google Scholar] [CrossRef] [PubMed]
- Green, M.J.; Bradley, A.J.; Medley, G.F.; Browne, W.J. Cow, farm, and management factors during the dry period that determine the rate of clinical mastitis after calving. J. Dairy Sci. 2007, 90, 3764–3776. [Google Scholar] [CrossRef] [PubMed]
- Barkema, H.W.; Schukken, Y.H.; Zadoks, R.N. Invited Review: The Role of Cow, Pathogen, and Treatment Regimen in the Therapeutic Success of Bovine Staphylococcus aureus Mastitis. J. Dairy Sci. 2006, 89, 1877–1895. [Google Scholar] [CrossRef] [Green Version]
- Osterås, O.; Edge, V.L.; Martin, S.W. Determinants of success or failure in the elimination of major mastitis pathogens in selective dry cow therapy. J. Dairy Sci. 1999, 82, 1221–1231. [Google Scholar] [CrossRef]
- Dingwell, R.T.; Leslie, K.E.; Duffield, T.F.; Schukken, Y.H.; Descoteaux, L.; Keefe, G.P.; Kelton, D.F.; Lissemore, K.D.; Shewfelt, W.; Dick, P.; et al. Efficacy of Intramammary Tilmicosin and Risk Factors for Cure of Staphylococcus aureus Infection in the Dry Period. J. Dairy Sci. 2003, 86, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Rowe, S.M.; Godden, S.M.; Nydam, D.V.; Gorden, P.J.; Lago, A.; Vasquez, A.K.; Royster, E.; Timmerman, J.; Thomas, M.J. Randomized controlled non-inferiority trial investigating the effect of 2 selective dry-cow therapy protocols on antibiotic use at dry-off and dry period intramammary infection dynamics. J. Dairy Sci. 2020, 103, 6473–6492. [Google Scholar] [CrossRef]
- Henderson, A.C.; Hudson, C.D.; Bradley, A.J.; Sherwin, V.E.; Green, M.J. Prediction of intramammary infection status across the dry period from lifetime cow records. J. Dairy Sci. 2016, 99, 5586–5595. [Google Scholar] [CrossRef] [Green Version]
- Zecconi, A.; Gusmara, C.; Di Giusto, T.; Cipolla, M.; Marconi, P.; Zanini, L. Observational study on application of a selective dry-cow therapy protocol based on individual somatic cell count thresholds. Ital. J. Anim. Sci. 2020, 19, 1341–1348. [Google Scholar] [CrossRef]
- Federal Office of Consumer Protection and Food Safety; Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. GERMAP 2015—Report on the Consumption of Antimicrobials and the Spread of Antimicrobial Resistance in Human and Veterinary Medicine in Germany; Antiinfectives Intelligence: Rheinbach, Germany, 2016. [Google Scholar]
- BVL. Bericht zur Resistenzmonitoringstudie 2020—Resistenzsituation bei Klinisch Wichtigen Tierpathogenen Bakterien. Berlin: Bundesamt für Verbraucherschutz und Lebensmittelsicherheit. 2022, p. 202. Available online: https://www.bvl.bund.de/SharedDocs/Berichte/07_Resistenzmonitoringstudie/Bericht_Resistenzmonitoring_2020.pdf?__blob=publicationFile&v=4 (accessed on 24 January 2023).
