Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It?
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Population Pharmacokinetic Model Selection
2.3. Model Evaluations
2.3.1. VPC Results of the Models
2.3.2. Goodness-of-fit (GoF) Plots
2.3.3. Bias and Precision of the Population and Individual Predictions
2.4. Simulation of Pharmacokinetic Profiles
3. Discussion
4. Materials and Methods
4.1. Clinical Data
4.2. Population Pharmacokinetic Model Selection
4.3. Model Evaluations
4.3.1. VPC Results of the Models
4.3.2. Goodness-of-Fit Plot
4.3.3. Bias and Precision of Model Predictions
4.4. Simulation of Pharmacokinetic Profiles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanders, C.C.; Sanders, W.E., Jr.; Thomson, K.S.; Iaconis, J.P. Meropenem: Activity against resistant gram-negative bacteria and interactions with beta-lactamases. J. Antimicrob. Chemother. 1989, 24 (Suppl. A), 187–196. [Google Scholar] [CrossRef] [PubMed]
- Joly-Guillou, M.L.; Kempf, M.; Cavallo, J.D.; Chomarat, M.; Dubreuil, L.; Maugein, J.; Muller-Serieys, C.; Roussel-Delvallez, M. Comparative in vitro activity of Meropenem, Imipenem and Piperacillin/tazobactam against 1071 clinical isolates using 2 different methods: A French multicentre study. BMC Infect. Dis. 2010, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Wang, F.; Zeng, W.; Ding, Y.; Lv, B. Comparison of empirical high-dose and low-dose of meropenem in critically ill patients with sepsis and septic shock: A randomized controlled study protocol. Medicine 2020, 99, e22829. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Simor, A.E.; Vercaigne, L.; Mandell, L.; Canadian Carbapenem Discussion Group. Imipenem and meropenem: Comparison of in vitro activity, pharmacokinetics, clinical trials and adverse effects. Can. J. Infect. Dis. 1998, 9, 215–228. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Wiebe, R.; Dilay, L.; Thomson, K.; Rubinstein, E.; Hoban, D.J.; Noreddin, A.M.; Karlowsky, J.A. Comparative review of the carbapenems. Drugs 2007, 67, 1027–1052. [Google Scholar] [CrossRef]
- Zhu, L.L.; Zhou, Q. Optimal infusion rate in antimicrobial therapy explosion of evidence in the last five years. Infect. Drug Resist. 2018, 11, 1105–1117. [Google Scholar] [CrossRef]
- Chen, M.; Buurma, V.; Shah, M.; Fahim, G. Evaluation of studies on extended versus standard infusion of beta-lactam antibiotics. Am. J. Health Syst. Pharm. 2019, 76, 1383–1394. [Google Scholar] [CrossRef]
- Nicolau, D.P. Pharmacokinetic and pharmacodynamic properties of meropenem. Clin. Infect. Dis. 2008, 47 (Suppl. S1), S32–S40. [Google Scholar] [CrossRef]
- Mattoes, H.M.; Kuti, J.L.; Drusano, G.L.; Nicolau, D.P. Optimizing antimicrobial pharmacodynamics: Dosage strategies for meropenem. Clin. Ther. 2004, 26, 1187–1198. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock—Does the dose matter? Crit. Care 2009, 13, 214. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Du, X.; Kuti, J.L.; Nicolau, D.P. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob. Agents Chemother. 2007, 51, 1725–1730. [Google Scholar] [CrossRef]
- Hellinger, W.C.; Brewer, N.S. Carbapenems and monobactams: Imipenem, meropenem, and aztreonam. Mayo Clin. Proc. 1999, 74, 420–434. [Google Scholar] [CrossRef]
