Comparison of the NG-Test Carba 5, Colloidal Gold Immunoassay (CGI) Test, and Xpert Carba-R for the Rapid Detection of Carbapenemases in Carbapenemase-Producing Organisms
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Strain Source
4.2. Whole-Genome Sequencing and Genome Analysis
4.3. NG-Test Carba 5 Assay
4.4. Colloidal Gold Immunoassay (CGI) Test
4.5. Xpert Carba-R Assay
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [CrossRef]
- Zhang, Y.; Wang, Q.; Yin, Y.; Chen, H.; Jin, L.; Gu, B.; Xie, L.; Yang, C.; Ma, X.; Li, H.; et al. Epidemiology of Carbapenem-Resistant Enterobacteriaceae Infections: Report from the China CRE Network. Antimicrob. Agents Chemother. 2018, 62, e01882-17. [Google Scholar] [CrossRef]
- van Duin, D.; Arias, C.A.; Komarow, L.; Chen, L.; Hanson, B.M.; Weston, G.; Cober, E.; Garner, O.B.; Jacob, J.T.; Satlin, M.J.; et al. Molecular and clinical epidemiology of carbapenem-resistant Enterobacterales in the USA (CRACKLE-2): A prospective cohort study. Lancet Infect. Dis. 2020, 20, 731–741. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, 821–830. [Google Scholar] [CrossRef]
- Han, R.; Shi, Q.; Wu, S.; Yin, D.; Peng, M.; Dong, D.; Zheng, Y.; Guo, Y.; Zhang, R.; Hu, F. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated From Adult and Children Patients in China. Front. Cell. Infect. Microbiol. 2020, 10, 314. [Google Scholar] [CrossRef]
- Shirley, M. Ceftazidime-Avibactam: A Review in the Treatment of Serious Gram-Negative Bacterial Infections. Drugs 2018, 78, 675–692. [Google Scholar] [CrossRef]
- Nordmann, P.; Sadek, M.; Demord, A.; Poirel, L. NitroSpeed-Carba NP Test for Rapid Detection and Differentiation between Different Classes of Carbapenemases in Enterobacterales. J. Clin. Microbiol. 2020, 58, e00932-20. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, D.; Li, Y.; Liu, Y.; Qin, X. Comparison of the Performance of Phenotypic Methods for the Detection of Carbapenem-Resistant Enterobacteriaceae (CRE) in Clinical Practice. Front. Cell. Infect. Microbiol. 2022, 12, 849564. [Google Scholar] [CrossRef]
- Liu, Z.; Bai, L.; Liu, J.; Lei, J.; Gao, X.; Tenover, F.C.; Lei, K.; Tang, Y.W.; Geng, Y.; He, A. Parallel Validation of the NG-Test Carba 5 and the Xpert Carba-R for Detection and Characterization of Carbapenem-Resistant Enterobacterales Causing Bloodstream Infections. J. Mol. Diagn. JMD 2021, 23, 1007–1014. [Google Scholar] [CrossRef]
- Huang, Y.T.; Kuo, Y.W.; Lee, N.Y.; Tien, N.; Liao, C.H.; Teng, L.J.; Ko, W.C.; Hsueh, P.R. Evaluating NG-Test CARBA 5 Multiplex Immunochromatographic and Cepheid Xpert CARBA-R Assays among Carbapenem-Resistant Enterobacterales Isolates Associated with Bloodstream Infection. Microbiol. Spectr. 2022, 10, e0172821. [Google Scholar] [CrossRef]