- Nyman, A.K.; Fasth, C.; Waller, K.P. Intramammary infections with different non-aureus staphylococci in dairy cows. J. Dairy Sci. 2018, 101, 1403–1418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Visscher, A.; Piepers, S.; Haesebrouck, F.; De Vliegher, S. Intramammary infection with coagulase-negative staphylococci at parturition: Species-specific prevalence, risk factors, and effect on udder health. J. Dairy Sci. 2016, 99, 6457–6469. [Google Scholar] [CrossRef] [PubMed]
- Klocke, D.; Zinke, C.; Paduch, J.-H.A.; Esmaiel, A.; Bormann, A.; March, S.; Brinkmann, J.; Volling, O.; Drerup, C.; Weiler, M.; et al. Entwicklung der Eutergesundheit im Zeitraum der Trockenperiode in ökologisch wirtschaftenden Milchviehbetrieben. In Proceedings of the 11. Wissenschaftstagung Ökologischer Landbau, Gießen, Germany, 15–18 March 2011. [Google Scholar]
- Association, G.V. Leitlinien zur Entnahme von Milchproben unter antiseptischen Bedingungen und Isolierung und Identifizierung von Mastitiserregern [Guidelines for Aseptic Milk Sampling and Guidelines to Isolate and Identify Mastitis Pathogens], 2nd ed.; German Veterinary Association: Gießen, Germany, 2009. [Google Scholar]
Infected 1 | Antibiotic Dry Cow Treatment | Non-Antibiotic Dry Cow Treatment | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean (Median) | Mean (Median) | Min | Max | n 2 | Mean (Median) | Min | Max | n | |
SCC ×1000 cells/mL 3 | 546 (197) | 625 (253) | 1 | 11,144 | 1037 | 502 (173) | 1 | 51,352 | 1888 |
milk yield at DO 4 | 10.7 (10.0) | 11.29 (11.0) | 1 | 30.1 | 1025 | 10.5 (10.0) | 0.2 | 27.8 | 1893 |
BCS 5 | 3.41 (3.5) | 3.48 (3.50) | 1.75 | 5.0 | 994 | 3.36 (3.25) | 2.0 | 5.0 | 1610 |
parity | 3.7 (3.0) | 3.9 (3.0) | 1 | 10 | 1010 | 3.6 (3.0) | 1 | 19 | 1799 |
DP length (d) 6 | 57.1 (54.0) | 58.1 (53.0) | 15 | 149 | 1058 | 56.6 (54.0) | 17 | 132 | 1929 |
Pathogen Category | Infected at DO | Cure | ||||
---|---|---|---|---|---|---|
Total n | AB n (%) 4 | Non AB n (%) 4 | Total n (%) 5 | AB n (%) 6 | Non AB n (%) 6 | |
Total | 2987 | 1058 (35.42) | 1929 (64.58) | 2342 (78.41) | 894 (84.50) | 1448 (75.06) |
Staphylococcus aureus | 332 | 133 (40.06) | 199 (59.94) | 279 (84.04) | 123 (92.48) | 156 (78.39) |
NAS 7 | 1094 | 377 (34.46) | 717 (65.54) | 781 (71.39) | 294 (77.98) | 487 (67.92) |
streptococci | 255 | 85 (33.33) | 170 (66.67) | 206 (80.78) | 80 (94.12) | 126 (74.12) |
Coliforms | 224 | 118 (52.68) | 106 (47.32) | 202 (90.18) | 103 (87.29) | 99 (93.40) |
other Gram-negative bacteria | 63 | 26 (41.27) | 37 (58.73) | 58 (92.06) | 21 (80.77) | 37 (100.00) |
other Gram-positive bacteria | 668 | 188 (28.14) | 480 (71.86) | 580 (86.83) | 184 (97.87) | 396 (82.50) |
non-bacterial infections | 26 | 5 (19.23) | 21 (80.77) | 26 (100.00) | 5 (100.00) | 21 (100.00) |
mixed infection | 325 | 126 (38.77) | 199 (61.23) | 210 (64.62) | 84 (66.67) | 126 (63.32) |
Effect | Odds Ratio | SE 2 | t-Value | p-Value | 95% CI 3 for Odds Ratio | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Intercept | 2.296 | 0.2992 | 2.778 | 0.006 | 1.277 | 4.128 |
pathogen category | ||||||
S. aureus4 | 4.711 | 0.4059 | 3.819 | <0.001 | 2.126 | 10.442 |
NAS 5 | 1.589 | 0.2582 | 1.794 | 0.073 | 0.958 | 2.637 |
streptococci | 9.229 | 0.5440 | 4.086 | <0.001 | 3.176 | 26.814 |
Coliforms | 3.527 | 0.3803 | 3.314 | <0.001 | 1.673 | 7.433 |
other Gram-negative bacteria | 2.339 | 0.5808 | 1.463 | 0.144 | 0.749 | 7.305 |
other Gram-positive bacteria | 20.100 | 0.5583 | 5.375 | <0.001 | 6.727 | 60.063 |
non-bacterial pathogens | 2,490,297.566 | 1056.0896 | 0.014 | 0.989 | 0.000 | 0.000 |
mixed infections | Reference | |||||
season of DO 6 | ||||||
Winter | 1.423 | 0.2123 | 1.663 | 0.097 | 0.939 | 2.158 |
Spring | 0.696 | 0.1715 | −2.116 | 0.034 | 0.497 | 0.974 |
Summer | 0.911 | 0.1503 | −0.617 | 0.537 | 0.679 | 1.224 |