- Abdulla, A.; Dijkstra, A.; Hunfeld, N.G.M.; Endeman, H.; Bahmany, S.; Ewoldt, T.M.J.; Muller, A.E.; van Gelder, T.; Gommers, D.; Koch, B.C.P. Failure of target attainment of beta-lactam antibiotics in critically ill patients and associated risk factors: A two-center prospective study (EXPAT). Crit. Care 2020, 24, 558. [Google Scholar] [CrossRef]
- Monteiro, J.F.; Hahn, S.R.; Gonçalves, J.; Fresco, P. Vancomycin therapeutic drug monitoring and population pharmacokinetic models in special patient subpopulations. Pharmacol. Res. Perspect. 2018, 6, e00420. [Google Scholar] [CrossRef]
- Crass, R.L.; Cojutti, P.G.; Pai, M.P.; Pea, F. Reappraisal of Linezolid Dosing in Renal Impairment To Improve Safety. Antimicrob. Agents Chemother. 2019, 63, e00605-19. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Wu, Y.; Sun, S.; Chen, K.; Lu, Y.; Wang, Q.; Zhao, Z. Plasma and cerebrospinal fluid population pharmacokinetic modeling and simulation of meropenem after intravenous and intrathecal administration in postoperative neurosurgical patients. Diagn. Microbiol. Infect. Dis. 2019, 93, 386–392. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, Y.; Chen, M.; Zhong, P.; Chen, Y.; Yu, J.; Wu, X.; Wu, J.; Zhang, J. Population Pharmacokinetics and Dosing Regimen Optimization of Meropenem in Cerebrospinal Fluid and Plasma in Patients with Meningitis after Neurosurgery. Antimicrob. Agents Chemother. 2016, 60, 6619–6625. [Google Scholar] [CrossRef]
- Ehmann, L.; Zoller, M.; Minichmayr, I.K.; Scharf, C.; Huisinga, W.; Zander, J.; Kloft, C. Development of a dosing algorithm for meropenem in critically ill patients based on a population pharmacokinetic/pharmacodynamic analysis. Int. J. Antimicrob. Agents 2019, 54, 309–317. [Google Scholar] [CrossRef]
- Delattre, I.K.; Musuamba, F.T.; Jacqmin, P.; Taccone, F.S.; Laterre, P.F.; Verbeeck, R.K.; Jacobs, F.; Wallemacq, P. Population pharmacokinetics of four β-lactams in critically ill septic patients comedicated with amikacin. Clin. Biochem. 2012, 45, 780–786. [Google Scholar] [CrossRef]
- Li, C.; Kuti, J.L.; Nightingale, C.H.; Nicolau, D.P. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J. Clin. Pharmacol. 2006, 46, 1171–1178. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lee, D.H.; Jeon, J.; Jang, H.J.; Kim, H.K.; Jin, K.; Lim, S.N.; Lee, S.S.; Park, B.S.; Kim, Y.W.; et al. Population Pharmacokinetic Analysis of Meropenem after Intravenous Infusion in Korean Patients with Acute Infections. Clin. Ther. 2018, 40, 1384–1395. [Google Scholar] [CrossRef] [PubMed]
- Minichmayr, I.K.; Roberts, J.A.; Frey, O.R.; Roehr, A.C.; Kloft, C.; Brinkmann, A. Development of a dosing nomogram for continuous-infusion meropenem in critically ill patients based on a validated population pharmacokinetic model. J. Antimicrob. Chemother. 2018, 73, 1330–1339. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Frey, O.R.; Hempel, G. Population pharmacokinetics of meropenem in elderly patients: Dosing simulations based on renal function. Eur. J. Clin. Pharmacol. 2017, 73, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.T.; He, B.; Shen, N.; Liang, Y.; Sun, L.N. Meropenem Dosing Based on a Population Pharmacokinetic-Pharmacodynamic Model in Elderly Patients with Infection of the Lower Respiratory Tract. Drugs Aging 2017, 34, 115–121. [Google Scholar] [CrossRef]
