The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients
Abstract
:1. Interest of Beta-Lactam Therapeutic Drug Monitoring in the Critically Ill Patient
2. Barriers to Overcome to Increase BL Therapeutic Drug Monitoring Adherence
3. Clinical Evidence Supporting BL TDM
- (i)
- The choice of the optimal PK/PD target is unknown and depends on the administration method of the considered BL.
- (ii)
- The choice of the MIC for the target (“true MIC” or ECOFF-based) and its determination (risk of interstrain and interlaboratory differences) [40].
- (i)
- The heterogeneity of included population with a lot of confounding factors.
- (ii)
- An imbalance between a priori target (worst-case scenario/MIC of Pseudomonas aeruginosa for empirical treatment) and the actual MIC after bacterial documentation (MIC much lower) without PK/PD target adjustment.
- (iii)
- The variability in algorithm for dose adjustment.
- (iv)
- The approximation of the renal function measurement leading to possible overestimation of the true renal function, which is a confounding factor especially for BL.
- (v)
- The most used concentration of BL was the total fraction, although the PD target was based on the free concentration which needs an estimation.
- To evaluate one BL per study: dose and administration method as well as algorithm of dose adjustment must be described.
- To avoid dual therapy to limit confounder: if required, in case of septic shock for instance, the choice of the second antibiotic must be unique with adequate dose and the statistical analysis must consider this variable for the final interpretation.
- To include one origin of infection ideally or infection with or without a source control but not both: indeed, when a source control is possible (i.e., catheter removal, surgical lavage, etc.) the clinical and microbiological cure would depend on the antibiotic adequate concentration and the reduced bacterial load allowed by an external factor. Thus, to include pneumonia and peritonitis for instance could alter comparability of patients.
- To include a homogeneous population of ICU patients to avoid confounding factors: If immunocompromised patients are evaluated, it must be an inclusion criterion. Indeed, as mentioned earlier, the absence of neutrophils in neutropenic patients altered the bacterial clearance that could compromise the microbiological cure [36]. Another frequent confounding factor is renal failure [43] or ARC [44]. These phenomena both frequently occur in ICU patients and should be considered. Nevertheless, it is a pity that almost all PK/PD studies published nowadays used estimation of the renal function with the CKD-EPI or Cockcroft–Gault formula. Indeed, it has been strongly demonstrated that these two formulae are less accurate in critically ill patients compared to the measured renal clearance using urinary collection [45,46].
- To carefully choose the MIC used for PK/PD target: most studies based the PK/PD target attainment on day 1 (empirical phase) on a worst-case scenario considering the MIC of a low-susceptible pathogen, mostly Pseudomonas aeruginosa. Whatever the choice of the MIC for the empirical phase, it must be reconsidered with the documented MIC, a posteriori or based on the local ecology.
4. Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients: Time to Consider Toxicity? Role of TDM for Assessing BL Toxicity
5. Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients: Time to Integrate Antimicrobial PK/PD Software?
5.1. Dosing Software Principles
- (a)
- Linear regression model.
- (b)
- Population PK-based dosing software.
- (c)
- Bayesian forecasting software.
5.2. Clinical Data Supporting Antimicrobial Dosing Software Use
- -
- First, the importance of early, appropriate and adequately dosed empiric antimicrobials as TDM can only be applied after empiric antimicrobial dose selection, and initial dosing may be more predictive of meaningful outcomes than TDM assisted maintenance dosing only.
- -
- Second, the choice of the dosing software and the PK models is a key determinant for antimicrobial MIPD-guided optimization success. The PK/PD dosing software used in the DOLPHIN trial—InsightRx®- although registered as a CE-labeled medical device with published embedded PK models, failed to predict adequate BL and ciprofloxacin doses in ICU patients. As previously reported, the external evaluation of published population PK models may lead to poor predictive performance when applying to a cohort of ICU patients different from the one used to develop the PK models as shown for meropenem [71,72]. Thus, it is necessary to perform a fit-for-purpose evaluation of the models to assess their predictive performance in the MIPD setting they are intended to be used before any implementation.
- -
- Third, only 61% of patients in the MIPD group had a second TDM sampling. As duration of therapy was short (median duration of therapy: 4 days in MIPD group vs. 3.5 in standard dosing group) together with delayed dosing optimization due to informed consent, the benefit of MIPD-guided dosing on clinical outcomes may be limited by a restricted interventional period.
5.3. Barriers to the Widespread Use of Dosing Software That Need to Be Overcome
- -
- First, in the near future, the regulatory framework for antimicrobial dosing software tools needs to be reinforced. Software developers may be required to register their dosing software with relevant regulatory bodies before health services are able to incorporate the technology.
- -
- Second, the difficulty of MIPD use for untrained healthcare providers questions the integration of specialized pharmacists or pharmacologists into clinical teams. Indeed, to drive adoption of these tools in clinical practice, it is essential to provide proper education of the intended end-user. The lack of dedicated time for practitioners to use these tools on a larger scale together with a lack of knowledge about the reliability of software outputs, as well as understanding of how the software works, have been identified as influencing trust in dose-prediction software [74]. Implementation of MIPD into dosing advisory service deserves consideration to facilitate translation of Bayesian forecasting dosing recommendations into clinical practice as already demonstrated for vancomycin [74].