Autumn | Reference | |||||
DCT 7 | ||||||
Non-AB 8 | 0.925 | 0.2872 | −0.270 | 0.787 | 0.527 | 1.625 |
AB | Reference | |||||
Interaction of DCT and pathogen category | ||||||
Non-AB DCT in combination with each pathogen category: | ||||||
S. aureus | 0.453 | 0.4795 | −1.653 | 0.098 | 0.177 | 1.159 |
NAS | 0.720 | 0.3187 | −1.030 | 0.303 | 0.385 | 1.345 |
streptococci | 0.140 | 0.6002 | −3.274 | 0.001 | 0.043 | 0.455 |
Coliforms | 1.932 | 0.5772 | 1.141 | 0.254 | 0.623 | 5.991 |
other Gram-negative bacteria | 1,311,544.105 | 378.3516 | 0.037 | 0.970 | 0.000 | 0.000 |
other Gram-positive bacteria | 0.126 | 0.5976 | −3.468 | <0.001 | 0.039 | 4.06 |
non-bacterial pathogens | 1.009 | 1174.0970 | 0.000 | 1.000 | 0.000 | 0.000 |
corresponding AB group 9 | Reference |
Pathogen Category | DCT 1 | Mean | SE 2 | 95% CI 3 | Difference in Cure | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Staphylococcus aureus | non-AB 4 | 0.815 | 0.039 | 0.726 | 0.880 | |
AB 5 | 0.913 | 0.031 | 0.831 | 0.958 | 0.098 | |
NAS 6 | non-AB | 0.703 | 0.041 | 0.618 | 0.776 | |
AB | 0.781 | 0.040 | 0.693 | 0.848 | 0.078 | |
streptococci | non-AB | 0.728 | 0.052 | 0.616 | 0.817 | |
AB | 0.954 | 0.023 | 0.880 | 0.983 | 0.226 | |
coliforms | non-AB | 0.934 | 0.027 | 0.855 | 0.971 | |
AB | 0.888 | 0.037 | 0.793 | 0.942 | −0.046 | |
other Gram-negative bacteria | non-AB | 1.000 | 5.955 × 10−5 | 0.000 | 1.000 | |
AB | 0.840 | 0.078 | 0.629 | 0.942 | −0.16 | |
other Gram-positive bacteria | non-AB | 0.840 | 0.029 | 0.774 | 0.889 | |
AB | 0.978 | 0.012 | 0.939 | 0.992 | 0.138 | |
non-bacterial pathogens | non-AB | 1.000 | 9.860 × 10−5 | 0.000 | 1.000 | |
AB | 1.000 | 0.000 | 0.000 | 1.000 | 0 | |
mixed infections | non-AB | 0.674 | 0.053 | 0.564 | 0.768 | |
AB | 0.691 | 0.060 | 0.562 | 0.796 | 0.017 |
AB 1 Categories | AB Used at DO on the Farms |
---|---|
betalactam AB 3 | cloxacillin/cloxacillin-benzathin * |
oxacillin * | |
benzylpenicillin-procain * | |
ampicillin combined with cloxacillin | |
combined betalactam & aminoglycoside AB 3 | framycetin sulfate, benethamin-penicillin and penethamathydroiodid * |
benzylpenicillin-procain, benzylpenicillin-potassium and neomycin sulfate * | |
benzylpenicillin-procain, dihydrostreptomycin and nafcillin * | |
benzylpenicillin-procain and neomycinsulfat | |
Cephalosporins 3 | cefazolin * |
cefquionome * | |
cefoperazon | |
others | Gentamicin |
lincomycin combined with neomycin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, S.; Nitz, J.; Tellen, A.; Klocke, D.; Krömker, V. Effect of Antibiotic Compared to Non-Antibiotic Dry Cow Treatment on the Bacteriological Cure of Intramammary Infections during the Dry Period—A Retrospective Cross-Sectional Study. Antibiotics 2023, 12, 429. https://doi.org/10.3390/antibiotics12030429
Müller S, Nitz J, Tellen A, Klocke D, Krömker V. Effect of Antibiotic Compared to Non-Antibiotic Dry Cow Treatment on the Bacteriological Cure of Intramammary Infections during the Dry Period—A Retrospective Cross-Sectional Study. Antibiotics. 2023; 12(3):429. https://doi.org/10.3390/antibiotics12030429
Chicago/Turabian StyleMüller, Stephanie, Julia Nitz, Anne Tellen, Doris Klocke, and Volker Krömker. 2023. "Effect of Antibiotic Compared to Non-Antibiotic Dry Cow Treatment on the Bacteriological Cure of Intramammary Infections during the Dry Period—A Retrospective Cross-Sectional Study" Antibiotics 12, no. 3: 429. https://doi.org/10.3390/antibiotics12030429
APA StyleMüller, S., Nitz, J., Tellen, A., Klocke, D., & Krömker, V. (2023). Effect of Antibiotic Compared to Non-Antibiotic Dry Cow Treatment on the Bacteriological Cure of Intramammary Infections during the Dry Period—A Retrospective Cross-Sectional Study. Antibiotics, 12(3), 429. https://doi.org/10.3390/antibiotics12030429