- Chung, E.K.; Cheatham, S.C.; Fleming, M.R.; Healy, D.P.; Kays, M.B. Population Pharmacokinetics and Pharmacodynamics of Meropenem in Nonobese, Obese, and Morbidly Obese Patients. J. Clin. Pharmacol. 2017, 57, 356–368. [Google Scholar] [CrossRef]
- Mattioli, F.; Fucile, C.; Del Bono, V.; Marini, V.; Parisini, A.; Molin, A.; Zuccoli, M.L.; Milano, G.; Danesi, R.; Marchese, A.; et al. Population pharmacokinetics and probability of target attainment of meropenem in critically ill patients. Eur. J. Clin. Pharmacol. 2016, 72, 839–848. [Google Scholar] [CrossRef]
- Ramon-Lopez, A.; Allen, J.M.; Thomson, A.H.; Dheansa, B.S.; James, S.E.; Hanlon, G.W.; Stewart, B.; Davies, J.G. Dosing regimen of meropenem for adults with severe burns: A population pharmacokinetic study with Monte Carlo simulations. J. Antimicrob. Chemother. 2015, 70, 882–890. [Google Scholar] [CrossRef]
- Doh, K.; Woo, H.; Hur, J.; Yim, H.; Kim, J.; Chae, H.; Han, S.; Yim, D.S. Population pharmacokinetics of meropenem in burn patients. J. Antimicrob. Chemother. 2010, 65, 2428–2435. [Google Scholar] [CrossRef]
- Frippiat, F.; Musuamba, F.T.; Seidel, L.; Albert, A.; Denooz, R.; Charlier, C.; Van Bambeke, F.; Wallemacq, P.; Descy, J.; Lambermont, B.; et al. Modelled target attainment after meropenem infusion in patients with severe nosocomial pneumonia: The PROMESSE study. J. Antimicrob. Chemother. 2015, 70, 207–216. [Google Scholar] [CrossRef]
- Ulldemolins, M.; Soy, D.; Llaurado-Serra, M.; Vaquer, S.; Castro, P.; Rodríguez, A.H.; Pontes, C.; Calvo, G.; Torres, A.; Martín-Loeches, I. Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: Influence of residual diuresis on dose requirements. Antimicrob. Agents Chemother. 2015, 59, 5520–5528. [Google Scholar] [CrossRef] [Green Version]
- Jaruratanasirikul, S.; Thengyai, S.; Wongpoowarak, W.; Wattanavijitkul, T.; Tangkitwanitjaroen, K.; Sukarnjanaset, W.; Jullangkoon, M.; Samaeng, M. Population pharmacokinetics and Monte Carlo dosing simulations of meropenem during the early phase of severe sepsis and septic shock in critically ill patients in intensive care units. Antimicrob. Agents Chemother. 2015, 59, 2995–3001. [Google Scholar] [CrossRef]
- Roberts, J.A.; Kirkpatrick, C.M.; Roberts, M.S.; Robertson, T.A.; Dalley, A.J.; Lipman, J. Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: Intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J. Antimicrob. Chemother. 2009, 64, 142–150. [Google Scholar] [CrossRef]
- Kees, M.G.; Minichmayr, I.K.; Moritz, S.; Beck, S.; Wicha, S.G.; Kees, F.; Kloft, C.; Steinke, T. Population pharmacokinetics of meropenem during continuous infusion in surgical ICU patients. J. Clin. Pharmacol. 2016, 56, 307–315. [Google Scholar] [CrossRef]
- Muro, T.; Sasaki, T.; Hosaka, N.; Umeda, Y.; Takemoto, S.; Yamamoto, H.; Kamimura, H.; Higuchi, S.; Karube, Y. Population pharmacokinetic analysis of meropenem in Japanese adult patients. J. Clin. Pharm. Ther. 2011, 36, 230–236. [Google Scholar] [CrossRef]