- Cury, A.P.; Almeida Junior, J.N.; Costa, S.F.; Salomão, M.C.; Boszczowski, Í.; Duarte, A.J.S.; Rossi, F. Diagnostic performance of the Xpert Carba-R™ assay directly from rectal swabs for active surveillance of carbapenemase-producing organisms in the largest Brazilian University Hospital. J. Microbiol. Methods 2020, 171, 105884. [Google Scholar] [CrossRef]
- Yoo, I.Y.; Shin, D.P.; Heo, W.; Ha, S.I.; Cha, Y.J.; Park, Y.J. Comparison of BD MAX Check-Points CPO assay with Cepheid Xpert Carba-R assay for the detection of carbapenemase-producing Enterobacteriaceae directly from rectal swabs. Diagn. Microbiol. Infect. Dis. 2022, 103, 115716. [Google Scholar] [CrossRef]
- Ratnayake, L.; Ang, H.Z.; Ong, C.H.; Chan, D.S.G. An optimized algorithm with improved turnaround time for detection of carbapenemase-producing Enterobacterales using the NG Test CARBA 5 in a routine laboratory. J. Med Microbiol. 2020, 69, 228–232. [Google Scholar] [CrossRef]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne bla(KPC-3) Mutations during Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2016, 63, 1615–1618. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Liu, C.; Zhang, Y.; Cheung, Y.C.; Wai Chi Chan, E.; Chen, S.; Zhang, R. Identification of a KPC Variant Conferring Resistance to Ceftazidime-Avibactam from ST11 Carbapenem-Resistant Klebsiella pneumoniae Strains. Microbiol. Spectr. 2022, 10, e0265521. [Google Scholar] [CrossRef]
- Livermore, D.M.; Warner, M.; Jamrozy, D.; Mushtaq, S.; Nichols, W.W.; Mustafa, N.; Woodford, N. In vitro selection of ceftazidime-avibactam resistance in Enterobacteriaceae with KPC-3 carbapenemase. Antimicrob. Agents Chemother. 2015, 59, 5324–5330. [Google Scholar] [CrossRef]
- Barnes, M.D.; Winkler, M.L.; Taracila, M.A.; Page, M.G.; Desarbre, E.; Kreiswirth, B.N.; Shields, R.K.; Nguyen, M.H.; Clancy, C.; Spellberg, B.; et al. Klebsiella pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering. mBio 2017, 8, e00528-17. [Google Scholar] [CrossRef]
- Haidar, G.; Clancy, C.J.; Shields, R.K.; Hao, B.; Cheng, S.; Nguyen, M.H. Mutations in bla(KPC-3) That Confer Ceftazidime-Avibactam Resistance Encode Novel KPC-3 Variants That Function as Extended-Spectrum β-Lactamases. Antimicrob. Agents Chemother. 2017, 61, e02534-16. [Google Scholar] [CrossRef]
- Ding, L.; Shi, Q.; Han, R.; Yin, D.; Wu, S.; Yang, Y.; Guo, Y.; Zhu, D.; Hu, F. Comparison of Four Carbapenemase Detection Methods for bla(KPC-2) Variants. Microbiol. Spectr. 2021, 9, e0095421. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Bondi, A.; Ghibaudo, D.; Zanotto, E.; Peradotto, M.; Cavallo, R.; Costa, C. Carbapenemase detection testing in the era of ceftazidime/avibactam-resistant KPC-producing Enterobacterales: A 2-year experience. J. Glob. Antimicrob. Resist. 2021, 24, 411–414. [Google Scholar] [CrossRef]
