Analysis of Antimicrobials in Muscle and Drinking Water in Terms of Reducing the Need of Antimicrobial Use by Increasing the Health and Welfare of Pig and Broiler
Abstract
:1. Introduction
2. Results
2.1. Method Validation
2.2. Quantitative Analysis of Antibiotics in Muscle and Water
3. Discussion
4. Materials and Methods
4.1. Sample Collection on Broiler and Pigs Farms
4.1.1. Farm Selection
- Farms had to be users of antimicrobials if any progress on this aspect was to be demonstrated before any health plan implementation. Because it was difficult to recruit farms in the Netherlands, farms with no antimicrobial usage were also included.
- Farm veterinarians and farmers had to be willing to be involved.
- Participant farms ideally had to cover a range of pig and broiler houses and practices in place, including the age of the buildings, house equipment such as feeding systems and type of bedding, as well as the labour employed.
- In addition, broiler and pig density and other commercial livestock pressures on the location of each farm had to be considered so as to have a representative range of farm locations.
4.1.2. Pre-Intervention Flock Cycle Monitoring
- Water at the end of the water line towards the end of the cycle when the first of the broilers were selected at thin-out. Approximately 200 mL of water were collected per occasion. These were stored a −20 °C until dispatched to the National Veterinary Research Institute in Poland for residue analysis.
- Muscle at the processing plant at or near the first thinning. For this, five birds were sampled and combined into one. These were also stored at −20 °C and then dispatched to the National Veterinary Research Institute in Poland for residues analysis. LC-MS/MS analyses were performed up to 1 week after receiving the samples.
4.1.3. Post-Intervention Flock Cycle Monitoring
4.2. LC-MS/MS Analysis
4.2.1. Chemicals and Reagents
4.2.2. LC-MS/MS Analysis of Muscle
4.2.3. LC-MS/MS Analysis of Water
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramatla, T.; Ngoma, L.; Adetunji, M.; Mwanza, M. Evaluation of Antibiotic Residues in Raw Meat Using Different Analytical Methods. Antibiotics 2017, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Riviere, J.E.; Papich, M.G. Veterinary Pharmacology and Therapeutics, 10th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; ISBN 978-1-118-85588-1. [Google Scholar]
- Rana, M.S.; Lee, S.Y.; Kang, H.J.; Hurt, S.J. Reducing Veterinary Drug Residues in Animal Products: A Review. Food Sci. Anim. Resour. 2019, 39, 687–703. [Google Scholar] [CrossRef] [PubMed]
- Acar, J.F.; Moulin, G.; Page, S.W.; Pastoret, P.-P. Antimicrobial resistance in animal and public health: Introduction and classification of antimicrobial agents. Rev. Sci. et Tech. de l’OIE 2012, 31, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Chantziaras, I.; Boyen, F.; Callens, B.; Dewulf, J. Correlation between veterinary antimicrobial use and antimicrobial resistance in food-producing animals: A report on seven countries. J. Antimicrob. Chemother. 2014, 69, 827–834. [Google Scholar] [CrossRef]
- Whitton, C.; Bogueva, D.; Marinova, D.; Phillips, C.J.C. Are We Approaching Peak Meat Consumption? Analysis of Meat Consumption from 2000 to 2019 in 35 Countries and Its Relationship to Gross Domestic Product. Animals 2021, 11, 3466. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 2008/120/EC of 18 December 2008 laying down minimum standards for the protection of pigs. Off. J. Eur. Union L 2009, 47, 5–13.
- Van Limbergen, T.; Dewulf, J.; Klinkenberg, M.; Ducatelle, R.; Gelaude, P.; Méendez, J.; Heinola, K.; Papasolomontos, S.; Szeleszczuk, P.; Maes, D. Scoring biosecurity in European conventional broiler production. Poult. Sci. 2018, 97, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Schreuder, J.; Simitopoulou, M.; Angastiniotis, K.; Ferrari, P.; Wolthuis-Fillerup, M.; Kefalas, G.; Papasolomontos, S. Development and implementation of a risk assessment tool for broiler farm biosecurity and a health intervention plan in the Netherlands, Greece, and Cyprus. Poult. Sci. 2023, 102, 102394. [Google Scholar] [CrossRef]
- European Parliament and the Council of the European Union 2010. Commission Regulation (EU) No 37/2010. Off. J. Eur. Union 2010, L 15/1, 1–72.