- Trang, M.; Griffith, D.C.; Bhavnani, S.M.; Loutit, J.S.; Dudley, M.N.; Ambrose, P.G.; Rubino, C.M. Population Pharmacokinetics of Meropenem and Vaborbactam Based on Data from Noninfected Subjects and Infected Patients. Antimicrob. Agents Chemother. 2021, 65, e0260620. [Google Scholar] [CrossRef]
- Lonsdale, D.O.; Kipper, K.; Baker, E.H.; Barker, C.I.S.; Oldfield, I.; Philips, B.J.; Johnston, A.; Rhodes, A.; Sharland, M.; Standing, J.F. β-Lactam antimicrobial pharmacokinetics and target attainment in critically ill patients aged 1 day to 90 years: The ABDose study. J. Antimicrob. Chemother. 2020, 75, 3625–3634. [Google Scholar] [CrossRef]
- Shekar, K.; Fraser, J.F.; Taccone, F.S.; Welch, S.; Wallis, S.C.; Mullany, D.V.; Lipman, J.; Roberts, J.A.; Investigators, A.E.S. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: A matched cohort study. Crit. Care 2014, 18, 565. [Google Scholar] [CrossRef]
- Lan, J.; Wu, Z.; Wang, X.; Wang, Y.; Yao, F.; Zhao, B.X.; Wang, Y.; Chen, J.; Chen, C. Population Pharmacokinetics Analysis and Dosing Simulations Of Meropenem in Critically Ill Patients with Pulmonary Infection. J. Pharm. Sci. 2022, 111, 1833–1842. [Google Scholar] [CrossRef]
- Niibe, Y.; Suzuki, T.; Yamazaki, S.; Uchida, M.; Suzuki, T.; Takahashi, N.; Hattori, N.; Nakada, T.A.; Ishii, I. Identification of factors affecting meropenem pharmacokinetics in critically ill patients: Impact of inflammation on clearance. J. Infect. Chemother. 2022, 28, 532–538. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, H.S.; Park, S.; Kim, H.I.; Lee, S.H.; Kim, Y.K. Population Pharmacokinetics of Meropenem in Critically Ill Korean Patients and Effects of Extracorporeal Membrane Oxygenation. Pharmaceutics 2021, 13, 1861. [Google Scholar] [CrossRef]
- Alsultan, A.; Dasuqi, S.A.; Aljamaan, F.; Omran, R.A.; Syed, S.A.; AlJaloud, T.; AlAhmadi, A.; Alqahtani, S.; Hamad, M.A. Pharmacokinetics of meropenem in critically ill patients in Saudi Arabia. Saudi Pharm. J. 2021, 29, 1272–1277. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.W.; Watt, K.M.; Boakye-Agyeman, F.; Cohen-Wolkowiez, M.; Mok, Y.H.; Yung, C.F.; Chan, Y.H. Optimal Dosing of Meropenem in a Small Cohort of Critically Ill Children Receiving Continuous Renal Replacement Therapy. J. Clin. Pharmacol. 2021, 61, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Chen, X.Y.; Bi, J.; Wang, M.Y.; Xu, B.P.; Tang, B.H.; Li, C.; Zhao, W.; Shen, A.D. Reappraisal of the Optimal Dose of Meropenem in Critically Ill Infants and Children: A Developmental Pharmacokinetic-Pharmacodynamic Analysis. Antimicrob. Agents Chemother. 2020, 64, e00760-20. [Google Scholar] [CrossRef] [PubMed]
- Rapp, M.; Urien, S.; Foissac, F.; Béranger, A.; Bouazza, N.; Benaboud, S.; Bille, E.; Zheng, Y.; Gana, I.; Moulin, F.; et al. Population pharmacokinetics of meropenem in critically ill children with different renal functions. Eur. J. Clin. Pharmacol. 2020, 76, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.B.; Cohen-Wolkowiez, M.; Castro, L.M.; Poindexter, B.; Bidegain, M.; Weitkamp, J.H.; Schelonka, R.L.; Ward, R.M.; Wade, K.; Valencia, G.; et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr. Infect. Dis. J. 2011, 30, 844–849. [Google Scholar] [CrossRef]