- -
- Third, the ability to integrate dose-prediction software within existing hospital electronic medication management systems helps minimizing the need for prescribers to input data and is a key aspect considered by prescribers when deciding to accept software. Providing clinicians with quality-assured user-friendly decision support tools available in application form for personal mobile devices, integrated into electronic hospital record (EHR) prescribing software, is of paramount importance for the widespread implementation of MIPD.
- -
- Fourth, cost-effectiveness of using BL dosing software must be demonstrated. Precision dosing may require additional costs initially for analysis of drug concentration or other biomarkers that provide information necessary for optimal dose selection. These analyses, though theoretically cost-effective, may require a learning curve for clinicians before expenditures are reduced in clinical practice. Another cost associated with precision dosing is the integration of drug dosing software into EHRs. Although favorable cost outcomes from using dosing software for non-BL antibiotics have been reported, the DOLPHIN trial found incremental costs of EUR 5312 with an average decrease in 6 months QALY of 0.03 (range −0.5 to 0.5) in MIPD compared to the standard dosing [69,75].
6. Beta-Lactam Therapeutic Drug Monitoring for the Critically Ill Patient: Time to Focus on Rationale of TDM Use in Special ICU Populations?
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, J.-L.; Sakr, Y.; Singer, M.; Martin-Loeches, I.; Machado, F.R.; Marshall, J.C.; Finfer, S.; Pelosi, P.; Brazzi, L.; Aditianingsih, D.; et al. Prevalence and Outcomes of Infection Among Patients in Intensive Care Units in 2017. JAMA 2020, 323, 1478–1487. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Lizza, B.D.; Raush, N.; Micek, S.T. Antibiotic Optimization in the Intensive Care Unit. Semin. Respir. Crit. Care Med. 2022, 43, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Lipman, J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit. Care Med. 2009, 37, 840–851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.A.; Abdul-Aziz, M.-H.; Lipman, J.; Mouton, J.W.; Vinks, A.A.; Felton, T.W.; Hope, W.W.; Farkas, A.; Neely, M.N.; Schentag, J.J.; et al. Individualised antibiotic dosing for patients who are critically ill: Challenges and potential solutions. Lancet Infect. Dis. 2014, 14, 498–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Waele, J.J.; Lipman, J.; Akova, M.; Bassetti, M.; Dimopoulos, G.; Kaukonen, M.; Koulenti, D.; Martin, C.; Montravers, P.; Rello, J.; et al. Risk factors for target non-attainment during empirical treatment with beta-lactam antibiotics in critically ill patients. Intensive Care Med. 2014, 40, 1340–1351. [Google Scholar] [CrossRef]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Kaukonen, K.-M.; Koulenti, D.; Martin, C.; Montravers, P.; et al. DALI: Defining antibiotic levels in intensive care unit patients: Are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef]
- Valenza, G.; Seifert, H.; Decker-Burgard, S.; Laeuffer, J.; Morrissey, I.; Mutters, R. Comparative Activity of Carbapenem Testing (COMPACT) study in Germany. Int. J. Antimicrob. Agents 2012, 39, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Aziz, M.-H.; Alffenaar, J.-W.C.; Bassetti, M.; Bracht, H.; Dimopoulos, G.; Marriott, D.; Neely, M.N.; Paiva, J.-A.; Pea, F.; Sjovall, F.; et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: A Position Paper. Intensive Care Med. 2020, 46, 1127–1153. [Google Scholar] [CrossRef]
- Watson, I.; Potter, J.; Yatscoff, R.; Fraser, A.; Himberg, J.J.; Wenk, M. Editorial. Ther. Drug Monit. 1997, 19, 125. [Google Scholar] [CrossRef]
- Jager, N.G.L.; van Hest, R.M.; Lipman, J.; Roberts, J.A.; Cotta, M.O. Antibiotic exposure at the site of infection: Principles and assessment of tissue penetration. Expert Rev. Clin. Pharmacol. 2019, 12, 623–634. [Google Scholar] [CrossRef]
- Reeves, D.; Lovering, A.; Thomson, A. Therapeutic drug monitoring in the past 40 years of the Journal of Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 2016, 71, 3330–3332. [Google Scholar] [CrossRef] [Green Version]
- Wenk, M.; Vožeh, S.; Follath, F. Serum Level Monitoring of Antibacterial Drugs. A review. Clin. Pharmacokinet. 1984, 9, 475–492. [Google Scholar] [CrossRef] [PubMed]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic Monitoring of Vancomycin for Serious Methicillin-resistant Staphylococcus aureus Infections: A Revised Consensus Guideline and Review by the American Society of Health-system Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2020, 71, 1361–1364. [Google Scholar] [CrossRef] [PubMed]
