Biological Activities of Ruthenium NHC Complexes: An Update
Abstract
:1. Introduction
2. N-Heterocyclic Carbenes (NHCs)
3. Ruthenium-NHC Complexes
3.1. Ru(II)-NHC Complexes with Antiproliferative Activity
3.2. Antimicrobial Ru(II)-NHC Complexes Possessing Other Additional Abilities (Antiproliferative, Antioxidant and Anticholinesterase)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Cancer Cell Lines Mentioned in the Text
ABTS | 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid |
A549 | lung cancer cells |
BCL-2 | B cell CLL/lymphoma |
BCL-xL | B-cell lymphoma-extra large |
Caco-2 | colorectal cancer cells |
C6 | rat glioblastoma cancer cells |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
HCC1806 | breast cancer cells |
HCT15 | human colon carcinoma cell lines |
HCT-116 | human colon cancer cells |
HeLa | human cervix adenocarcinoma cancer cells |
Hep2 | human epidermoid cancer cells |
HEPG2 | human liver cancer cells |
HEK293 | normal cells |
HFF-1 | non-tumoral fibroblast cells |
HT-29 | colon cancer cells |
IC50 | half-maximal (50%) inhibitory concentration (IC50) |
MCF-7 | breast cancer cells |
MCF-10A | healthy breast cell line |
MDA-MB-231 | breast cancer cells |
MIC | minimal inhibitory concentration |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NCI-H460 | human breast cancer cells |
PC3 | advanced prostate cancer cells |
ROS | reactive oxygen species |
SiHa | human cervical cancer cells |
References
- Mariconda, A.; Sirignano, M.; Costabile, C.; Longo, P. New NHC- silver and gold complexes active in A3-coupling (aldehyde-alkyne-amine) reaction. Mol. Catal. 2020, 480, 110570. [Google Scholar] [CrossRef]
- Bruno, G.; Nicolò, F.; Lo Schiavo, S.; Sinicropi, M.S.; Tresoldi, G. Synthesis and spectroscopic properties of di-2-pyridyl sulfide (dps) compounds. Crystal structure of [Ru(dps)2Cl2]. J. Chem. Soc. Dalton Trans. 1995, 1, 17–24. [Google Scholar] [CrossRef]
- Munteanu, A.-C.; Uivarosi, V. Ruthenium complexes in the fight against pathogenic microorganisms. An extensive review. Pharmaceutics 2021, 13, 874. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-N.; Zou, Y.-H.; Sun, H.-X.; Chen, Y.; Li, S.-L.; Lan, Y.-Q. Recent progress and perspectives in heterogeneous photocatalytic CO2 reduction through a solid–gas mode. Coord. Chem. Rev. 2021, 438, 213906. [Google Scholar] [CrossRef]
- Swaminathan, S.; Haribabu, J.; Balakrishnan, N.; Vasanthakumar, P.; Karvembu, R. Piano stool Ru(II)-arene complexes having three monodentate legs: A comprehensive review on their development as anticancer therapeutics over the past decade. Coord. Chem. Rev. 2022, 459, 214403. [Google Scholar] [CrossRef]
- Dragutan, I.; Dragutan, V.; Demonceau, A. Editorial of special issue ruthenium complex: The expanding chemistry of the ruthenium complexes. Molecules 2015, 20, 17244–17274. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, C.Y.; Nam, T.G. Ruthenium complexes as anticancer agents: A brief history and perspectives. Drug Des. Dev. Ther. 2020, 14, 5375–5392. [Google Scholar] [CrossRef]
- Mahmud, K.M.; Niloy, M.S.; Shakil, M.S.; Islam, M.A. Ruthenium complexes: An alternative to platinum drugs in colorectal cancer treatment. Pharmaceutics 2021, 13, 1295. [Google Scholar] [CrossRef]
- Kostova, I. Ruthenium complexes as anticancer agents. Curr. Med. Chem. 2006, 13, 1085–1107. [Google Scholar] [CrossRef]
- Pragti; Kundu, B.K.; Mukhopadhyay, S. Target based chemotherapeutic advancement of ruthenium complexes. Coord. Chem. Rev. 2021, 448, 214169. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Y.; Shi, H.; Wang, Y.; Zhang, J.; Zhang, Q. Ruthenium complexes as promising candidates against lung cancer. Molecules 2021, 26, 4389. [Google Scholar] [CrossRef]
- Popolin, C.P.; Cominetti, M.R. A review of ruthenium complexes activities on breast cancer cells. Mini Rev. Med. Chem. 2017, 17, 1435–1441. [Google Scholar] [CrossRef]