- Bradley, J.S.; Sauberan, J.B.; Ambrose, P.G.; Bhavnani, S.M.; Rasmussen, M.R.; Capparelli, E.V. Meropenem pharmacokinetics, pharmacodynamics, and Monte Carlo simulation in the neonate. Pediatr. Infect. Dis. J. 2008, 27, 794–799. [Google Scholar] [CrossRef]
- Du, X.; Li, C.; Kuti, J.L.; Nightingale, C.H.; Nicolau, D.P. Population pharmacokinetics and pharmacodynamics of meropenem in pediatric patients. J. Clin. Pharmacol. 2006, 46, 69–75. [Google Scholar] [CrossRef]
- Parker, E.M.; Hutchison, M.; Blumer, J.L. The pharmacokinetics of meropenem in infants and children: A population analysis. J. Antimicrob. Chemother. 1995, 36, 63–71. [Google Scholar] [CrossRef]
- Muhari-Stark, E.; Chen, X.; Sherwin, C.M.T.; Wang, Y.; Wang, J.; Yao, L. Association of Meropenem Clearance, Covariates and Estimated Glomerular Filtration Rate in Neonates. Clin. Pharmacol. Drug Dev. 2017, 6 (Suppl. S1), 3–72. [Google Scholar]
- Ikawa, K.; Morikawa, N.; Ikeda, K.; Miki, M.; Kobayashi, M. Population pharmacokinetics and pharmacodynamics of meropenem in Japanese pediatric patients. J. Infect. Chemother. 2010, 16, 139–143. [Google Scholar] [CrossRef]
- Tamatsukuri, T.; Ohbayashi, M.; Kohyama, N.; Kobayashi, Y.; Yamamoto, T.; Fukuda, K.; Nakamura, S.; Miyake, Y.; Dohi, K.; Kogo, M. The exploration of population pharmacokinetic model for meropenem in augmented renal clearance and investigation of optimum setting of dose. J. Infect. Chemother. 2018, 24, 834–840. [Google Scholar] [CrossRef]
- Niibe, Y.; Suzuki, T.; Yamazaki, S.; Suzuki, T.; Takahashi, N.; Hattori, N.; Nakada, T.A.; Oda, S.; Ishii, I. Population Pharmacokinetic Analysis of Meropenem in Critically Ill Patients with Acute Kidney Injury Treated with Continuous Hemodiafiltration. Ther. Drug Monit. 2020, 42, 588–594. [Google Scholar] [CrossRef]
- Onichimowski, D.; Będźkowska, A.; Ziółkowski, H.; Jaroszewski, J.; Borys, M.; Czuczwar, M.; Wiczling, P. Population pharmacokinetics of standard-dose meropenem in critically ill patients on continuous renal replacement therapy: A prospective observational trial. Pharmacol. Rep. 2020, 72, 719–729. [Google Scholar] [CrossRef]
- Grensemann, J.; Busse, D.; König, C.; Roedl, K.; Jäger, W.; Jarczak, D.; Iwersen-Bergmann, S.; Manthey, C.; Kluge, S.; Kloft, C.; et al. Acute-on-chronic liver failure alters meropenem pharmacokinetics in critically ill patients with continuous hemodialysis: An observational study. Ann. Intensive Care 2020, 10, 48. [Google Scholar] [CrossRef]
- Padullés Zamora, A.; Juvany Roig, R.; Leiva Badosa, E.; Sabater Riera, J.; Pérez Fernández, X.L.; Cárdenas Campos, P.; Rigo Bonin, R.; Alía Ramos, P.; Tubau Quintano, F.; Sospedra Martinez, E.; et al. Optimized meropenem dosage regimens using a pharmacokinetic/pharmacodynamic population approach in patients undergoing continuous venovenous haemodiafiltration with high-adsorbent membrane. J. Antimicrob. Chemother. 2019, 74, 2979–2983. [Google Scholar] [CrossRef]
- Hanberg, P.; Öbrink-Hansen, K.; Thorsted, A.; Bue, M.; Tøttrup, M.; Friberg, L.E.; Hardlei, T.F.; Søballe, K.; Gjedsted, J. Population Pharmacokinetics of Meropenem in Plasma and Subcutis from Patients on Extracorporeal Membrane Oxygenation Treatment. Antimicrob. Agents Chemother. 2018, 62, e02390-17. [Google Scholar] [CrossRef]