- Begg, E.J.; Barclay, M.L.; Kirkpatrick, C.M. The therapeutic monitoring of antimicrobial agents. Br. J. Clin. Pharmacol. 2001, 52 (Suppl. S1), 35S–43S. [Google Scholar]
- Charmillon, A.; Novy, E.; Agrinier, N.; Leone, M.; Kimmoun, A.; Levy, B.; Demoré, B.; Dellamonica, J.; Pulcini, C. The ANTIBIOPERF study: A nationwide cross-sectional survey about practices for beta-lactam administration and therapeutic drug monitoring among critically ill patients in France. Clin. Microbiol. Infect. 2016, 22, 625–631. [Google Scholar] [CrossRef] [Green Version]
- Imani, S.; Alffenaar, J.-W.; Cotta, M.O.; Daveson, K.; van Hal, S.; Lau, C.; Marriott, D.; Penm, J.; Roberts, J.A.; Tabah, A.; et al. Therapeutic drug monitoring of commonly used anti-infective agents: A nationwide cross-sectional survey of Australian hospital practices. Int. J. Antimicrob. Agents 2020, 56, 106180. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.G.; Fernandes, J.; Duarte, A.R.; Fernandes, S.M. β-Lactam Dosing in Critical Patients: A Narrative Review of Optimal Efficacy and the Prevention of Resistance and Toxicity. Antibiotics 2022, 11, 1839. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Pea, F.; Lipman, J. The Clinical Relevance of Plasma Protein Binding Changes. Clin. Pharmacokinet. 2013, 52, 1–8. [Google Scholar] [CrossRef]
- Wong, G.; Briscoe, S.; McWhinney, B.; Ally, M.; Ungerer, J.; Lipman, J.; Roberts, J.A. Therapeutic drug monitoring of beta-lactam antibiotics in the critically ill: Direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J. Antimicrob. Chemother. 2018, 73, 3087–3094. [Google Scholar] [CrossRef] [Green Version]
- Tritscher, P.; Delannoy, M.; Agrinier, N.; Charmillon, A.; Degand, N.; Dellamonica, J.; Roger, C.; Leone, M.; Scala-Bertola, J.; Novy, E. Assessment of current practice for beta-lactam therapeutic drug monitoring in French ICUs in 2021: A nationwide cross-sectional survey. J. Antimicrob. Chemother. 2022, 77, 2650–2657. [Google Scholar] [CrossRef] [PubMed]
- Guilhaumou, R.; Benaboud, S.; Bennis, Y.; Dahyot-Fizelier, C.; Dailly, E.; Gandia, P.; Goutelle, S.; Lefeuvre, S.; Mongardon, N.; Roger, C.; et al. Optimization of the treatment with beta-lactam antibiotics in critically ill patients-guidelines from the French Society of Pharmacology and Therapeutics (Societe Francaise de Pharmacologie et Therapeutique-SFPT) and the French Society of Anaesthesia and Intensive Care Medicine (Societe Francaise d’Anesthesie et Reanimation-SFAR). Crit Care 2019, 23, 104. [Google Scholar] [PubMed] [Green Version]
- Aitken, S.; Altshuler, J.; Guervil, D.J.; Hirsch, E.B.; Ostrosky-Zeichner, L.L.; Ericsson, C.D.; Tam, V.H. Cefepime free minimum concentration to minimum inhibitory concentration (fCmin/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int. J. Antimicrob. Agents 2015, 45, 541–544. [Google Scholar] [CrossRef]
- Abdul–Aziz, M.H.; Brady, K.; Cotta, M.O.; Roberts, J.A. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther. Drug Monit. 2021, 44, 19–31. [Google Scholar] [CrossRef]
- Wong, G.; Taccone, F.; Villois, P.; Scheetz, M.H.; Rhodes, N.J.; Briscoe, S.; McWhinney, B.; Nunez-Nunez, M.; Ungerer, J.; Lipman, J.; et al. β-Lactam pharmacodynamics in Gram-negative bloodstream infections in the critically ill. J. Antimicrob. Chemother. 2020, 75, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cojutti, P.G.; Pascale, R.; Tonetti, T.; Laici, C.; Dell’Olio, A.; Siniscalchi, A.; Giannella, M.; Viale, P.; Pea, F. Assessment of a PK/PD Target of Continuous Infusion Beta-Lactams Useful for Preventing Microbiological Failure and/or Resistance Development in Critically Ill Patients Affected by Documented Gram-Negative Infections. Antibiotics 2021, 10, 1311. [Google Scholar] [CrossRef]
- Dilworth, T.J.; Schulz, L.T.; Micek, S.T.; Kollef, M.H.; Rose, W.E. beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients: Weighing the Challenges and Opportunities to Assess Clinical Value. Crit Care Explor. 2022, 4, e0726. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Fratoni, A.J.; Nicolau, D.P.; Kuti, J.L. A guide to therapeutic drug monitoring of beta-lactam antibiotics. Pharmacotherapy 2021, 41, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Luxton, T.; King, N.; Wälti, C.; Jeuken, L.; Sandoe, J. A systematic review of the effect of therapeutic drug monitoring on patient health outcomes during treatment with penicillins. J. Antimicrob. Chemother. 2022, 77, 1532–1541. [Google Scholar] [CrossRef] [PubMed]
- Pai Mangalore, R.; Ashok, A.; Lee, S.J.; Romero, L.; Peel, T.N.; Udy, A.A.; Peleg, A.Y. Beta-Lactam Antibiotic Therapeutic Drug Monitoring in Critically Ill Patients: A Systematic Review and Meta-Analysis. Clin. Infect. Dis. 2022, 75, 1848–1860. [Google Scholar] [CrossRef] [PubMed]