- Song, M.; Cui, M.; Liu, K. Therapeutic strategies to overcome cisplatin resistance in ovarian cancer. Eur. J. Med. Chem. 2022, 232, 114205. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, J.; Häfner, N.; Kritsch, D.; Görls, H.; Dürst, M.; Runnebaum, I.B.; Weigand, W. Highly cytotoxic osmium(II) compounds and their ruthenium(II) analogues targeting ovarian carcinoma cell lines and evading cisplatin resistance mechanisms. Int. J. Mol. Sci. 2022, 23, 4976. [Google Scholar] [CrossRef] [PubMed]
- Kljun, J.; Pavlič, R.; Hafner, E.; Lipec, T.; Moreno-Da Silva, S.; Tič, P.; Turel, I.; Büdefeld, T.; Stojan, J.; Rižner, T.L. Ruthenium complexes show potent inhibition of AKR1C1, AKR1C2, and AKR1C3 enzymes and anti-proliferative action against chemoresistant ovarian cancer cell line. Front. Pharmacol. 2022, 13, 920379. [Google Scholar] [CrossRef] [PubMed]
- Kladnik, J.; Coverdale, J.P.C.; Kljun, J.; Burmeister, H.; Lippman, P.; Ellis, F.G.; Jones, A.M.; Ott, I.; Romero-Canelón, I.; Turel, I. Organoruthenium complexes with benzo-fused pyrithiones overcome platinum resistance in ovarian cancer cells. Cancers 2021, 13, 2493. [Google Scholar] [CrossRef] [PubMed]
- Peña, Q.; Wang, A.; Zaremba, O.; Shi, Y.; Scheeren, H.W.; Metselaar, J.M.; Kiessling, F.; Pallares, R.M.; Wuttke, S.; Lammers, T. Metallodrugs in cancer nanomedicine. Chem. Soc. Rev. 2022, 51, 2544–2582. [Google Scholar] [CrossRef]
- Clarke, M.J. Ruthenium metallopharmaceuticals. Coord. Chem. Rev. 2002, 232, 69–93. [Google Scholar] [CrossRef]
- Sasahara, G.L.; Gouveia Júnior, F.S.; Rodrigues, R.O.; Zampieri, D.S.; Fonseca, S.; Gonçalves, R.C.R.; Athaydes, B.R.; Kitagawa, R.R.; Santos, F.A.; Sousa, E.H.S.; et al. Nitro-imidazole-based ruthenium complexes with antioxidant and anti-inflammatory activities. J. Inorg. Biochem. 2020, 206, 111048. [Google Scholar] [CrossRef]
- Donnici, C.L.; Araujo, M.H.; Stoianoff, M.A.R. Ruthenium complexes as antifungal agents. In Ruthenium Complexes; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 293–318. [Google Scholar]
- Chen, Y.; Liu, L.; Wang, X.; Liao, Z.; Wang, R.; Xiong, Y.; Cheng, J.; Jiang, G.; Wang, J.; Liao, X. The synthesis and antibacterial activity study of ruthenium-based metallodrugs with a membrane-disruptive mechanism against Staphylococcus aureus. Dalton Trans. 2022, 51, 14980–14992. [Google Scholar] [CrossRef] [PubMed]
- Cirri, D.; Pratesi, A.; Marzo, T.; Messori, L. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Exp. Opin. Drug Discov. 2021, 16, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Amirthaganesan, K.; Vadivel, T.; Dhamodaran, M.; Chandraboss, V.L. In vitro antifungal studies of ruthenium (III) complex derived from chitosan Schiff bases. Mater. Today Proc. 2022, 60, 1716–1720. [Google Scholar] [CrossRef]
- Ceramella, J.; Iacopetta, D.; Catalano, A.; Cirillo, F.; Lappano, R.; Sinicropi, M.S. A review on the antimicrobial activity of Schiff bases: Data collection and recent studies. Antibiotics 2022, 11, 191. [Google Scholar] [CrossRef]
- Sinicropi, M.S.; Ceramella, J.; Iacopetta, D.; Catalano, A.; Mariconda, A.; Rosano, C.; Saturnino, C.; El-Kashef, H.; Longo, P. Metal complexes with Schiff bases: Data collection and recent studies on biological activities. Int. J. Mol. Sci. 2022, 23, 14840. [Google Scholar] [CrossRef]
- Huang, M.; Li, Y.; Lan, X.-B.; Liu, J.; Zhao, C.; Liu, Y.; Ke, Z. Ruthenium(II) complexes with N-heterocyclic carbene-phosphine ligands for the N-alkylation of amines with alcohols. Org. Biomol. Chem. 2021, 19, 3451–3461. [Google Scholar] [CrossRef] [PubMed]
- Sathiya Kamatchi, T.; Mohamed Subarkhan, M.K.; Ramesh, R.; Wang, H.; Małecki, J.G. Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(II) carbazole-based hydrazone complexes. Dalton Trans. 2020, 49, 11385–11395. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, J.; Bilal, M.; Rasool, N.; Hafeez, U.; Adnan Ali Shah, S.; Imran, S.; Amiruddin Zakaria, Z. Synthesis of ruthenium complexes and their catalytic applications: A review. Arab. J. Chem. 2022, 15, 104165. [Google Scholar] [CrossRef]