- European Food Safety Authority EFSA. (2021). Report for 2019 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. Support. Publ. EFSA J. 2021, 18, EN-1997. [Google Scholar] [CrossRef]
- European Food Safety Authority EFSA. (2022). Report for 2020 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products. EFSA Support. Publ. 2022, 19, EN-7143. [Google Scholar] [CrossRef]
- Regulation (EU) 2019/6 of the European Parliament and of the Council of 11 December 2018 on veterinary medicinal products and repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, L 4/43, 43–167.
- Joosten, P.; Sarrazin, S.; Van Gompel, L.; Luiken, R.E.C.; Mevius, D.J.; Wagenaar, J.A.; Heederik, D.; Dewulf, J.; Graveland, H.; Schmitt, H.; et al. Quantitative and qualitative analysis of antimicrobial usage at farm and flock level on 181 broiler farms in nine European countries. J. Antimicrob. Chemother. 2019, 74, 798–806. [Google Scholar] [CrossRef] [PubMed]
- Sarrazin, S.; Joosten, P.; Van Gompel, L.; Luiken, R.E.C.; Mevius, D.J.; Wagenaar, J.A.; Heederik, D.; Dewulf, J.; Wagenaar, J.; Graveland, H.; et al. Quantitative and qualitative analysis of antimicrobial usage patterns in 180 selected farrow-to-finish pig farms from nine European countries based on single batch and purchase data. J. Antimicrob. Chemother. 2018, 74, 807–816. [Google Scholar] [CrossRef]
- Landoni, M.; Albarellos, G. The use of antimicrobial agents in broiler chickens. Veter—J. 2015, 205, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Sumano, L.H.; Gutiérrez, O.L.; Aguilera, R.; Rosiles, M.R.; Bernard, B.M.; Gracia, M.J. Influence of hard water on the bioavailability of enrofloxacin in broilers. Poult. Sci. 2004, 83, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Dorr, P.M.; Nemechek, M.S.; Scheidt, A.B.; Baynes, R.E.; Gebreyes, W.A.; Almond, G.W. Water-flow variation and pharmaco epidemiology of tetracycline hydrochloride administration via drinking water in swine finishing farms. JAVMA 2009, 235, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Sumano, L.H.; Cortés-Cuevas, A.; Rosario, C.; Gutiérrez, O.L. Assessment of key pharmacokinetic variables of bioequivalent and non-bioequivalent enrofloxacin preparations under various water management conditions. J. Poult. Sci. 2010, 47, 262–268.251. [Google Scholar] [CrossRef]
- Gbylik-Sikorska, M.; Posyniak, A.; Sniegocki, T.; Zmudzki, J. Liquid chromatography–tandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal farms. Chemosphere 2015, 119, 8–15. [Google Scholar] [CrossRef]
- Błądek, T.; Posyniak, A.; Gajda, A.; Gbylik, M.; Żmudzki, J. Multi-class procedure for analysis of antibacterial compounds in animal tissues by liquid chromatography-mass spectrometry. Bull. Vet. Inst. Pulawy 2011, 55, 741–748. [Google Scholar]
- European Communities. Commission Decision (2002/657/EC) of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Communities 2002, L221, 8–36. [Google Scholar]
- World Health Organization Report (2021). Comprehensive Review of the WHO Global Action Plan on Antimicrobial Resistance. September 2021. Evaluation Office, World Health Organization. Available online: https://cdn.who.int/media/docs/default-source/documents/about-us/evaluation/gap-amr-final-annexes-v2.pdf (accessed on 20 December 2022).