- Sime, F.B.; Roberts, M.S.; Tiong, I.S.; Gardner, J.H.; Lehman, S.; Peake, S.L.; Hahn, U.; Warner, M.S.; Roberts, J.A. Can therapeutic drug monitoring optimize exposure to piperacillin in febrile neutropenic patients with haematological malignancies? A randomized controlled trial. J. Antimicrob. Chemother. 2015, 70, 2369–2375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, A.; Eggimann, P.; Pantet, O.; Pagani, J.L.; Dupuis-Lozeron, E.; Pannatier, A.; Sadeghipour, F.; Voirol, P.; Que, Y.-A. Impact of Real-Time Therapeutic Drug Monitoring on the Prescription of Antibiotics in Burn Patients Requiring Admission to the Intensive Care Unit. Antimicrob. Agents Chemother. 2018, 62, e01818-17. [Google Scholar] [CrossRef] [Green Version]
- De Waele, J.J.; Carrette, S.; Carlier, M.; Stove, V.; Boelens, J.; Claeys, G.; Leroux-Roels, I.; Hoste, E.; Depuydt, P.; Decruyenaere, J.; et al. Therapeutic drug monitoring-based dose optimisation of piperacillin and meropenem: A randomised controlled trial. Intensive Care Med. 2014, 40, 380–387. [Google Scholar] [CrossRef]
- Guo, B.; Abdelraouf, K.; Ledesma, K.R.; Chang, K.-T.; Nikolaou, M.; Tam, V.H. Quantitative Impact of Neutrophils on Bacterial Clearance in a Murine Pneumonia Model. Antimicrob. Agents Chemother. 2011, 55, 4601–4605. [Google Scholar] [CrossRef] [Green Version]
- Ortwine, J.K.; Pogue, J.M.; Faris, J. Pharmacokinetics and pharmacodynamics of antibacterial and antifungal agents in adult patients with thermal injury: A review of current literature. J. Burn Care Res. 2015, 36, e72–e84. [Google Scholar] [CrossRef]
- Hagel, S.; Bach, F.; Brenner, T.; Bracht, H.; Brinkmann, A.; Annecke, T.; Hohn, A.; Weigand, M.; Michels, G.; Kluge, S.; et al. Effect of therapeutic drug monitoring-based dose optimization of piperacillin/tazobactam on sepsis-related organ dysfunction in patients with sepsis: A randomized controlled trial. Intensive Care Med. 2022, 48, 311–321. [Google Scholar] [CrossRef]
- Leon, L.; Guerci, P.; Pape, E.; Thilly, N.; Luc, A.; Germain, A.; Butin-Druoton, A.-L.; Losser, M.-R.; Birckener, J.; Scala-Bertola, J.; et al. Serum and peritoneal exudate concentrations after high doses of beta-lactams in critically ill patients with severe intra-abdominal infections: An observational prospective study. J. Antimicrob. Chemother. 2020, 75, 156–161. [Google Scholar] [CrossRef]
- Mouton, J.W.; Meletiadis, J.; Voss, A.; Turnidge, J. Variation of MIC measurements: The contribution of strain and laboratory variability to measurement precision. J. Antimicrob. Chemother. 2018, 73, 2374–2379. [Google Scholar] [CrossRef] [Green Version]
- Magreault, S.; Jaureguy, F.; Carbonnelle, E.; Zahar, J.R. When and How to Use MIC in Clinical Practice? Antibiotics 2022, 11, 1748. [Google Scholar] [CrossRef]
- Monogue, M.L.; Nicolau, D.P. Pharmacokinetics-pharmacodynamics of beta-lactamase inhibitors: Are we missing the target? Expert Rev. Anti-Infect. Ther. 2019, 17, 571–582. [Google Scholar] [CrossRef] [PubMed]
- Bellomo, R.; Kellum, J.A.; Ronco, C.; Wald, R.; Martensson, J.; Maiden, M.; Bagshaw, S.M.; Glassford, N.J.; Lankadeva, Y.; Vaara, S.T.; et al. Acute kidney injury in sepsis. Intensive Care Med. 2017, 43, 816–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egea, A.; Dupuis, C.; de Montmollin, E.; Wicky, P.H.; Patrier, J.; Jaquet, P.; Lefèvre, L.; Sinnah, F.; Marzouk, M.; Sonneville, R.; et al. Augmented renal clearance in the ICU: Estimation, incidence, risk factors and consequences-a retrospective observational study. Ann Intensive Care. 2022, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Baptista, J.P.; Neves, M.; Rodrigues, L.; Teixeira, L.; Pinho, J.; Pimentel, J. Accuracy of the estimation of glomerular filtration rate within a population of critically ill patients. J. Nephrol. 2014, 27, 403–410. [Google Scholar] [CrossRef]
- Grootaert, V.; Willems, L.; Debaveye, Y.; Meyfroidt, G.; Spriet, I. Augmented Renal Clearance in the Critically Ill: How to Assess Kidney Function. Ann. Pharmacother. 2012, 46, 952–959. [Google Scholar] [CrossRef] [PubMed]
- Roger, C.; Louart, B. Beta-Lactams Toxicity in the Intensive Care Unit: An Underestimated Collateral Damage? Microorganisms 2021, 9, 1505. [Google Scholar] [CrossRef]
- Neely, M.N.; Kato, L.; Youn, G.; Kraler, L.; Bayard, D.; van Guilder, M.; Schumitzky, A.; Yamada, W.; Jones, B.; Minejima, E. Prospective Trial on the Use of Trough Concentration versus Area under the Curve to Determine Therapeutic Vancomycin Dosing. Antimicrob. Agents Chemother. 2018, 62, e02042-17. [Google Scholar] [CrossRef] [Green Version]