- Ritleng, V.; Michon, C. Bidentate donor-functionalized N-heterocyclic carbenes: Valuable ligands for ruthenium-catalyzed transfer hydrogenation. Molecules 2022, 27, 4703. [Google Scholar] [CrossRef]
- Kaikhosravi, M.; Böth, A.D.; Sauer, M.J.; Reich, R.M.; Kühn, F.E. Synthesis and characterisation of a heterobimetallic N-heterocyclic carbene rhodium ruthenium complex as catalyst for transfer hydrogenation. J. Organomet. Chem. 2022, 979, 122498. [Google Scholar] [CrossRef]
- Ogba, O.M.; Warner, N.C.; O’Leary, D.J.; Grubbs, R.H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 2018, 47, 4510–4544. [Google Scholar] [CrossRef] [Green Version]
- Malan, F.P.; Singleton, E.; van Rooyen, P.H.; Albrecht, M.; Landman, M. Synthesis, Stability, and (De)hydrogenation Catalysis by Normal and Abnormal Alkene- and Picolyl-Tethered NHC Ruthenium Complexes. Organometallics 2019, 38, 2624–2635. [Google Scholar] [CrossRef]
- Moutaoukil, Z.; Serrano-Díez, E.; Collado, I.G.; Jiménez-Tenorio, M.; Botubol-Ares, J.M. N-Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes. Org. Mol. Chem. 2022, 20, 831–839. [Google Scholar] [CrossRef] [PubMed]
- McDarmont, S.L.; Jones, M.H.; McMillen, C.D.; Smith, E.C.; Pienkos, J.A.; Joslin, E.E. Synthesis, characterization, X-ray crystallography analysis and cell viability study of (η6-p-cymene)Ru(NH2R)X2 (X = Cl, Br) derivatives. Polyhedron 2021, 200, 115130. [Google Scholar] [CrossRef]
- Böth, A.D.; Sauer, M.J.; Baratta, W.; Kühn, F.E. Abnormal NHC ruthenium catalysts: Mechanistic investigations of their preparation and steric influence on catalytic performance. Catal. Sci.Technol. 2022, 12, 5597–5603. [Google Scholar] [CrossRef]
- Pardatscher, L.; Hofmann, B.J.; Fischer, P.J.; Hölzl, S.M.; Reich, R.M.; Kühn, F.E.; Baratta, W. Highly efficient abnormal NHC ruthenium catalyst for oppenauer-type oxidation and transfer hydrogenation reactions. ACS Catal. 2019, 9, 11302–11306. [Google Scholar] [CrossRef]
- Quintin, F.; Pinaud, J.; Lamaty, F.; Bantreil, X. Mechanosynthesis of Noels-type NHC–ruthenium complexes and applications in ring-opening metathesis polymerization. Organometallics 2020, 39, 636–639. [Google Scholar] [CrossRef]
- Tolbatov, I.; Marrone, A. Reactivity of N-heterocyclic carbene half-sandwich Ru-, Os-, Rh-, and Ir-based complexes with cysteine and selenocysteine: A computational study. Inorg. Chem. 2022, 61, 746–754. [Google Scholar] [CrossRef]
- Patil, S.A.; Hoagland, A.P.; Patil, S.A.; Bugarin, A. N-heterocyclic carbene-metal complexes as bio-organometallic antimicrobial and anticancer drugs, an update (2015–2020). Future Med. Chem. 2020, 12, 2239–2275. [Google Scholar]
- Jalal, M.; Hammouti, B.; Touzani, R.; Aouniti, A.; Ozdemir, I. Metal-NHC heterocycle complexes in catalysis and biological applications: Systematic review. Mater. Today Proc. 2020, 31, S122–S129. [Google Scholar] [CrossRef]
- Roos, L.; Malan, F.P.; Landman, M. Naphthalimide-NHC complexes: Synthesis and properties in catalytic, biological and photophysical applications. Coord. Chem. Rev. 2021, 449, 214201. [Google Scholar] [CrossRef]
- Oehninger, L.; Rubbiani, R.; Ott, I. N-Heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans. 2013, 42, 3269–3284. [Google Scholar] [CrossRef] [PubMed]
- Ott, I. Metal N-heterocyclic carbene complexes in medicinal chemistry. In Advances in Inorganic Chemistry; Sadler, P.J., Van Eldik, R., Eds.; Academic Press: Cambridge, MA, USA, 2020; Volume 75, pp. 121–148. [Google Scholar]
- Hussaini, S.Y.; Haque, R.A.; Razali, M.R. Recent progress in silver(I)-, gold(I)/(III)- and palladium(II)-N-heterocyclic carbene complexes: A review towards biological perspectives. J.Organomet. Chem. 2019, 882, 96–111. [Google Scholar] [CrossRef]
- Nomiya, K.; Morozumi, S.; Yanagawa, Y.; Hasegawa, M.; Kurose, K.; Taguchi, K.; Sakamoto, R.; Mihara, K.; Kasuga, N.C. Syntheses, structures, and antimicrobial activities of gold(I)– and copper(I)–N-heterocyclic carbene (NHC) complexes derived from basket-shaped dinuclear Ag(I)–NHC complex. Inorg. Chem. 2018, 57, 11322–11332. [Google Scholar] [CrossRef]