- Silbergeld, E.K.; Graham, J.; Price, L.B. Industrial food animal production, antimicrobial resistance, and human health. Annu. Rev. Public Health 2008, 29, 151–169. [Google Scholar] [CrossRef] [PubMed]
- Dee, S.; Guzman, J.E.; Hanson, D.; Garbes, N.; Morrison, R.; Amodie, D.; Pantoja, L.G. A randomized controlled trial to evaluate performance of pigs raised in antibiotic-free or conventional production systems following challenge with porcine reproductive and respiratory syndrome virus. PLoS ONE 2018, 13, e0208430. [Google Scholar] [CrossRef] [PubMed]
- Page, S.W.; Gautier, P. Use of antimicrobial agents in livestock. Rev. Sci. Tech. Int. Off. Epizoot. 2012, 31, 145–188. [Google Scholar] [CrossRef]
- Amass, S.F.; Clark, L.K. Biosecurity considerations for pork production units. J. Swine Health Prod. 1999, 7, 217–228. [Google Scholar]
- Kotb, S.; Ahmed, M.; Hassan, D.; Soltan, E. Stability of antibiotics in drinking water: An advanced approach towards the impacts of water quality parameters on doxycycline bioavailability. J. Adv. Veter-Anim. Res. 2019, 6, 438–444. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health (OIE) OIE List of Antimicrobials of Veterinary Importance. In Proceedings of the 75th General Session, Paris, France, 20–25 May 2007.
- Robles-Jimenez, L.E.; Aranda-Aguirre, E.; Castelan-Ortega, O.A.; Shettino-Bermudez, B.S.; Ortiz-Salinas, R.; Miranda, M.; Li, X.; Angeles-Hernandez, J.C.; Vargas-Bello-Pérez, E.; Gonzalez-Ronquillo, M. Worldwide Traceability of Antibiotic Residues from Livestock in Wastewater and Soil: A Systematic Review. Animals 2022, 12, 60. [Google Scholar] [CrossRef]
- Jane, R.; Vera, V.; Kotoji, I.; Diaz, H.L.; Brian, G.; Monnet Dominique, L.; Sarah, G.; Klaus, W. Variations in the Consumption of Antimicrobial Medicines in the European Region, 2014–2018: Findings and Implications from ESAC-Net and WHO Europe. Front. Pharmacol. 2021, 12, 727. [Google Scholar]
- Huygens, J.; Rasschaert, G.; Heyndrickx, M.; Jeroen, D.; Els Van, C.; Paul, Q.; Els, D. Ilse Becue 1Impact of fertilization with pig or calf slurry on antibiotic residues and resistance genes in the soil. Sci. Total Environ. 2022, 822, 153518. [Google Scholar] [CrossRef] [PubMed]
- Patyra, E.; Kwiatek, K.; Nebot, C.; Gavilon, R.E. Quantification of Veterinary Antibiotics in Pig and Poultry Feces and Liquid Manure as a Non-Invasive Method to Monitor Antibiotic Usage in Livestock by Liquid Chromatography Mass-Spectrometry. Molecules 2020, 25, 3265. [Google Scholar] [CrossRef] [PubMed]