- McDonald, C.; Cotta, M.O.; Little, P.J.; McWhinney, B.; Ungerer, J.P.; Lipman, J.; Roberts, J.A. Is high-dose beta-lactam therapy associated with excessive drug toxicity in critically ill patients? Minerva Anestesiol. 2016, 82, 957–965. [Google Scholar]
- Lamoth, F.; Buclin, T.; Pascual, A.; Vora, S.; Bolay, S.; Decosterd, L.A.; Calandra, T.; Marchetti, O. High Cefepime Plasma Concentrations and Neurological Toxicity in Febrile Neutropenic Patients with Mild Impairment of Renal Function. Antimicrob. Agents Chemother. 2010, 54, 4360–4367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huwyler, T.; Lenggenhager, L.; Abbas, M.; Lorenzini, K.I.; Hughes, S.; Huttner, B.; Karmime, A.; Uçkay, I.; von Dach, E.; Lescuyer, P.; et al. Cefepime plasma concentrations and clinical toxicity: A retrospective cohort study. Clin. Microbiol. Infect. 2017, 23, 454–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of beta-lactam concentration-toxicity relationships. J. Antimicrob. Chemother. 2017, 72, 2891–2897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinton, M.-C.; Bodeau, S.; Kontar, L.; Zerbib, Y.; Maizel, J.; Slama, M.; Masmoudi, K.; Lemaire-Hurtel, A.-S.; Bennis, Y. Neurotoxic Concentration of Piperacillin during Continuous Infusion in Critically Ill Patients. Antimicrob. Agents Chemother. 2017, 61, e00654-17. [Google Scholar] [CrossRef] [Green Version]
- Beumier, M.; Casu, G.S.; Hites, M.; Wolff, F.; Cotton, F.; Vincent, J.L.; Jacobs, F.; Taccone, F.S. Elevated beta-lactam concentrations associated with neurological deterioration in ICU septic patients. Minerva Anestesiol. 2015, 81, 497–506. [Google Scholar]
- Blondiaux, N.; Wallet, F.; Favory, R.; Onimus, T.; Nseir, S.; Courcol, R.J.; Durocher, A.; Roussel-Delvallez, M. Daily serum piperacillin monitoring is advisable in critically ill patients. Int. J. Antimicrob. Agents 2010, 35, 500–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuchs, A.; Csajka, C.; Thoma, Y.; Buclin, T.; Widmer, N. Benchmarking Therapeutic Drug Monitoring Software: A Review of Available Computer Tools. Clin. Pharmacokinet. 2012, 52, 9–22. [Google Scholar] [CrossRef]
- Felton, T.W.; Roberts, J.A.; Lodise, T.P.; Van Guilder, M.; Boselli, E.; Neely, M.N.; Hope, W.W. Individualization of Piperacillin Dosing for Critically Ill Patients: Dosing Software to Optimize Antimicrobial Therapy. Antimicrob. Agents Chemother. 2014, 58, 4094–4102. [Google Scholar] [CrossRef] [Green Version]
- Neely, M.; Margol, A.; Fu, X.; van Guilder, M.; Bayard, D.; Schumitzky, A.; Orbach, R.; Liu, S.; Louie, S.; Hope, W. Achieving Target Voriconazole Concentrations More Accurately in Children and Adolescents. Antimicrob. Agents Chemother. 2015, 59, 3090–3097. [Google Scholar] [CrossRef] [Green Version]
- Hope, W.W.; VanGuilder, M.; Donnelly, J.P.; Blijlevens, N.M.A.; Brüggemann, R.J.M.; Jelliffe, R.W.; Neely, M.N. Software for Dosage Individualization of Voriconazole for Immunocompromised Patients. Antimicrob. Agents Chemother. 2013, 57, 1888–1894. [Google Scholar] [CrossRef] [Green Version]
- Bel Kamel, A.; Bourguignon, L.; Marcos, M.; Ducher, M.; Goutelle, S. Is Trough Concentration of Vancomycin Predictive of the Area Under the Curve? A Clinical Study in Elderly Patients. Ther. Drug Monit. 2017, 39, 83–87. [Google Scholar] [CrossRef]
- Mathew, S.K.; Mathew, B.S.; Neely, M.N.; Naik, G.S.; Prabha, R.; Jacob, G.G.; K, S.; Fleming, D.H. A Nonparametric Pharmacokinetic Approach to Determine the Optimal Dosing Regimen for 30-Minute and 3-Hour Meropenem Infusions in Critically Ill Patients. Ther. Drug Monit. 2016, 38, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Avent, M.L.; Rogers, B.A.; Cheng, A.C.; Paterson, D.L. Current use of aminoglycosides: Indications, pharmacokinetics and monitoring for toxicity. Intern. Med. J. 2011, 41, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Barras, M.A.; Serisier, D.; Hennig, S.; Jess, K.; Norris, R.L.G. Bayesian Estimation of Tobramycin Exposure in Patients with Cystic Fibrosis. Antimicrob. Agents Chemother. 2016, 60, 6698–6702. [Google Scholar] [CrossRef] [Green Version]
- Donagher, J.; Martin, J.H.; Barras, M.A. Individualised medicine: Why we need Bayesian dosing. Intern. Med. J. 2017, 47, 593–600. [Google Scholar] [CrossRef]
- Duffull, S.; Kirkpatrick, C.; Begg, E.J. Comparison of two Bayesian approaches to dose-individualization for once-daily aminoglycoside regimens. Br. J. Clin. Pharmacol. 1997, 43, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, K.; Oda, K.; Shoji, K.; Hanai, Y.; Takahashi, Y.; Fujii, S.; Hamada, Y.; Kimura, T.; Mayumi, T.; Ueda, T.; et al. Clinical Practice Guidelines for Therapeutic Drug Monitoring of Vancomycin in the Framework of Model-Informed Precision Dosing: A Consensus Review by the Japanese Society of Chemotherapy and the Japanese Society of Therapeutic Drug Monitoring. Pharmaceutics 2022, 14, 489. [Google Scholar] [CrossRef]