- Burger, R.; Guidi, M.; Calpini, V.; Lamoth, F.; Decosterd, L.; Robatel, C.; Buclin, T.; Csajka, C.; Marchetti, O. Effect of renal clearance and continuous renal replacement therapy on appropriateness of recommended meropenem dosing regimens in critically ill patients with susceptible life-threatening infections. J. Antimicrob. Chemother. 2018, 73, 3413–3422. [Google Scholar] [CrossRef]
- Isla, A.; Rodríguez-Gascón, A.; Trocóniz, I.F.; Bueno, L.; Solinís, M.A.; Maynar, J.; Sánchez-Izquierdo, J.A.; Pedraz, J.L. Population pharmacokinetics of meropenem in critically ill patients undergoing continuous renal replacement therapy. Clin. Pharmacokinet. 2008, 47, 173–180. [Google Scholar] [CrossRef]
- Dhaese, S.A.M.; Farkas, A.; Colin, P.; Lipman, J.; Stove, V.; Verstraete, A.G.; Roberts, J.A.; De Waele, J.J. Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: A comparison of eight pharmacokinetic models. J. Antimicrob. Chemother. 2019, 74, 432–441. [Google Scholar] [CrossRef]
- Wang, Y.L.; Guilhaumou, R.; Blin, O.; Velly, L.; Marsot, A. External evaluation of population pharmacokinetic models for continuous administration of meropenem in critically ill adult patients. Eur. J. Clin. Pharmacol. 2020, 76, 1281–1289. [Google Scholar] [CrossRef]
- Chan Kwong, A.; O’Jeanson, A.; Khier, S. Model-Informed Therapeutic Drug Monitoring of Meropenem in Critically Ill Patients: Improvement of the Predictive Ability of Literature Models with the PRIOR Approach. Eur. J. Drug Metab. Pharmacokinet. 2021, 46, 415–426. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Wang, J.; Xie, Y.; Ding, J.; Wu, C.; Liu, J.; Pei, Q. External Evaluation of Population Pharmacokinetic Models to Inform Precision Dosing of Meropenem in Critically Ill Patients. Front. Pharmacol. 2022, 13, 838205. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca. MERREM® IV (Meropenem for Injection), for Intravenous Use. 1996. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/050706s037lbl.pdf (accessed on 9 February 2023).
- Baptista, J.P.; Neves, M.; Rodrigues, L.; Teixeira, L.; Pinho, J.; Pimentel, J. Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients. J. Nephrol. 2014, 27, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; Gault, M.H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J.; Greene, T.; Stevens, L.A.; Zhang, Y.L.; Hendriksen, S.; Kusek, J.W.; Van Lente, F.; Chronic Kidney Disease Epidemiology Collaboration. Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann. Intern. Med. 2006, 145, 247–254. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Abdulla, A.; Bahmany, S.; Wijma, R.A.; van der Nagel, B.C.H.; Koch, B.C.P. Simultaneous determination of nine β-lactam antibiotics in human plasma by an ultrafast hydrophilic-interaction chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1060, 138–143. [Google Scholar] [CrossRef]
- Lindbom, L.; Pihlgren, P.; Jonsson, N. PsN-Toolkit—A collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput. Methods Programs Biomed. 2005, 79, 241–257. [Google Scholar] [CrossRef]