- Oueslati, S.; Tlili, L.; Exilie, C.; Bernabeu, S.; Iorga, B.; Bonnin, R.A.; Dortet, L.; Naas, T. Different phenotypic expression of KPC β-lactamase variants and challenges in their detection. J. Antimicrob. Chemother. 2020, 75, 769–771. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, L.; Zhou, H.; Chan, E.W.; Li, J.; Fang, Y.; Li, Y.; Liao, K.; Chen, S. Nationwide Surveillance of Clinical Carbapenem-resistant Enterobacteriaceae (CRE) Strains in China. EBioMedicine 2017, 19, 98–106. [Google Scholar] [CrossRef]
- Kanahashi, T.; Matsumura, Y.; Yamamoto, M.; Tanaka, M.; Nagao, M. Comparison of the Xpert Carba-R and NG-Test CARBA5 for the detection of carbapenemases in an IMP-type carbapenemase endemic region in Japan. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2021, 27, 503–506. [Google Scholar] [CrossRef]
- Boutal, H.; Vogel, A.; Bernabeu, S.; Devilliers, K.; Creton, E.; Cotellon, G.; Plaisance, M.; Oueslati, S.; Dortet, L.; Jousset, A.; et al. A multiplex lateral flow immunoassay for the rapid identification of NDM-, KPC-, IMP- and VIM-type and OXA-48-like carbapenemase-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 909–915. [Google Scholar] [CrossRef]
- Hopkins, K.L.; Meunier, D.; Naas, T.; Volland, H.; Woodford, N. Evaluation of the NG-Test CARBA 5 multiplex immunochromatographic assay for the detection of KPC, OXA-48-like, NDM, VIM and IMP carbapenemases. J. Antimicrob. Chemother. 2018, 73, 3523–3526. [Google Scholar] [CrossRef]
- Potron, A.; Fournier, D.; Emeraud, C.; Triponney, P.; Plésiat, P.; Naas, T.; Dortet, L. Evaluation of the Immunochromatographic NG-Test Carba 5 for Rapid Identification of Carbapenemase in Nonfermenters. Antimicrob. Agents Chemother. 2019, 63, e00968-19. [Google Scholar] [CrossRef]
- Takissian, J.; Bonnin, R.A.; Naas, T.; Dortet, L. NG-Test Carba 5 for Rapid Detection of Carbapenemase-Producing Enterobacterales from Positive Blood Cultures. Antimicrob. Agents Chemother. 2019, 63, e00011-19. [Google Scholar] [CrossRef]
- Jenkins, S.; Ledeboer, N.A.; Westblade, L.F.; Burnham, C.A.; Faron, M.L.; Bergman, Y.; Yee, R.; Mesich, B.; Gerstbrein, D.; Wallace, M.A.; et al. Evaluation of NG-Test Carba 5 for Rapid Phenotypic Detection and Differentiation of Five Common Carbapenemase Families: Results of a Multicenter Clinical Evaluation. J. Clin. Microbiol. 2020, 58, e00344-20. [Google Scholar] [CrossRef]
Genes | NG-Test Carba 5 | CGI Test | Xpert Carba-R | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
TP | FP | FN | TN | Se (95% CI) | Sp (95% CI) | κ (95% CI) | TP | FP | FN | TN | Se (95% CI) | Sp (95% CI) | κ (95% CI) | TP | FP | FN | TN | Se (95% CI) | Sp (95% CI) | κ (95% CI) | |