- Rasschaert, G.; Van Elst, D.; Colson, L.; Herman, L.; Cardoso de Carvalho Ferreira, H.; Dewulf, J.; Decrop, J.; Meirlaen, J.; Heyndrickx, M.; Daeseleire, E. Antibiotic Residues and Antibiotic-Resistant Bacteria in Pig Slurry Used to Fertilize Agricultural Fields. Antibiotics 2020, 9, 34. [Google Scholar] [CrossRef] [PubMed]
- Gajda, A.; Nowacka-Kozak, E.; Gbylik-Sikorska, M.; Posyniak, A. Feather analysis as a non-invasive alternative to tissue sampling for surveillance of doxycycline use on poultry farms. Poult. Sci. 2019, 98, 5971–5980. [Google Scholar] [CrossRef] [PubMed]
Analyte | Muscle | Water | ||||
---|---|---|---|---|---|---|
Recovery (%) | Reproducibility (%) | LOQ (μg/kg) | Recovery (%) | Reproducibility (%) | LOQ (μg/L) | |
Amoxycillin * | 98 | 14.4 | 2 | 98 | 4.0 | 10 |
Ampicillin * | 100 | 11.5 | 2 | 106 | 12.2 | 0.05 |
Penicillin G * | 102 | 14.3 | 2 | 97 | 12.7 | 10 |
Penicillin V | 99 | 13.1 | 2 | - | - | - |
Oxacillin * | 98 | 7.2 | 2 | 90 | 9.3 | 0.05 |
Cloxacillin | 100 | 7.0 | 2 | - | - | - |
Nafcillin * | 101 | 6.7 | 2 | 100 | 9.2 | 0.05 |
Dicloxacillin * | 100 | 7.0 | 2 | 105 | 8.7 | 0.05 |
Cephapirin * | 92 | 9.3 | 25 | 92 | 13.6 | 0.05 |
Cefoperazone * | 98 | 7.3 | 25 | 91 | 9.9 | 0.02 |
Cephalexin * | 100 | 8.6 | 50 | 93 | 13.9 | 0.05 |
Cefquinome * | 91 | 13.9 | 10 | 103 | 9.7 | 0.02 |
Cefazolin * | 100 | 10.0 | 25 | 99 | 7.9 | 0.02 |
Cefalonium * | 99 | 11.5 | 10 | 96 | 11.2 | 0.02 |
Ceftiofur * | 98 | 4.6 | 50 | 103 | 8.8 | 0.05 |
Sulfaguanidine | 88 | 9.3 | 5 | - | - | - |
Sulfadiazine | 92 | 5.9 | 5 | - | - | - |
Sulfathiazole * | 93 | 7.3 | 5 | 105 | 7.9 | 0.02 |
Sulfamerazine * | 97 | 6.3 | 5 | 104 | 11.4 | 0.02 |
Sulfamethazine * | 97 | 6.6 | 5 | 107 | 10.1 | 0.02 |
Sulfamethoxazole * | 98 | 5.8 | 5 | 102 | 7.0 | 0.02 |
Sulfamethoxypyridazine | 97 | 6.6 | 5 | - | - | - |
Sulfamonomethoxine * | 99 | 7.3 | 5 | 91 | 9.1 | 0.02 |
Sulfadoxine | 99 | 7.6 | 5 | - | - | - |
Sulfadimethoxine * | 100 | 7.7 | 5 | 99 | 8.1 | 0.02 |
Sulfaquinoxaline | 99 | 10.0 | 5 | - | - | - |
Trimethoprim * | 99 | 9.6 | 5 | 95 | 12.5 | 0.05 |
Tylosin * | 95 | 10.4 | 5 | 91 | 10.5 | 0.02 |
Erythromycin * | 97 | 11.8 | 5 | 96 | 9.4 | 5 |
Spiramycin * | 99 | 12.1 | 5 | 96 | 8.0 | 0.05 |
Tilmicosin * | 99 | 13.1 | 5 | 103 | 12.2 | 0.05 |
Josamycin * | 100 | 10.6 | 5 | 104 | 11.3 | 0.05 |
Tulathromycin | 100 | 5.5 | 10 | - | - | - |
Danofloxacin * | 95 | 11.6 | 5 | 96 | 8.3 | 0.02 |
Difloxacin * | 98 | 12.0 | 5 | 95 | 6.1 | 0.02 |
Enrofloxacin * | 98 | 10.3 | 5 | 89 | 7.1 | 0.02 |