- Sheiner, L.B.; Beal, S.L. Some suggestions for measuring predictive performance. J. Pharmacokinet. Biopharm. 1981, 9, 503–512. [Google Scholar] [CrossRef]
- Guang, W.; Baraldo, M.; Furlanut, M. Calculating percentage prediction error: A user’s note. Pharmacol. Res. 1995, 32, 241–248. [Google Scholar] [CrossRef]
- Vozeh, S.; Uematsu, T.; Hauf, G.F.; Follath, F. Performance of Bayesian feedback to forecast lidocaine serum concentration: Evaluation of the prediction error and the prediction interval. J. Pharmacokinet. Biopharm. 1985, 13, 203–212. [Google Scholar] [CrossRef]
Demographic data (median, (range)) | |
∘ Age (years) | 64.5 (56–70) |
∘ Sex (male/female) | 16/4 |
∘ Length (cm) | 175 (155–195) |
∘ Weight (kg) | 80 (40.4–100) |
∘ BMI | 26.3 (16.8–34) |
Clinical data at inclusion (median, (range)) | |
∘ SOFA | 7.5 (3–16) |
∘ APACHE II | 22.5 (9–33) |
∘ Albumin (g/L) | 25 (12–38) |
∘ Serum creatinine (μmol/L) | 108 (33–464) |
∘ Temperature (°C) | 36.7 (36.1–39.3) |
∘ WBC (×109/L) | 13.7 (0.05–84) |
∘ CRP (mg/L) | 194.5 (16–495) |
∘ Serum urea (mmol/L) | 12.7 (3.3–45.6) |
∘ eGFR (mL/min/1.73 m2) | 53 (11–149) |
Fluid balance (mL) | 735 (−3142–7566) |
Clinical outcomes (median, (range)) | |
∘ ICU LOS (days) | 10.5 (2–55) |
∘ 30-day mortality | 4 (20%) * |
RRT | 6 (30%) * |
Reference | Year | Patient Population | RRT | Nr. of Patients | Nr. of Samples | Covariates | Typical CL and Q Value (L/h) | Typical V Values (L) | Renal Function (mL/min) | Weight (kg) |
---|---|---|---|---|---|---|---|---|---|---|
1.Lisa Ehmann et al. | 2019 | Critically ill patients with severe infections | Non-RRT | 48 | 1376 | CL: CLCR(CG); Vc: TBW, Albumin | CL: 9.25 Q:28.4 | Vc:7.89 Vp:16.1 | 80.8 (CI 95%: 39.4–170) | 70.5 (CI 95%: 47–121) |
2. Yong Kyun Kim et al. | 2018 | Adult patients with sepsis and severe sepsis | Non-RRT | 37 | 148 | CL: SCR; Vc: TBW | CL: 16.7 | V: 30.7 | 64.3 (IQR 51.1–97.5) | 62.8 (IQR 52.2–69.7) |
3. Muhammad Usman et al. | 2016 | Elderly patients with critical illness in medical and surgical ICU | Contain RRT | 178 | 493 | CL: CLCR(CG), IBW; Vc: IBW | CL: 5.27 Q: 9.92 | Vc:17.2 Vp:10.6 | 39.0 (3–231.4) | 75 (37–147) |
4. Eun Kyoung Chung et al. | 2016 | Obesity and Non-obesity ICU and hospitalized patients | NA | 40 | 360 | CL: CLCR(CG); | CL: 9.13 Q: 15.9 | Vc:14.3 Vp:17.7 | 82 (SD ± 40) | 129 (SD ± 61) |
5. Francesca Mattioli et al. | 2016 | ICU patients with nosocomial infection | Non-RRT | 27 | 118 | CL: Sepsis level; V: Albumin, Age | CL: 2.18 | V: 8.3 | 82.9 (43.2–131.6) | 68 (SD 76.2 ± 30.3) |
6. SutepJaruratanasirikul et al. | 2015 | ICU patients with severe sepsis or septic shock | NA | 9 | 171 | CL: CLCR(MDRD); | CL: 7.82 | V: 23.7 | 59.43 (12.37–214.55) | 62.88 (SD ± 11.64) |
7. Yoko Niibe et al. | 2020 | Critically ill with continuous hemodiafiltration | RRT | 21 | 350 | CL: eGFR (CKD-EPI) | CL: 4.42 Q: 7.84 | Vc: 14.82 Vp: 11.75 | 26.1 (5–74.8) | 70.6 (44–122) |
8. Isabelle K. Delattre et al. | 2012 | ICU patients with severe sepsis or septic shock | Non-RRT | 88 | 418 | CL: CLCR(CG), TBW; Vc: TBW, | CL: 9.87 Q: 4.97 | Vc: 24.4 Vp:7.01 | NA | 70 (38–125) |