- Heil, E.L.; Nicolau, D.P.; Farkas, A.; Roberts, J.A.; Thom, K.A. Pharmacodynamic Target Attainment for Cefepime, Meropenem, and Piperacillin-Tazobactam Using a Pharmacokinetic/Pharmacodynamic-Based Dosing Calculator in Critically Ill Patients. Antimicrob. Agents Chemother. 2018, 62, e01008-18. [Google Scholar] [CrossRef] [Green Version]
- Chiriac, U.; Richter, D.; Frey, O.; Röhr, A.; Helbig, S.; Preisenberger, J.; Hagel, S.; Roberts, J.; Weigand, M.; Brinkmann, A. Personalized Piperacillin Dosing for the Critically Ill: A Retrospective Analysis of Clinical Experience with Dosing Software and Therapeutic Drug Monitoring to Optimize Antimicrobial Dosing. Antibiotics 2021, 10, 667. [Google Scholar] [CrossRef] [PubMed]
- Ewoldt, T.M.J.; Abdulla, A.; Rietdijk, W.J.R.; Muller, A.E.; de Winter, B.C.M.; Hunfeld, N.G.M.; Purmer, I.M.; van Vliet, P.; Wils, E.-J.; Haringman, J.; et al. Model-informed precision dosing of beta-lactam antibiotics and ciprofloxacin in critically ill patients: A multicentre randomised clinical trial. Intensive Care Med. 2022, 48, 1760–1771. [Google Scholar] [CrossRef] [PubMed]
- Cotta, M.O.; Lipman, J.; De Waele, J. Advancing precision-based antimicrobial dosing in critically ill patients. Intensive Care Med. 2023, 49, 324–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guilhaumou, R.; Blin, O.; Velly, L.; Marsot, A. External evaluation of population pharmacokinetic models for continuous administration of meropenem in critically ill adult patients. Eur. J. Clin. Pharmacol. 2020, 76, 1281–1289. [Google Scholar] [CrossRef] [PubMed]
- Dhaese, S.A.M.; Farkas, A.; Colin, P.; Lipman, J.; Stove, V.; Verstraete, A.G.; Roberts, J.A.; De Waele, J.J. Population pharmacokinetics and evaluation of the predictive performance of pharmacokinetic models in critically ill patients receiving continuous infusion meropenem: A comparison of eight pharmacokinetic models. J. Antimicrob. Chemother. 2018, 74, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Darwich, A.S.; von Moltke, L. The Impact of Formulation, Delivery, and Dosing Regimen on the Risk of Drug-Drug Interactions. Clin. Pharmacol. Ther. 2019, 105, 1329–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stocker, S.L.; Carland, J.E.; Reuter, S.E.; Stacy, A.E.; Schaffer, A.L.; Stefani, M.; Lau, C.; Kirubakaran, R.; Yang, J.J.; Shen, C.F.; et al. Evaluation of a Pilot Vancomycin Precision Dosing Advisory Service on Target Exposure Attainment Using an Interrupted Time Series Analysis. Clin. Pharmacol. Ther. 2020, 109, 212–221. [Google Scholar] [CrossRef]
- van Lent-Evers, N.A.; Mathot, R.A.; Geus, W.P.; van Hout, B.A.; Vinks, A.A. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: A cost-effectiveness analysis. Ther. Drug Monit. 1999, 21, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Meng, L.; Mui, E.; Holubar, M.K.; Deresinski, S.C. Comprehensive Guidance for Antibiotic Dosing in Obese Adults. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2017, 37, 1415–1431. [Google Scholar] [CrossRef]
- Pinner, N.A.; Tapley, N.G.; Barber, K.E.; Stover, K.R.; Wagner, J.L. Effect of Obesity on Clinical Failure of Patients Treated With beta-Lactams. Open Forum Infect. Dis. 2021, 8, ofab212. [Google Scholar] [CrossRef]
- Jung, B.; Mahul, M.; Breilh, D.; Legeron, R.; Signe, J.; Jean-Pierre, H.; Uhlemann, A.-C.; Molinari, N.; Jaber, S. Repeated Piperacillin-Tazobactam Plasma Concentration Measurements in Severely Obese Versus Nonobese Critically Ill Septic Patients and the Risk of Under– and Overdosing*. Crit. Care Med. 2017, 45, e470–e478. [Google Scholar] [CrossRef]
- Matusik, E.; Boidin, C.P.; Friggeri, A.; Richard, J.-C.; Bitker, L.; Roberts, J.A.; Goutelle, S.P. Therapeutic Drug Monitoring of Antibiotic Drugs in Patients Receiving Continuous Renal Replacement Therapy or Intermittent Hemodialysis: A Critical Review. Ther. Drug Monit. 2021, 44, 86–102. [Google Scholar] [CrossRef]
- Broeker, A.; Vossen, M.G.; Thalhammer, F.; Wallis, S.C.; Lipman, J.; Roberts, J.A.; Wicha, S.G. An Integrated Dialysis Pharmacometric (IDP) Model to Evaluate the Pharmacokinetics in Patients Undergoing Renal Replacement Therapy. Pharm. Res. 2020, 37, 96. [Google Scholar] [CrossRef]