Ciprofloxacin * | 93 | 13.6 | 5 | 88 | 10.5 | 0.02 |
Flumequine * | 105 | 11.9 | 5 | 102 | 10.2 | 0.02 |
Sarafloxacin * | 100 | 13.9 | 5 | 84 | 9.1 | 0.02 |
Marbofloxacin * | 93 | 9.3 | 5 | 86 | 10.9 | 0.02 |
Norfloxacin * | 92 | 11.2 | 5 | 85 | 11.6 | 0.02 |
Oxolinic acid * | 102 | 12.1 | 5 | 105 | 9.1 | 0.02 |
Nalidixic acid * | 100 | 11.5 | 5 | 109 | 11.1 | 0.02 |
Tiamulin * | 98 | 7.6 | 1 | 97 | 7.3 | 0.02 |
Valnemulin | 100 | 11.8 | 5 | - | - | - |
Chlortetracycline * | 97 | 13.1 | 5 | 99 | 10.5 | 0.05 |
Tetracycline * | 100 | 13.6 | 5 | 96 | 8.0 | 0.05 |
Doxycycline * | 100 | 13.2 | 5 | 96 | 13.3 | 0.05 |
Oxytetracycline * | 96 | 14.0 | 5 | 99 | 12.9 | 0.02 |
Streptomycin * | 96 | 9.7 | 25 | 96 | 7.1 | 1 |
Dihydrostreptomycin * | 95 | 10.6 | 25 | 91 | 7.6 | 2 |
Gentamycin | 99 | 13.2 | 25 | - | - | - |
Paromomycin | 97 | 9.7 | 250 | - | - | - |
Spectinomycin * | 96 | 11.4 | 100 | 94 | 7.6 | 1 |
Kanamycin | 95 | 11.2 | 50 | - | - | - |
Neomycin * | 102 | 11.3 | 250 | 97 | 6.8 | 10 |
Lincomycin * | 95 | 10.2 | 5 | 99 | 8.5 | 0.02 |
Farm | Muscle | Water | ||||||
---|---|---|---|---|---|---|---|---|
Doxycycline (µg/kg) Mean ± SD | Doxycycline (µg/L) Mean | Enrofloxacin (µg/L) Mean | Amoxicillin (µg/L) Mean | |||||
Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | Pre-Intervention | Post-Intervention | |
1. | 80.0 ± 33.6 | 70.8 ± 36.3 | 13.1 | 6.3 | 6.3 | ND | ND | ND |
2. | 30.7 ± 5.7 | 28.2 ± 6.9 | 315 | 1.8 | 20.4 | ND | ND | ND |
3. | 42.2 ± 14.0 | 30.1 ± 13.2 | 42 | ND | 2.5 | ND | ND | ND |
4. | 39.9 ± 11.4 | 35.6 ± 16.2 | 18.2 | 5.8 | 0.4 | 0.7 | ND | ND |
5. | 23.6 ± 2.7 | 49 ± 24.3 | 14.1 | ND | 0.2 | ND | ND | ND |
6. | 20.6 ± 1.6 | 20 ± 4.6 | 21.4 | 2.0 | 4.3 | 0.1 | ND | ND |
7. | 24.4 ± 7.8 | 20.8 ± 13.1 | 40.5 | 2.1 | 7.7 | ND | ND | ND |
8. | 20.8 ± 7.0 | 40 ± 18.5 | 405 | 216 | 3.8 | 9.3 | ND | ND |
9. | 64.7 ± 37.1 | 64.8 ± 26.8 | 66 | 0.8 | 3.4 | 0.8 | ND | ND |
10. | 67.6 ± 33.4 | 39 ± 22.7 | 15.6 | 0.5 | 0.3 | 0.05 | ND | ND |
11. | 100 ± 31.4 | 34.4 ± 11.5 | 28.3 | 3.5 | ND | ND | ND | ND |
12. | 49.2 ± 11.2 | 23.6 ± 7.1 | 64.9 | 1.3 | 1.0 | ND | ND | ND |
13. | 83.4 ± 17.7 | 48.6 ± 32.6 | 42.6 | 0.9 | 0.3 | ND | ND | ND |
14. | 36.5 ± 5.3 | 25.1 ± 8.5 | 774 | 12.6 | 20 | 0.6 | ND | ND |
15. | 29.3 ± 11.2 | 15.9 ± 10.4 | 7.3 | 0.3 | ND | 0.2 | ND | ND |
16. | ND | ND | ND | ND | 1.2 | 1.2 | ND | ND |
17. | ND | ND | 12.5 | ND | 1880 | ND | ND | ND |
18. | ND | ND | ND | ND | 0.7 | ND | 2475 | ND |
19. | ND | ND | ND | ND | 49.2 | 0.08 | ND | ND |
20. | ND | ND | ND | ND | 35.5 | ND | 163 | ND |