- Prencipe, F.; Zanfardino, A.; Di Napoli, M.; Rossi, F.; D’Errico, S.; Piccialli, G.; Mangiatordi, G.F.; Saviano, M.; Ronga, L.; Varcamonti, M.; et al. Silver (I) N-Heterocyclic carbene complexes: A winning and broad spectrum of antimicrobial properties. Int. J. Mol. Sci. 2021, 22, 2497. [Google Scholar] [CrossRef]
- Liang, J.; Sun, D.; Yang, Y.; Li, M.; Li, H.; Chen, L. Discovery of metal-based complexes as promising antimicrobial agents. Eur. J. Med. Chem. 2021, 224, 113696. [Google Scholar] [CrossRef] [PubMed]
- Karaca, Ö.; Meier-Menches, S.M.; Casini, A.; Kühn, F.E. On the binding modes of metal NHC complexes with DNA secondary structures: Implications for therapy and imaging. Chem. Commun. 2017, 53, 8249–8260. [Google Scholar] [CrossRef]
- Jakob, C.H.G.; Muñoz, A.W.; Schlagintweit, J.F.; Weiß, V.; Reich, R.M.; Sieber, S.A.; Correia, J.D.G.; Kühn, F.E. Anticancer and antibacterial properties of trinuclear Cu(I), Ag(I) and Au(I) macrocyclic NHC/urea complexes. J. Organomet. Chem. 2021, 932, 121643. [Google Scholar] [CrossRef]
- Rufino-Felipe, E.; Colorado-Peralta, R.; Reyes-Márquez, V.; Valdés, H.; Morales-Morales, D. Fluorinated-NHC transition metal complexes: Leading characters as potential anticancer metallodrugs. Anti-Cancer Agents Med. Chem. 2021, 21, 938–948. [Google Scholar] [CrossRef]
- Zou, T.; Lok, C.-N.; Wan, P.-K.; Zhang, Z.-F.; Fung, S.-K.; Che, C.-M. Anticancer metal-N-heterocyclic carbene complexes of gold, platinum and palladium. Curr. Opin. Chem. Biol. 2018, 43, 30–36. [Google Scholar] [CrossRef]
- Mora, M.; Gimeno, M.C.; Visbal, R. Recent advances in gold–NHC complexes with biological properties. Chem. Soc. Rev. 2019, 48, 447–462. [Google Scholar] [CrossRef]
- Porchia, M.; Pellei, M.; Marinelli, M.; Tisato, F.; Del Bello, F.; Santini, C. New insights in Au-NHCs complexes as anticancer agents. Eur. J. Med. Chem. 2018, 146, 709–746. [Google Scholar] [CrossRef]
- Tialiou, A.; Chin, J.; Keppler, B.K.; Reithofer, M.R. Current developments of N-heterocyclic carbene Au(I)/Au(III) complexes toward cancer treatment. Biomedicines 2022, 10, 1417. [Google Scholar] [CrossRef]
- Touj, N.; Nasr, I.S.A.; Koko, W.S.; Khan, T.A.; Özdemir, I.; Yasar, S.; Mansour, L.; Alresheedi, F.; Hamdi, N. Anticancer, antimicrobial and antiparasitical activities of copper(I) complexes based on N-heterocyclic carbene (NHC) ligands bearing aryl substituents. J. Coord. Chem. 2020, 73, 2889–2905. [Google Scholar] [CrossRef]
- Habib, A.; Iqbal, M.A.; Bhatti, H.N.; Kamal, A.; Kamal, S. Synthesis of alkyl/aryl linked binuclear silver(I)-N-heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorg. Chem. Commun. 2020, 111, 107670. [Google Scholar] [CrossRef]
- Kamal, A.; Iqbal, M.A.; Bhatti, H.N.; Ghaffar, A. Selenium-N-heterocyclic carbene (Se-NHC) complexes with higher aromaticity inhibit microbes: Synthesis, structure, and biological potential. J. Coord. Chem. 2022, 75, 1915–1928. [Google Scholar] [CrossRef]
- Ielo, I.; Iacopetta, D.; Saturnino, C.; Longo, P.; Galletta, M.; Drommi, D.; Rosace, G.; Sinicropi, M.S.; Plutino, M.R. Gold derivatives development as prospective anticancer drugs for breast cancer treatment. Appl. Sci. 2021, 11, 2089. [Google Scholar] [CrossRef]
- Ceramella, J.; Mariconda, A.; Sirignano, M.; Iacopetta, D.; Rosano, C.; Catalano, A.; Saturnino, C.; Sinicropi, M.S.; Longo, P. Novel Au carbene complexes as promising multi-target agents in breast cancer treatment. Pharmaceuticals 2022, 15, 507. [Google Scholar] [CrossRef]
- Massai, L.; Messori, L.; Carpentieri, A.; Amoresano, A.; Melchiorre, C.; Fiaschi, T.; Modesti, A.; Gamberi, T.; Magherini, F. The effects of two gold-N-heterocyclic carbene (NHC) complexes in ovarian cancer cells: A redox proteomic study. Cancer Chemother. Pharmacol. 2022, 89, 809–823. [Google Scholar] [CrossRef]