- Carrie, C.; Chadefaux, G.; Sauvage, N.; de Courson, H.; Petit, L.; Nouette-Gaulain, K.; Pereira, B.; Biais, M. Increased beta-Lactams dosing regimens improve clinical outcome in critically ill patients with augmented renal clearance treated for a first episode of hospital or ventilator-acquired pneumonia: A before and after study. Crit Care. 2019, 23, 379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.; Taccone, F.S.; Roberts, J.A.; Jacobs, F.; Cotton, F.; Wolff, F.; Creteur, J.; Vincent, J.-L.; Hites, M. β-Lactam Dosage Regimens in Septic Patients with Augmented Renal Clearance. Antimicrob. Agents Chemother. 2018, 62, e02534-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pea, F.; Della Siega, P.; Cojutti, P.; Sartor, A.; Crapis, M.; Scarparo, C.; Bassetti, M. Might real-time pharmacokinetic/pharmacodynamic optimisation of high-dose continuous-infusion meropenem improve clinical cure in infections caused by KPC-producing Klebsiella pneumoniae? Int. J. Antimicrob. Agents 2017, 49, 255–258. [Google Scholar] [CrossRef]
- Roggeveen, L.F.; Fleuren, L.M.; Guo, T.; Thoral, P.; De Grooth, H.J.; Swart, E.L.; Klausch, T.L.T.; Van Der Voort, P.H.J.; Girbes, A.R.J.; Bosman, R.J.; et al. Right Dose Right Now: Bedside data-driven personalized antibiotic dosing in severe sepsis and septic shock—Rationale and design of a multicenter randomized controlled superiority trial. Trials 2019, 20, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, A.D.; Coin, L.J.M.; Harris, P.N.A.; Cotta, M.O.; Bauer, M.J.; Buckley, C.; Balch, R.; Kruger, P.; Meyer, J.; Shekar, K.; et al. Optimising Treatment Outcomes for Children and Adults Through Rapid Genome Sequencing of Sepsis Pathogens. A Study Protocol for a Prospective, Multi-Centre Trial (DIRECT). Front. Cell. Infect. Microbiol. 2021, 11, 667680. [Google Scholar] [CrossRef] [PubMed]
- Komorowski, M.; Celi, L.A.; Badawi, O.; Gordon, A.C.; Faisal, A.A. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nat. Med. 2018, 24, 1716–1720. [Google Scholar] [CrossRef]
Laboratory Level | Clinician and Pharmacist Level | |
---|---|---|
Microbiology | Pharmacology | |
Consensus of MIC measurement method To accelerate MIC determination To accelerate bacteria identification | Consensus of BL measure method (total vs. free concentration) To accelerate results obtention To develop method of tissue concentration determination | Consensus on PK/PD target to adopt To define the therapeutic range ⇔ make the result easier to interpret for non-TDM expert To identify populations that would most benefit from TDM |
Main objective: availability of the MIC result | Main objective: availability of the TDM result | Main objective: interpretation of TDM result |
Study | Population/Beta-Lactam | Group | PK/PD Target | Microbiology | TDM/Sampling | Outcomes |
---|---|---|---|---|---|---|
De Waele et al., 2014 [35] | -n = 41 Septic patient with normal renal function 1 (GFR > 80 mL/min) APACHE II score 18 (13–24) Day 1 SOFA score 5 (2–6) -Meropenem (LD 1 g followed by 1 g/8 h) Piperacillin/tazobactam (LD 4 g followed by 4 g/6 h) Extended perfusion | -Intervention: TDM-guided dosing Dose adjustment protocol -Control: conventional dosing | -100%ƒTMIC>4 Within the first 72 h -MIC: ECOFF wild-type Pseudomonas aeruginosa (16 mg/L PIP/TAZ and 2 mg/l MEM) | -Documented infection: 66% -n = 6 for P. aeruginosa Median MIC 2 (1.5–8) mg/L for PTZ MIC 0.125 (0.125–0.690) mg/L for MEM | -Daily TDM in both group but the control group was blinded of the results -Analytic method of beta-lactam well described -Total concentration of antibiotic dosed Intervention group: need for dose optimization n = 16 (76%) | -TDM allowed a high median 100% ƒTMIC>4 at day 3 -28-day mortality: Control n = 5 (25%) Intervention n = 3 (14%) |
Sime et al., 2015 [33] | -n = 32 Hematological malignancies Febrile neutropenia Normal renal function 2 (creat clearance > 75 mL/min/1.73 m2) Various dual therapy (mostly gentamicin) -Piperacillin/tazobactam 4.5 g/8 h Intermittent infusion | -Intervention: Daily TDM and protocol of dose adjustment -Control: daily TDM but no dose adjustment | -100%ƒT > MIC Within the first 72 h -MIC: actual or ECOFF wild-type Pseudomonas aeruginosa (16 mg/L) and enterobacterales in negative culture | -Documented infection: 41% -Mostly enterobacterales no P. aeruginosa MIC not reported | -2 blood samples/day or after any dose change: 50% of the dosing interval and 15 min prior to the next dose -No detail of analytic method -Total concentration of antibiotic dose and estimated free based on 30% protein binding | -Improvement of the rate of PK/PD target attainment in the intervention group for the second and third TDM -No difference in time to neutrophil recovery or fever resolution |
Fournier et al., 2018 [34] | -n = 38 Burn patients 73 episodes of infection mostly pneumonia 61% of appropriate initial antibiotic treatment (among the 38% non-appropriate, most of underdosing) -Various beta-lactams Intermittent administration and then extended perfusion | -Intervention: real-time daily TDM and online adaptation protocol -Control: usual care, no access to TDM results | -Cmin>MIC actual or ECOFF from local ecology | -Documented infection: 85% -Mostly P. aeruginosa and S. aureus | -244 TDM measures -Analytic method of beta-lactam well described. -Total concentration of antibiotic dosed and estimated free fraction based on published data | -Cmin level target higher in the intervention group (74%) vs. 56.5% in the control group (p = 0.018) -No difference in infection outcomes |