21. | ND | ND | ND | ND | 13.3 | ND | 2926 | ND |
22. | ND | ND | ND | ND | 5.1 | 0.2 | ND | ND |
Muscle | |||||
Broiler farms | Pig farms | ||||
Country | NL | GR | CYP | FR | IT |
Samples (total) | 125 | 320 | 140 | 0 | 285 |
Water | |||||
Broiler farms | Pig farms | ||||
Country | NL | GR | CYP | FR | IT |
Samples (total) | 24 | 64 | 28 | 72 | 41 |
Class | Analyte | Precursor (m/z) | Products 1/2 (m/z) | DP (V) | CE 1/2 (V) |
---|---|---|---|---|---|
β-lactams | Amoxycillin * | 366 | 349/208 | 45 | 14/18 |
Ampicillin * | 350 | 106/160 | 58 | 27/19 | |
Penicillin G * | 335 | 160/176 | 60 | 17/19 | |
Penicillin V | 351 | 160/114 | 54 | 17/48 | |
Oxacillin * | 402 | 160/243 | 50 | 18/18 | |
Cloxacillin | 436 | 160/277 | 50 | 20/20 | |
Nafcillin * | 415 | 199/171 | 50 | 20/50 | |
Dicloxacillin * | 470 | 160/311 | 50 | 20/20 | |
Cephapirin * | 424 | 154/124 | 50 | 35/70 | |
Cefoperazone * | 646 | 530/143 | 60 | 17/50 | |
Cephalexin * | 348 | 158/106 | 50 | 10/23 | |
Cefquinome * | 529 | 134/125 | 50 | 25/75 | |
Cefazolin * | 455 | 323/156 | 50 | 15/23 | |
Cefalonium * | 459 | 337/152 | 46 | 16/28 | |
Ceftiofur * | 524 | 241/125 | 50 | 25/70 | |
Sulphonamides | Sulfaguanidine | 215 | 156/108 | 20 | 20/30 |
Sulfadiazine | 251 | 156/108 | 53 | 22/30 | |
Sulfathiazole * | 256 | 156/108 | 53 | 20/34 | |
Sulfamerazine * | 265 | 156/108 | 45 | 25/37 | |
Sulfamethazine * | 279 | 156/108 | 50 | 25/36 | |
Sulfamethoxazole * | 254 | 156/108 | 50 | 23/35 | |
Sulfamethoxypyridazine | 281 | 156/108 | 60 | 25/35 | |
Sulfamonomethoxine * | 281 | 156/108 | 50 | 23/37 | |
Sulfadoxine | 311 | 156/108 | 60 | 25/40 | |
Sulfadimethoxine * | 311 | 156/108 | 50 | 23/37 | |
Sulfaquinoxaline | 301 | 156/108 | 50 | 23/40 | |
Diaminopyrimidines | Trimethoprim * | 292 | 231/262 | 52 | 33/36 |
Macrolides | Tylosin * | 916 | 174/772 | 110 | 52/42 |
Erythromycin * | 734 | 158/576 | 75 | 42/27 | |
Spiramycin * | 843 | 174/540 | 120 | 52/44 | |
Tilmicosin * | 869 | 174/696 | 135 | 61/56 | |
Josamycin * | 828 | 174/229 | 80 | 46/44 | |
Tulathromycin | 806 | 577/158 | 95 | 37/59 | |
(Fluoro)quinolones | Danofloxacin * | 358 | 340/255 | 60 | 33/50 |
Difloxacin * | 400 | 382/356 | 50 | 30/28 | |
Enrofloxacin * | 360 | 342/286 | 72 | 30/50 | |
Ciprofloxacin * | 332 | 314/231 | 61 | 30/47 | |
Flumequine * | 262 | 244/202 | 44 | 25/45 | |
Sarafloxacin * | 386 | 368/348 | 50 | 31/46 | |
Marbofloxacin * | 363 | 345/320 | 70 | 30/22 | |
Norfloxacin * | 320 | 302/231 | 60 | 33/50 | |
Oxolinic acid * | 262 | 244/216 | 53 | 25/40 | |