blaKPC | 127 | 0 | 6 | 59 | 95.49 (90.02–98.15)% | 100.00 (92.38–100.00)% | 0.93 (0.87–0.99) | 131 | 0 | 2 | 59 | 98.50 (94.12–99.74)% | 100.00 (92.38–100.00)% | 0.98 (0.92–1.00) | 133 | 0 | 0 | 59 | 100.00 (96.50–100.00)% | 100.00 (92.38–100.00)% | 1.00 (1.00–1.00) |
blaNDM | 44 | 0 | 0 | 148 | 100.00 (90.00–100.00)% | 100.00 (96.85–100.00)% | 1.00 (1.00–1.00) | 44 | 0 | 0 | 148 | 100.00 (90.00–100.00)% | 100.00 (96.85–100.00)% | 1.00 (1.00–1.00) | 43 | 1 | 1 | 147 | 97.73 (86.49–99.88)% | 99.32 (95.73–99.96)% | 0.97 (0.93–1.00) |
blaIMP | 13 | 0 | 0 | 179 | 100.00 (71.66–100.00)% | 100.00 (97.38–100.00)% | 1.00 (1.00–1.00) | 9 | 0 | 4 | 179 | 69.23 (38.89–89.64)% | 100.00 (97.38–100.00)% | 0.81 (0.62–0.99) | 10 | 0 | 3 | 179 | 76.92 (45.98–93.83)% | 100.00 (97.38–100.00)% | 0.86 (0.71–1.00) |
blaOXA-48-like | 2 | 0 | 0 | 190 | 100.00 (19.79–100.00)% | 100.00 (97.53–100.00)% | 1.00 (1.00–1.00) | 2 | 0 | 0 | 190 | 100.00 (19.79–100.00)% | 100.00 (97.53–100.00)% | 1.00 (1.00–1.00) | 2 | 0 | 0 | 190 | 100.00 (19.79–100.00)% | 100.00 (97.53–100.00)% | 1.00 (1.00–1.00) |
Cabapenemase Genes | Amino Acid Substitution | Susceptibility of CZA | Organism(n) | Detection Results | ||
---|---|---|---|---|---|---|
NG-Test Carba 5 | CGI Test | Xpert Carba-R | ||||
blaKPC-2 | S | Klebsiella pneumoniae(120) | KPC | KPC | KPC | |
blaKPC-3 | S | Klebsiella pneumoniae(1) | KPC | KPC | KPC | |
blaKPC-25 | ins166_EL | S | Klebsiella pneumoniae(1) | KPC | KPC | KPC |
blaKPC-33 | D179Y | R | Klebsiella pneumoniae(1) | - | KPC | KPC |
blaKPC-35 | L196P | R | Klebsiella pneumoniae(1) | KPC | KPC | KPC |
blaKPC-51 | D179N + Y241H + H274N | R | Klebsiella pneumoniae(1) | KPC | KPC | KPC |
blaKPC-52 | D179Y + ins262_V | R | Klebsiella pneumoniae(1) | - | KPC | KPC |
blaKPC-71 | ins182_S | R | Klebsiella pneumoniae(1) | - | KPC | KPC |
blaKPC-76 | D179Y + 262V_268N dup | R | Klebsiella pneumoniae(1) | - | - | KPC |
blaKPC-77 | R164P | S | Klebsiella pneumoniae(1) | - | KPC | KPC |
blaKPC-78 | D179A | R | Klebsiella pneumoniae(1) | KPC | KPC | KPC |
blaKPC-93 | ins267_PNNRA | R | Klebsiella pneumoniae(1) | KPC | KPC | KPC |
blaKPC-123 | ins179_TY + ins270_DDKHSEA | R | Citrobacter koseri(1) | - | - | KPC |
Cabapenemase Genes | Number | Organism(Number) | Detection Results | ||
---|---|---|---|---|---|
NG-Test Carba 5 | CGI Test | Xpert Carba-R | |||
blaIMP-1 | 2 | Pseudomonas aeruginosa(2) | IMP | IMP | IMP |
blaIMP-4 | 4 | Klebsiella oxytoca(3) | IMP | IMP | IMP |
Aeromonas hydrophila(1) | IMP | IMP | NDM | ||
blaIMP-8 | 2 | Pseudomonas aeruginosa(1) | IMP | IMP | - |
Aeromonas hydrophila(1) | IMP | - | - | ||
blaIMP-25 | 1 | Pseudomonas aeruginosa(1) | IMP | IMP | IMP |
blaIMP-26 | 2 | Klebsiella pneumoniae(2) | IMP | IMP | IMP |
IMP | - | IMP | |||
blaIMP-30 | 2 | Klebsiella pneumoniae(2) | IMP | - | IMP |
IMP | - | IMP |
Carbapenemase Genes | Organism(n) | Detection Results | ||