Hagel et al., 2022 [38] | -n = 242 General ICU population APACHE II score 23.2 ± 6.7 Day 1 SOFA score 12.1 ± 2.8 -Piperacillin/tazobactam (LD 4.5 g followed by continuous infusion of 13.5 g | -Intervention: real-time daily TDM no algorithm for dose adjustment -Control: usual care, no access to TDM results, daily dose adjustment according to renal function assessed by 1GFR | -100%ƒTMIC>4 -MIC actual or ECOFF wild-type Pseudomonas aeruginosa (16 mg/L) for empirical therapy | -Documented infection: 65% -Mostly E. coli, K. pneumoniae and S. aureus -Actual MIC ≤ 4 mg/L (80%) | -1179 TDM measures mostly performed on day 1 -On-site measurements of total piperacillin concentration | -No significant beneficial effect of TDM with regard to the 10-day mean total SOFA score -Less mortality in the TDM group of 4.2% without statistical significance -More PK/PD target attainment in the TDM group |
Study | Population/Beta-Lactam | Study Design | PK/PD Target | Microbiology | Software/Sampling | Outcomes |
---|---|---|---|---|---|---|
Felton et al., 2014 [57] | -n = 40 -Adult ICU patients with ventilator-associated pneumonia -Piperacillin | Prospective population PK study | 100% ƒTMIC>1 | Not available | -Dosing software: BestDoseTM -Time of sampling: 24 h after start of therapy | -Linear regression of the observed-versus-predicted piperacillin concentrations demonstrated an r2 of >0.89 -Good predictive performance for prescribed dose |
Heil et al., 2018 [67] | -n = 49 -General adult ICU population, Mean SOFA score: 6 (3.3) -Cefepime, Meropenem, and Piperacillin-Tazobactam | Prospective observational study | ƒTMIC>1 50% for piperacillin, 40% for meropenem, 60% for cefepime | P. aeruginosa 29% mostly enterobacterales | -Dosing software: ID-ODSTM -Time of sampling: 50% of the dosing interval and trough | -Target attainment: 98% |
Chiriac et al., 2021 [68] | -n = 179 -General adult ICU population RRT 29%/Septic shock 30%/Pneumonia 50%/peritonitis 23%Mean SOFA score: 6 (6) -Piperacillin | Retrospective study | 100% ƒTMIC>2–4 MIC ECOFF for Pseudomonas aeruginosa 16 mg/L | P. aeruginosa 6% mostly enterobacterales | -Dosing software: CADDy -Time of sampling: 24–48 h after start of therapy | -Target attainment: 40% -TDM-guided dose adjustments significantly enhanced therapeutic exposure to 65%, and significantly reduced piperacillin concentrations> 96 mg/L to 5%. |
Ewoldt et al., 2022 [69] | -n = 388 -General adult ICU population APACHE IV score: 70 IQR (51–90)/SOFA score 8 (5–10.3) -Various Beta-lactams (mostly ceftriaxone, cefuroxime and meropenem) (+ciprofloxacin 30% of the total cohort) | RCT Intervention: MIPD with TDM and algorithm for dose adjustment Control: Standard dose regimens and adjustment according to local guidelines TDM in both group | 100% ƒTMIC>4 MIC ECOFF for the expected pathogen Piperacillin: MIC of 16 mg/L Meropenem: MIC of 2 mg/L | Documented infection: 53% (n = 206) Pathogens: Pseudomonas spp. 7% mostly enterobacterales | -Dosing software: InsightRxTM -Time of sampling: T1 (first antibiotic sampling), day 3 and day 5 Median time of first sample: 19.6 h (intervention group) Dose adjustment: 37.6% at T1 (intervention group) and 11% (control group) On-site measure of total concentration except for highly bound antibiotic (ceftriaxone, flucloxacillin) where unbound fraction was measured | -Target attainment T1 55.6% (intervention)–61% (control) -No additional benefice of MIPD of beta-lactams on ICU length of stay, mortality, target attainment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novy, E.; Martinière, H.; Roger, C. The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients. Antibiotics 2023, 12, 681. https://doi.org/10.3390/antibiotics12040681
Novy E, Martinière H, Roger C. The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients. Antibiotics. 2023; 12(4):681. https://doi.org/10.3390/antibiotics12040681
Chicago/Turabian StyleNovy, Emmanuel, Hugo Martinière, and Claire Roger. 2023. "The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients" Antibiotics 12, no. 4: 681. https://doi.org/10.3390/antibiotics12040681
APA StyleNovy, E., Martinière, H., & Roger, C. (2023). The Current Status and Future Perspectives of Beta-Lactam Therapeutic Drug Monitoring in Critically Ill Patients. Antibiotics, 12(4), 681. https://doi.org/10.3390/antibiotics12040681