Nalidixic acid * | 233 | 215/187 | 42 | 30/35 | |
Pleuromutilines | Tiamulin * | 494 | 192/118 | 128 | 30/56 |
Valnemulin | 565 | 263/164 | 45 | 20/40 | |
Tetracyclines | Chlortetracycline * | 479 | 444/462 | 56 | 31/25 |
Tetracycline * | 445 | 410/427 | 36 | 27/19 | |
Doxycycline * | 445 | 428/154 | 55 | 25/42 | |
Oxytetracycline * | 461 | 426/443 | 41 | 27/19 | |
Aminoglycosides | Streptomycin * | 582 | 263/246 | 166 | 45/52 |
Dihydrostreptomycin * | 584 | 263/246 | 150 | 42/53 | |
Gentamycin | 478 | 322/157 | 44 | 22/31 | |
Paromomycin | 616 | 163/293 | 112 | 49/33 | |
Spectinomycin * | 351 | 333/207 | 67 | 27/32 | |
Kanamycin | 485 | 163/205 | 70 | 35/36 | |
Neomycin * | 615 | 161/163 | 109 | 46/33 | |
Lincosamides | Lincomycin * | 407 | 126/359 | 74 | 36/28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajda, A.; Błądek, T.; Gbylik-Sikorska, M.; Nowacka-Kozak, E.; Angastiniotis, K.; Simitopoulou, M.; Kefalas, G.; Ferrari, P.; Levallois, P.; Fourichon, C.; et al. Analysis of Antimicrobials in Muscle and Drinking Water in Terms of Reducing the Need of Antimicrobial Use by Increasing the Health and Welfare of Pig and Broiler. Antibiotics 2023, 12, 326. https://doi.org/10.3390/antibiotics12020326
Gajda A, Błądek T, Gbylik-Sikorska M, Nowacka-Kozak E, Angastiniotis K, Simitopoulou M, Kefalas G, Ferrari P, Levallois P, Fourichon C, et al. Analysis of Antimicrobials in Muscle and Drinking Water in Terms of Reducing the Need of Antimicrobial Use by Increasing the Health and Welfare of Pig and Broiler. Antibiotics. 2023; 12(2):326. https://doi.org/10.3390/antibiotics12020326
Chicago/Turabian StyleGajda, Anna, Tomasz Błądek, Małgorzata Gbylik-Sikorska, Ewelina Nowacka-Kozak, Kyriacos Angastiniotis, Maro Simitopoulou, George Kefalas, Paolo Ferrari, Pierre Levallois, Christine Fourichon, and et al. 2023. "Analysis of Antimicrobials in Muscle and Drinking Water in Terms of Reducing the Need of Antimicrobial Use by Increasing the Health and Welfare of Pig and Broiler" Antibiotics 12, no. 2: 326. https://doi.org/10.3390/antibiotics12020326
APA StyleGajda, A., Błądek, T., Gbylik-Sikorska, M., Nowacka-Kozak, E., Angastiniotis, K., Simitopoulou, M., Kefalas, G., Ferrari, P., Levallois, P., Fourichon, C., Wolthuis-Fillerup, M., & De Roest, K. (2023). Analysis of Antimicrobials in Muscle and Drinking Water in Terms of Reducing the Need of Antimicrobial Use by Increasing the Health and Welfare of Pig and Broiler. Antibiotics, 12(2), 326. https://doi.org/10.3390/antibiotics12020326