9. Dagan O Lonsdale et al. | 2020 | Critically ill patients from neonatal to elderly | Contain RRT | 47 | Na | CL: Age, TBW; V: TBW | CL: 8.7 Q: 13.8 | Vc: 8.8 Vp:10.6 | * 93.0 (IQR 63.0–134.0) | * 70 (IQR 64.0–92.0) |
10 Qing-tao Zhou, Bei He et al. | 2012 | Elderly patients with lower respiratory tract infection | NA | 75 | 284 | CL: CLCR(CG); Q: APACHE | CL: 8.98 Q: 15.9 | Vc:16.1 Vp:12 | 53.4 (8.6–129) | 64.4 (SD ± 12.3) |
11. Jason A. Roberts et al. | 2009 | Critically ill with known or suspected sepsis | Non-RRT | 10 | 222 plasma; 274 microdialysis | CL: CLCR(CG) | CL: 13.6 Q: 56.3 | Vc:7.9 Vp:14.8 | 100 (IQR 69–161) | 78 (IQR 75–85) |
12. Frédéric Frippiat et al. | 2015 | ICU patients with nosocomial pneumonia | Contain RRT | 55 | Na | CL: CLCR(CG); V1:TBW | CL: 10.2 Qp: 6.9 Qe: 66.5 | Vc:5.2 Vp:12.1 Ve:11.3 | NA | 78.4 (SD ± 18.4) |
13. Chonghua Li et al. | 2006 | Adult patients with intra-abdominal infections and pneumonia | NA | 79 | 341 | CL: CLCR(CG); V1:TBW | CL: 14.6 Q: 18.6 | Vc:10.8 Vp:12.6 | ** SCR (mg/dl):1.0 (0.4–6.9) | 70 (40.6–127) |
14. Kiran Shekar et al. | 2014 | ICU ECMO patients with known or suspected sepsis | Contain RRT | 21 | 249 | CL: RRT, CLCR(CG) | CL: 5.1 Q: 21 | Vc:18.7 Vp:13.2 | 106 ** (IQR 98–127) | 80 ** (IQR 75–85) |
15. Jinhua Lan et al. | 2022 | Critically ill patients with pneumonia | Contain RRT | 48 | 236 | CL: eGFR (CKD-EPI) | CL: 7.48 Q: 26 | Vc:15.9 Vp:35.3 | 35.69 (22.30–90.84) | na |
16. Yoko Niibe et al. | 2022 | Critically ill patients with respiratory or intra-abdominal infection | Non-RRT | 12 | 237 | CL: CRP | CL: 9.3 Q: 9.7 | Vc:12.6 Vp:7.8 | 95.2 (53.2–357.3) | 60.6 (46.0–80.5) |
17. Dong-Hwan Lee et al. | 2021 | ICU ECMO patients with sepsis and nosocomial infections | Contain RRT | 26 | 169 | CL: eGFR (CKD-EPI) | CL: 6.37 Q: 10.7 | Vc:9.07 Vp:7.91 | 91.6 *** (IQR 45.6–103) | 54.4 *** (IQR 50.5–64.5) |
18. Abdullah Alsultan et al. | 2021 | ICU patients with suspected or proven bacterial infection | Contain RRT | 43 | 86 | CL: CLCR(CG); V1:TBW | CL: 6.4 | V: 30 | 95 (IQR 48.5–216) | 74 (IQR 50.5–84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Sassen, S.D.T.; Ewoldt, T.M.J.; Abdulla, A.; Hunfeld, N.G.M.; Muller, A.E.; de Winter, B.C.M.; Endeman, H.; Koch, B.C.P. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics 2023, 12, 383. https://doi.org/10.3390/antibiotics12020383
Li L, Sassen SDT, Ewoldt TMJ, Abdulla A, Hunfeld NGM, Muller AE, de Winter BCM, Endeman H, Koch BCP. Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics. 2023; 12(2):383. https://doi.org/10.3390/antibiotics12020383
Chicago/Turabian StyleLi, Letao, Sebastiaan D. T. Sassen, Tim M. J. Ewoldt, Alan Abdulla, Nicole G. M. Hunfeld, Anouk E. Muller, Brenda C. M. de Winter, Henrik Endeman, and Birgit C. P. Koch. 2023. "Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It?" Antibiotics 12, no. 2: 383. https://doi.org/10.3390/antibiotics12020383
APA StyleLi, L., Sassen, S. D. T., Ewoldt, T. M. J., Abdulla, A., Hunfeld, N. G. M., Muller, A. E., de Winter, B. C. M., Endeman, H., & Koch, B. C. P. (2023). Meropenem Model-Informed Precision Dosing in the Treatment of Critically Ill Patients: Can We Use It? Antibiotics, 12(2), 383. https://doi.org/10.3390/antibiotics12020383