---|---|---|---|---|
NG-Test Carba 5 | CGI Test | Xpert Carba-R | ||
blaKPC-2 + blaIMP-4 | Klebsiella pneumoniae(1) | KPC + IMP | KPC | KPC + IMP |
blaKPC-2 + blaIMP-4 | Klebsiella variicola (1) | KPC + IMP | KPC | KPC + IMP |
blaKPC-2 + blaIMP-4 | Klebsiella oxytoca(1) | KPC + IMP | KPC | KPC + IMP |
blaKPC-2 + blaNDM-1 | Citrobacter freundii(1) | KPC + NDM | KPC + NDM | KPC + NDM |
blaKPC-2 + blaNDM-1 | Citrobacter freundii(1) | KPC + NDM | KPC + NDM | KPC + NDM |
blaKPC-2 + blaNDM-1 | Klebsiella oxytoca(1) | KPC + NDM | KPC + NDM | KPC + NDM |
blaKPC-2 + blaNDM-1 | Enterobacter kobei(1) | KPC + NDM | KPC + NDM | KPC + NDM |
blaKPC-2 + blaNDM-1 | Klebsiella oxytoca(1) | KPC + NDM | KPC + NDM | KPC + NDM |
blaKPC-2 + blaNDM-1 | Raoultella ornithinolytica(1) | KPC + NDM | KPC + NDM | KPC + NDM |
blaKPC-2 + blaNDM-1 + blaIMP-4 | Klebsiella michiganensis (1) | NDM + KPC + IMP | NDM + KPC + IMP | KPC + NDM |
blaIMP-45 + blaNDM-1 | Pseudomonas aeruginosa(1) | IMP + NDM | IMP + NDM | IMP |
blaIMP-45 + blaNDM-1 | Pseudomonas aeruginosa(1) | IMP + NDM | IMP + NDM | IMP |
blaNDM-1 + blaIMP-4 | Klebsiella oxytoca(1) | NDM + IMP | NDM | NDM + IMP |
blaNDM-1 + blaIMP-4 | Klebsiella oxytoca(1) | NDM + IMP | NDM | NDM + IMP |
blaVIM-1 + blaNDM-1 | Enterobacter cloacae(1) | VIM + NDM | VIM + NDM | VIM + NDM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, D.; Yan, Z.; Cai, C.; Li, J.; Zhang, Y.; Wu, Y.; Yang, J.; Huang, Y.; Zhang, R.; Wu, Y. Comparison of the NG-Test Carba 5, Colloidal Gold Immunoassay (CGI) Test, and Xpert Carba-R for the Rapid Detection of Carbapenemases in Carbapenemase-Producing Organisms. Antibiotics 2023, 12, 300. https://doi.org/10.3390/antibiotics12020300
Gu D, Yan Z, Cai C, Li J, Zhang Y, Wu Y, Yang J, Huang Y, Zhang R, Wu Y. Comparison of the NG-Test Carba 5, Colloidal Gold Immunoassay (CGI) Test, and Xpert Carba-R for the Rapid Detection of Carbapenemases in Carbapenemase-Producing Organisms. Antibiotics. 2023; 12(2):300. https://doi.org/10.3390/antibiotics12020300
Chicago/Turabian StyleGu, Danxia, Zelin Yan, Chang Cai, Jiaping Li, Yanyan Zhang, Yuchen Wu, Jiaxing Yang, Yonglu Huang, Rong Zhang, and Yongning Wu. 2023. "Comparison of the NG-Test Carba 5, Colloidal Gold Immunoassay (CGI) Test, and Xpert Carba-R for the Rapid Detection of Carbapenemases in Carbapenemase-Producing Organisms" Antibiotics 12, no. 2: 300. https://doi.org/10.3390/antibiotics12020300
APA StyleGu, D., Yan, Z., Cai, C., Li, J., Zhang, Y., Wu, Y., Yang, J., Huang, Y., Zhang, R., & Wu, Y. (2023). Comparison of the NG-Test Carba 5, Colloidal Gold Immunoassay (CGI) Test, and Xpert Carba-R for the Rapid Detection of Carbapenemases in Carbapenemase-Producing Organisms. Antibiotics, 12(2), 300. https://doi.org/10.3390/antibiotics12020300