- Md Zin, N.F.H.; Ooi, S.Y.S.; Khor, B.-K.; Chear, N.J.-Y.; Tang, W.K.; Siu, C.-K.; Razali, M.R.; Haque, R.A.; Yam, W. Cytotoxicity of asymmetric mononuclear silver(I)-N-heterocyclic carbene complexes against human cervical cancer: Synthesis, crystal structure, DFT calculations and effect of substituents. J. Organomet. Chem. 2022, 976, 122439. [Google Scholar] [CrossRef]
- Mariconda, A.; Iacopetta, D.; Sirignano, M.; Ceramella, J.; Costabile, C.; Pellegrino, M.; Rosano, C.; Catalano, A.; Saturnino, C.; El-Kashef, H.; et al. N-Heterocyclic carbene (NHC) silver complexes as versatile chemotherapeutic agents targeting human topoisomerases and actin. ChemMedChem 2022, 17, e202200345. [Google Scholar] [CrossRef]
- Johnson, N.A.; Southerland, M.R.; Youngs, W.J. Recent developments in the medicinal applications of silver-NHC complexes and imidazolium salts. Molecules 2017, 22, 1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iacopetta, D.; Ceramella, J.; Rosano, C.; Mariconda, A.; Pellegrino, M.; Sirignano, M.; Saturnino, C.; Catalano, A.; Aquaro, S.; Longo, P.; et al. N-Heterocyclic Carbene-Gold(I) Complexes Targeting Actin Polymerization. Appl. Sci. 2021, 11, 5626. [Google Scholar] [CrossRef]
- Iacopetta, D.; Rosano, C.; Sirignano, M.; Mariconda, A.; Ceramella, J.; Ponassi, M.; Saturnino, C.; Sinicropi, M.S.; Longo, P. Is the way to fight cancer paved with gold? Metal-based carbene complexes with multiple and fascinating biological features. Pharmaceuticals 2020, 13, 91. [Google Scholar] [CrossRef] [PubMed]
- Iacopetta, D.; Mariconda, A.; Saturnino, C.; Caruso, A.; Palma, G.; Ceramella, J.; Muià, N.; Perri, M.; Sinicropi, M.S.; Caroleo, M.C.; et al. Novel gold and silver carbene complexes exert antitumor effects triggering the reactive oxygen species dependent intrinsic apoptotic pathway. ChemMedChem 2017, 12, 2054–2065. [Google Scholar] [CrossRef]
- Iacopetta, D.; Ceramella, J.; Catalano, A.; Saturnino, C.; Pellegrino, M.; Mariconda, A.; Longo, P.; Sinicropi, M.S.; Aquaro, S. COVID-19 at a glance: An up-to-date overview on variants, drug design and therapies. Viruses 2022, 14, 573. [Google Scholar] [CrossRef]
- Gil-Moles, M.; Türck, S.; Basu, U.; Pettenuzzo, A.; Bhattacharya, S.; Rajan, A.; Ma, X.; Büssing, R.; Wölker, J.; Burmeister, H.; et al. Metallodrug profiling against SARS-CoV-2 target proteins identifies highly potent inhibitors of the S/ACE2 interaction and the Papain-like Protease PLpro. Chem.—Eur. J. 2021, 27, 17928–17940. [Google Scholar] [CrossRef]
- Aktas, A.; Barut Celepci, D.; Gok, Y.; Taslimi, P.; Akincioglu, H.; Gulcin, İ. A novel Ag-N-heterocyclic carbene complex bearing the hydroxyethyl ligand: Synthesis, characterization, crystal and spectral structures and bioactivity properties. Crystals 2020, 10, 171. [Google Scholar] [CrossRef]
- Grisi, F.; Costabile, C.; Gallo, E.; Mariconda, A.; Tedesco, C.; Longo, P. Ruthenium-based complexes bearing saturated chiral N-heterocyclic carbene ligands: Dynamic behavior and catalysis. Organometallics 2008, 27, 4649–4656. [Google Scholar] [CrossRef]
- Perfetto, A.; Costabile, C.; Longo, P.; Grisi, F. Ruthenium olefin metathesis catalysts with frozen NHC ligand conformations. Organometallics 2014, 33, 2747–2759. [Google Scholar] [CrossRef]
- Lam, N.Y.S.; Truong, D.; Burmeister, H.; Babak, M.V.; Holtkamp, H.U.; Movassaghi, S.; Ayine-Tora, D.M.; Zafar, A.; Kubanik, M.; Oehninger, L.; et al. From catalysis to cancer: Toward structure–activity relationships for benzimidazol-2-ylidene-derived N-heterocyclic-carbene complexes as anticancer agents. Inorg. Chem. 2018, 57, 14427–14434. [Google Scholar] [CrossRef]
- Tabrizi, L.; Olasunkanmi, L.O.; Fadare, O.A. Experimental and theoretical investigations of cyclometalated ruthenium(ii) complex containing CCC-pincer and anti-inflammatory drugs as ligands: Synthesis, characterization, inhibition of cyclooxygenase and in vitro cytotoxicity activities in various cancer cell lines. Dalton Trans. 2019, 48, 728–740. [Google Scholar] [PubMed]
