Antimicrobial Stewardship Techniques for Critically Ill Patients with Pneumonia
Abstract
:1. Introduction
2. Utilization of Procalcitonin
2.1. Clinical Relevance
2.2. Impact on Antimicrobial Stewardship
2.2.1. Timing
2.2.2. False Elevation
2.2.3. De-Escalation Tool
2.3. Conclusions
3. Methicillin-Resistant Staphylococcus aureus Nasal Polymerase Chain Reaction Utilization
3.1. Clinical Relevance
3.2. Impact on Antimicrobial Stewardship
3.2.1. MRSA Nares Negative Predictive Values
3.2.2. Timing
3.2.3. Implementation Protocols
3.3. Conclusions
4. Rapid Diagnostics: Rapid Respiratory Panel
4.1. Clinical Relevance
4.2. Impact on Antimicrobial Stewardship
4.2.1. Benefits of RRPs
4.2.2. Limitations
4.3. Conclusions
5. Microbiology Reporting Techniques
5.1. Clinical Relevance
5.2. Impact on Antimicrobial Stewardship
5.2.1. Respiratory Culture Gram-Stain-Directed Therapy
5.2.2. Reporting the Presence of Staphylococcus aureus and Pseudomonas aeruginosa
5.2.3. Antibiogram Updates
5.2.4. Rapid Phenotypic Susceptibility Report
5.2.5. Cascade Reporting
5.3. Conclusions
6. Viral Causes of Pneumonia
6.1. Clinical Relevance
6.2. Impact on Antimicrobial Stewardship
6.2.1. Procalcitonin in Viral Infections
6.2.2. MRSA Co-Infection with SARS-CoV-2
6.3. Conclusions
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koenig, S.M.; Truwit, J.D. Ventilator-associated pneumonia: Diagnosis, treatment, and prevention. Clin. Microbiol. Rev. 2006, 19, 637–657. [Google Scholar] [CrossRef]
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of Adults with Hospital-acquired and Ventilator-associated Pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin. Infect. Dis. 2016, 63, e61–e111. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Esposito, S.; Capuano, A.; Noviello, S.; Mazzeo, F.; Ianniello, F.; Filippelli, A.; Rossi, F.; Leone, S. Modification of patients’ endogenous bacterial flora during hospitalization in a large teaching hospital in Naples. J. Chemother. 2003, 15, 568–573. [Google Scholar] [CrossRef]
- Mohanad, A. 5 Most Common Hospital Acquired Infections (HAIs). 2021. Available online: https://inivos.com/blog/5-most-common-hospital-acquired-infections-hais/ (accessed on 15 December 2022).
- About Antimicrobial Resistance. 5 October 2022. Available online: https://www.cdc.gov/drugresistance/about.html (accessed on 15 December 2022).
- Teshome, B.F.; Vouri, S.M.; Hampton, N.B.; Kollef, M.H.; Micek, S.T. Evaluation of a ceiling effect on the association of new resistance development to antipseudomonal beta-lactam exposure in the critically ill. Infect. Control Hosp. Epidemiol. 2020, 41, 484–485. [Google Scholar] [CrossRef]
- Hayajneh, W.A.; Al-Azzam, S.; Yusef, D.; Lattyak, W.J.; Lattyak, E.A.; Gould, I.; López-Lozano, J.-M.; Conway, B.R.; Conlon-Bingham, G.; Aldeyab, M.A. Identification of thresholds in relationships between specific antibiotic use and carbapenem-resistant Acinetobacter baumannii (CRAb) incidence rates in hospitalized patients in Jordan. J. Antimicrob. Chemother. 2021, 76, 524–530. [Google Scholar] [CrossRef]
- Karzai, W.; Oberhoffer, M.; Meier-Hellmann, A.; Reinhart, K. Procalcitonin—A new indicator of the systemic response to severe infections. Infection 1997, 25, 329–334. [Google Scholar] [CrossRef]
- Becker, K.L.; Snider, R.; Nylen, E.S. Procalcitonin assay in systemic inflammation, infection, and sepsis: Clinical utility and limitations. Crit. Care Med. 2008, 36, 941–952. [Google Scholar] [CrossRef]
- Christ-Crain, M.; Jaccard-Stolz, D.; Bingisser, R.; Gencay, M.M.; Huber, P.R.; Tamm, M.; Müller, B. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: Cluster-randomised, single-blinded intervention trial. Lancet 2004, 363, 600–607. [Google Scholar] [CrossRef]