- Rana, B.K.; Roymahapatra, G.; Das, H.S.; Giri, S.; Cardoso, M.H.; Franco, O.L.; Kiran, N.K.; Santra, M.K.; Bag, P.P.; Bertolasi, V.; et al. Pyridine and pyrimidine functionalized half-sandwich Ru(II)-N heterocyclic carbene complexes: Synthesis, structures, spectra, electrochemistry and biological studies. J. Mol. Struct. 2021, 1231, 129822. [Google Scholar] [CrossRef]
- Rana, B.K.; Das, H.S.; Giri, S.; Roymahapatra, G.; Mahapatra, P.K.; Dinda, J.; Cardoso, M.H.; Franco, O.L.; Bag, P.P. A comparative analysis of Ru(II) complexes containing non-annulated and annulated n-heterocyclic carbene ligand towards structure, spectra, electrochemistry and biological activity. J. Indian Chem. Soc. 2020, 97, 2699–2712. [Google Scholar]
- Rodríguez-Prieto, T.; Michlewska, S.; Hołota, M.; Ionov, M.; de la Mata, F.J.; Cano, J.; Bryszewska, M.; Gómez, R. Organometallic dendrimers based on ruthenium(II) N-heterocyclic carbenes and their implication as delivery systems of anticancer small interfering RNA. J. Inorg. Biochem. 2021, 223, 111540. [Google Scholar] [CrossRef]
- Marzano, C.; Sbovata, S.M.; Gandin, V.; Michelin, R.A.; Venzo, A.; Bertani, R.; Seraglia, R. Cytotoxicity of cis-platinum(II) cycloaliphatic amidine complexes: Ring size and solvent effects on the biological activity. J. Inorg. Biochem. 2009, 103, 1113–1119. [Google Scholar] [CrossRef]
- Paşahan, R.; Akkoç, M.; Yaşar, Ş.; Köprülü, T.; Tekin, Ş.; Yaşar, S.; Özdemir, I. Synthesis and investigation of antiproliferative activity of Ru-NHC complexes against C6 and HeLa cancer cells. Turk. J. Chem. 2022, 46, 1097–1109. [Google Scholar] [CrossRef]
- Chen, C.; Xu, C.; Li, T.; Lu, S.; Luo, F.; Wang, H. Novel NHC-coordinated ruthenium (II) arene complexes achieve synergistic efficacy as safe and effective anticancer therapeutics. Eur. J. Med. Chem. 2020, 203, 112605. [Google Scholar] [CrossRef]
- Sarı, Y.; Gürses, C.; Celepci, D.B.; Keleştemur, Ü.; Aktaş, A.; Yüksel, Ş.; Ateş, B.; Gök, Y. 4-Vinylbenzyl and 2-morpholinoethyl substituted ruthenium(II) complexes: Design, synthesis, and biological evaluation. J. Mol. Struct. 2020, 1202, 127355. [Google Scholar] [CrossRef]
- Wilke, N.L.; Burmeister, H.; Frias, C.; Ott, I.; Prokop, A. Ruthenium complex HB324 induces apoptosis via mitochondrial pathway with an upregulation of Harakiri and overcomes cisplatin resistance in neuroblastoma cells in vitro. Int. J. Mol. Sci. 2023, 24, 952. [Google Scholar] [CrossRef]
- Catalano, A.; Iacopetta, D.; Ceramella, J.; Scumaci, D.; Giuzio, F.; Saturnino, C.; Aquaro, S.; Rosano, C.; Sinicropi, M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022, 27, 616. [Google Scholar] [CrossRef]
- Li, F.; Collins, J.G.; Keene, F.R. Ruthenium complexes as antimicrobial agents. Chem. Soc. Rev. 2015, 44, 2529–2542. [Google Scholar] [CrossRef]
- Southam, H.M.; Butler, J.A.; Chapman, J.A.; Poole, R.K. Chapter One—The Microbiology of Ruthenium Complexes. In Advances in Microbial Physiology; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 71, pp. 1–96. [Google Scholar]
- Roymahapatra, G.; Dinda, J.; Mishra, A.; Mahapatra, A.; Hwang, W.S.; Mandal, S.M. Cytotoxic potency of self-assembled Ruthenium(II)-NHC complexes with pincer type 2,6-bis(N-methylimidazolylidene/benzimidazolylidene)pyrazine ligands. J. Cancer Res. Ther. 2015, 11, 105–113. [Google Scholar]
- Streciwilk, W.; Terenzi, A.; Cheng, X.; Hager, L.; Dabiri, Y.; Prochnow, P.; Bandow, J.E.; Wölfl, S.; Keppler, B.K.; Ott, I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction. Eur. J. Med. Chem. 2018, 156, 148–161. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, Y.; Schmid, A.; Theobald, J.; Blagojevic, B.; Streciwilk, W.; Ott, I.; Wölfl, S.; Cheng, X. A ruthenium(II) N-heterocyclic carbene (NHC) complex with naphthalimide ligand triggers apoptosis in colorectal cancer cells via activating the ROS-p38 MAPK pathway. Int. J. Mol. Sci. 2018, 19, 3964. [Google Scholar] [CrossRef]
- Streciwilk, W.; Terenzi, A.; Lo Nardo, F.; Prochnow, P.; Bandow, J.E.; Keppler, B.K.; Ott, I. Synthesis and biological evaluation of organometallic complexes bearing bis-1,8-naphthalimide ligands. Eur.J. Inorg. Chem. 2018, 2018, 3104–3112. [Google Scholar] [CrossRef]
- Boubakri, L.; Chakchouk-Mtibaa, A.; Al-Ayed, A.S.; Mansour, L.; Abutaha, N.; Harrath, A.H.; Mellouli, L.; Özdemir, I.; Yasar, S.; Hamdi, N. Ru(II)–N-heterocyclic carbene complexes: Synthesis, characterization, transfer hydrogenation reactions and biological determination. RSC Adv. 2019, 9, 34406–34420. [Google Scholar] [CrossRef] [PubMed]
- Boubakri, L.; Chakchouk-Mtiba, A.; Naouali, O.; Mellouli, L.; Mansour, L.; Özdemir, I.; Yaser, S.; Sauthier, M.; Hamdi, N. Ruthenium(II) complexes bearing benzimidazole-based N-heterocyclic carbene (NHC) ligands as potential antimicrobial, antioxidant, enzyme inhibition, and antiproliferative agents. J. Coord. Chem. 2022, 75, 645–667. [Google Scholar] [CrossRef]
- Onar, G.; Gürses, C.; Karataş, M.O.; Balcıoğlu, S.; Akbay, N.; Özdemir, N.; Ateş, B.; Alıcı, B. Palladium(II) and ruthenium(II) complexes of benzotriazole functionalized N-heterocyclic carbenes: Cytotoxicity, antimicrobial, and DNA interaction studies. J. Organomet. Chem. 2019, 886, 48–56. [Google Scholar] [CrossRef]
- Slimani, I.; Chakchouk-Mtibaa, A.; Mansour, L.; Mellouli, L.; Özdemir, I.; Gürbüzd, N.; Hamdi, N. Synthesis, characterization, biological determination and catalytic evaluation of ruthenium(II) complexes bearing benzimidazole-based NHC ligands in transfer hydrogenation catalysis. New J. Chem. 2020, 44, 5309–5323. [Google Scholar] [CrossRef]
- Burmeister, H.; Dietze, P.; Preu, L.; Bandow, J.E.; Ott, I. Evaluation of ruthenium(II) N-heterocyclic carbene complexes as antibacterial agents and inhibitors of bacterial thioredoxin reductase. Molecules 2021, 26, 4282. [Google Scholar] [CrossRef] [PubMed]
Structure | Compd. | Biological Activities | Ref |
---|---|---|---|
1 | Trx inhibition (%): 71 ± 8 IC50 = 6.2 ± 0.4 µM (HCT-116) IC50 = 8.4 ± 0.2 µM (SiHa) IC50 = 7.8 ± 1.0 µM (NCI-H460) | Lam et al., 2018 [72] | |
2 | IC50 = 0.91 ± 0.02 µM (MCF-7) IC50 = 1.32 ± 0.05 µM (MDA-MB-231) IC50 = 35.82 ± 0.52 µM (HT-29) IC50 = 4.71 ± 0.05 µM (MCF-10A) IC50 = 108.20 ± 0.03 µM (HEK-293) | Tabrizi et al., 2019 [73] | |
3 | IC50 = 28.7 ± 2.3 µM (A549) IC50 = > 100 µM (HCT-116) IC50 = 14.8 ± 2.3 µM (MCF-7) IC50 = 44.64 ± 2.6 µM (3T3) | Rana et al., 2021 [74] | |
4 | IC50 = 2.1 ± 0.7 µM (A549) IC50 = 8.6 ± 1.8 µM (HCT-116) IC50 = 3.3 ± 0.4 µM (MCF-7) IC50 = 9.36 ± 1.16 µM (3T3) | Rana et al., 2021 [74] | |
5 | IC50 = 2.8 ± 0.4 µM (A549) IC50 = 2.3 ± 0.3 µM (HCT-116) IC50 = 4.7 ± 0.7 µM (MCF-7) IC50 = 8.56 ± 1.6 µM (3T3) | Rana et al., 2020 [75] | |
6 | IC50 = 37.2 ± 3.6 µM (PC3) IC50 = 25.3 ± 7.6 µM (HCC1806) IC50 = 71.6 ± 15.4 µM (HeLa) IC50 = 10.3 ± 1.7 µM (HEPG2) IC50 = 21.2 ± 1.8 µM (HFF-1) | Rodriguez-Prieto et al., 2021 [76] | |
7 | IC50 = 21.4 ± 0.9 µM (PC3) IC50 = 20.6 ± 1.9 µM (HCC1806) IC50 = 8.3 ± 1.1 µM (HeLa) IC50 = 6.6 ± 0.5 µM (HEPG2) IC50 = 69.3 ± 1.2 µM (HFF-1) | Rodriguez-Prieto et al., 2021 [76] | |
8 | IC50 = 14.2 ± 0.5 mM (C6) IC50 = 11.1 ± 0.5 mM (HeLa) | Paşahan et al., 2022 [78] | |
9 | IC50 = 16.2 ± 0.4 mM (C6) IC50 = 13.7 ± 0.3 mM (HeLa) | Paşahan et al., 2022 [78] | |
10 | IC50 = 24.2 ± 0.7 mM (C6) IC50 = 22.8 ± 0.8 mM (HeLa) | Paşahan et al., 2022 [78] | |
11 | IC50 = 37.3 ± 0.9 mM (C6) IC50 = 17.3 ± 0.8 mM (HeLa) | Paşahan et al., 2022 [78] | |
12 | IC50 = 2.74 ± 0.15 mM (A2780) | Chen et al., 2020 [79] | |
13 | IC50 = 1.98 ± 0.10 mM (A2780) | Chen et al., 2020 [79] | |
14 | IC50 of 3.61 µM (MCF-7) | Sari et al., 2020 [80] | |
15 (HB324) | G1 Arrest * = ≥1 µM AC50 ** = ~4 µM | Wilke et al., 2023 [81] |
Structure | Compd. | Biological Activities | Ref |
---|---|---|---|
16 | MIC = 8 µM (S. epidermidis NCIM 2493) MIC = 8 µM (P. aeruginosa ATCC 27853) MIC = 16 µM (C. albicans SJ11, unicellular fungus) IC50 = 22.70 ± 1.3 µM (HCT15) 50 = 18.46 ± 2.3 µM (Hep2) | Roymahapatra et al., 2015 [85] | |
17 | MIC = 64 µM (S. epidermidis NCIM 2493) MIC = 64 µM (P. aeruginosa ATCC 27853) MIC = 256 µM (C. albicans SJ11, unicellular fungus) IC50 = 82.2 ± 4.6 µM (HCT15) IC50 = 61.8 ± 3.3 µM (Hep2) | Roymahapatra et al., 2015 [85] | |
18 | MIC = 16 µg/mL; 22.9 µM (B. subtilis 168 DSM402) MIC = 16 µg/mL; 22.9 µM (S. aureus DSM 20231) MIC = 16 µg/mL; 22.9 µM (S. aureus ATCC 43300) IC50 = 11.6 ± 1.0 µM (MCF-7) IC50 = 26.4 ± 1.1 µM (HT-29) | Streciwilk et al., 2018 [86] | |
19 | MIC = 8 µg/mL; 10.5 µM (B. subtilis 168 DSM402) MIC = 8 µg/mL; 10.5 µM (S. aureus DSM 20231) MIC = 8 µg/mL; 10.5 µM (S. aureus ATCC 43300) IC50 = 4.8 ± 0.1 µM (MCF-7) IC50 = 4.9 ± 0.02 µM (HT-29) | Streciwilk et al., 2018 [86] | |
20 | MIC = 16 µg/mL; 18.8 µM (B. subtilis 168 DSM402) MIC = 16 µg/mL; 18.8 µM (S. aureus DSM 20231) MIC = 8 µg/mL; 9.4 µM (S. aureus ATCC 43300) IC50 = 26.0 ± 1.1 µM (MCF-7) IC50 > 100 µM (HT-29) | Streciwilk et al., 2018 [88] | |
21 | MIC = 0.0195 mg/mL (M. luteus LB14110) MIC = 15.6 µg/mL (L. monocytogenes ATCC 19117) MIC = 3.9 µg/mL (S. aureus ATCC 6538) MIC = 3.9 µg/mL (S. typhimurium ATCC 14028) MIC = 1.25 µg/mL (C. albicans ATCC 10231) IC50 = 0.67 ± 0.2 µg/mL (MCF-7) IC50 = 0.8 ± 0.2 µg/mL (MDA-MB-231) IC50 = 2.52 µg/mL (AChE) IC50 = 19.88 µg/mL (TyrE) | Boubakri et al., 2019 [89,90] | |
22 | MIC = 0.0195 mg/mL (M. luteus LB14110) MIC = 0.0781 mg/mL (L. monocytogenes ATCC 19117) MIC = 1.25 mg/mL (S. typhimurium ATCC 14028) Inhibition zone = 15 ± 0.2 mm (E. coli) IC50 = 0.68 ± 3.2 µg/mL (MCF-7) IC50 = 1.93 ± 2.6 µg/mL (MDA-MB-231) | Boubakri et al., 2019 [89] | |
23 | MIC = 3.9 µg/mL (L. monocytogenes ATCC 19117) MIC = 1.95 µg/mL (S. aureus ATCC 6538) MIC = 1.95 µg/mL (S. typhimurium ATCC 14028) MIC = 1.25 µg/mL (C. albicans ATCC 10231) IC50 = 0.68 ± 0.2 µg/mL (MCF-7) IC50 = 0.8 ± 0.1 µg/mL (MDA-MB-231) IC50 = 5.06 µg/mL (AChE) IC50 = 24.95 µg/mL (TyrE) EC50 = 32.18 µg/mL (DPPH) EC50 = 18.17 µg/mL (ABTS) EC50 = 92.25 µg/mL (β-carotene) | Boubakri et al., 2022 [90] | |
24 | MIC = 200 µg/mL (B. subtilis ATCC 21332) MIC = 100 µg/mL (E. coli ATCC 25922) MIC = 200 µg/mL (C. albicans ATCC 60193) IC50 = 100 ± 7 µM (Caco-2) IC50 = 137 ± 2 µM (MCF-7) | Onar et al., 2019 [91] | |
25 | MIC = 100 µg/mL (B. subtilis ATCC 21332) MIC = 200 µg/mL (E. coli ATCC 25922) MIC = 200 µg/mL (C. albicans ATCC 60193) IC50 = 90 ± 1 µM (Caco-2) IC50 = 270 ± 12 µM (MCF-7) | Onar et al., 2019 [91] | |
26 | MIC = 0.0195 mg/mL (M. luteus LB 14110) MIC = 0.1562 mg/mL (L. monocytogenes ATCC 19117) MIC = 0.0781 mg/mL (S. typhimurium ATCC 14028) IC50 = 0.6 ± 1.1 µg/mL (MCF-7) IC50 = 1.1 ± 0.3 µg/mL (MDA-MB-231) | Slimani et al., 2020 [92] | |
27 | MIC = 0.0195 mg/mL (M. luteus LB 14110) MIC = 0.0781 mg/mL (L. monocytogenes ATCC 19117) MIC = 1.25 mg/mL (S. typhimurium ATCC 14028) IC50 = 0.68 ± 1.2 µg/mL (MCF-7) IC50 = 1.7 ± 0.6 µg/mL (MDA-MB-231) | Slimani et al., 2020 [92] | |
28 | MIC = 11.7 µM (B. subtilis) MIC = 23.4 µM (S. aureus DSM 20231) MIC = 11.7 µM (S. aureus ATCC 43300) | Burmeister et al., 2021 [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalano, A.; Mariconda, A.; Sinicropi, M.S.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Longo, P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics 2023, 12, 365. https://doi.org/10.3390/antibiotics12020365
Catalano A, Mariconda A, Sinicropi MS, Ceramella J, Iacopetta D, Saturnino C, Longo P. Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics. 2023; 12(2):365. https://doi.org/10.3390/antibiotics12020365
Chicago/Turabian StyleCatalano, Alessia, Annaluisa Mariconda, Maria Stefania Sinicropi, Jessica Ceramella, Domenico Iacopetta, Carmela Saturnino, and Pasquale Longo. 2023. "Biological Activities of Ruthenium NHC Complexes: An Update" Antibiotics 12, no. 2: 365. https://doi.org/10.3390/antibiotics12020365
APA StyleCatalano, A., Mariconda, A., Sinicropi, M. S., Ceramella, J., Iacopetta, D., Saturnino, C., & Longo, P. (2023). Biological Activities of Ruthenium NHC Complexes: An Update. Antibiotics, 12(2), 365. https://doi.org/10.3390/antibiotics12020365