- Self, W.H.; Balk, R.A.; Grijalva, C.G.; Williams, D.J.; Zhu, Y.; Anderson, E.J.; Waterer, G.W.; Courtney, D.M.; Bramley, A.M.; Trabue, C.; et al. Procalcitonin as a Marker of Etiology in Adults Hospitalized with Community-Acquired Pneumonia. Clin. Infect. Dis. 2017, 65, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Schuetz, P.; Birkhahn, R.; Sherwin, R.; Jones, A.E.; Singer, A.; Kline, J.A.; Runyon, M.S.; Self, W.H.; Courtney, D.M.; Nowak, R.M.; et al. Serial Procalcitonin Predicts Mortality in Severe Sepsis Patients: Results From the Multicenter Procalcitonin MOnitoring SEpsis (MOSES) Study. Crit. Care Med. 2017, 45, 781–789. [Google Scholar] [CrossRef]
- Kamat, I.S.; Ramachandran, V.; Eswaran, H.; Guffey, D.; Musher, D.M. Procalcitonin to Distinguish Viral from Bacterial Pneumonia: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2020, 70, 538–542. [Google Scholar] [CrossRef]
- Huang, D.T.; Yealy, D.M.; Filbin, M.R.; Brown, A.M.; Chang, C.-C.H.; Doi, Y.; Donnino, M.W.; Fine, J.; Fine, M.J.; Fischer, M.A.; et al. Procalcitonin-Guided Use of Antibiotics for Lower Respiratory Tract Infection. N. Engl. J. Med. 2018, 379, 236–249. [Google Scholar] [CrossRef]
- Bouadma, L.; Luyt, C.-E.; Tubach, F.; Cracco, C.; Alvarez, A.; Schwebel, C.; Schortgen, F.; Lasocki, S.; Veber, B.; Dehoux, M.; et al. Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): A multicentre randomised controlled trial. Lancet 2010, 375, 463–474. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef]
- Hoeboer, S.H.; van der Geest, P.; Nieboer, D.; Groeneveld, A. The diagnostic accuracy of procalcitonin for bacteraemia: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2015, 21, 474–481. [Google Scholar] [CrossRef]
- Goodlet, K.J.; Cameron, E.A.; Nailor, M.D. Low Sensitivity of Procalcitonin for Bacteremia at an Academic Medical Center: A Cautionary Tale for Antimicrobial Stewardship. Open Forum Infect. Dis. 2020, 7, ofaa096. [Google Scholar] [CrossRef]
- Eder, J.; Hlavin, G.; Haushofer, A.; Trubert-Exinger, D.; Trautinger, F. Correlation of serum procalcitonin with the severity of skin and skin structure infections—A pilot study. J. Dtsch. Dermatol. Ges. 2012, 10, 564–571. [Google Scholar] [CrossRef]
- Dandona, P.; Nix, D.; Wilson, M.F.; Aljada, A.; Love, J.; Assicot, M.; Bohuon, C. Procalcitonin increase after endotoxin injection in normal subjects. J. Clin. Endocrinol. Metab. 1994, 79, 1605–1608. [Google Scholar]
- Muller, B.; Harbarth, S.; Stolz, D.; Bingisser, R.; Mueller, C.; Leuppi, J.; Nusbaumer, C.; Tamm, M.; Christ-Crain, M. Diagnostic and prognostic accuracy of clinical and laboratory parameters in community-acquired pneumonia. BMC Infect. Dis. 2007, 7, 10. [Google Scholar] [CrossRef]
- Gowin, E.; Wysocki, J. Limited diagnostic value of procalcitonin in early diagnosis of adult onset Still’s disease. Reumatologia 2016, 54, 207–211. [Google Scholar] [CrossRef]
- Preas, H.L., II; Nylen, E.S.; Snider, R.H.; Becker, K.L.; White, J.C.; Agosti, J.M.; Suffredini, A.F. Effects of anti-inflammatory agents on serum levels of calcitonin precursors during human experimental endotoxemia. J. Infect. Dis. 2001, 184, 373–376. [Google Scholar] [CrossRef]
- Mazaheri, T.; Ranasinghe, R.; Al-Hasani, W.; Luxton, J.; Kearney, J.; Manning, A.; Dimitriadis, G.K.; Mare, T.; Vincent, R.P. A cytokine panel and procalcitonin in COVID-19, a comparison between intensive care and non-intensive care patients. PLoS ONE 2022, 17, e0266652. [Google Scholar] [CrossRef]
- Klingele, M.; Bomberg, H.; Schuster, S.; Schäfers, H.-J.; Groesdonk, H.V. Prognostic value of procalcitonin in patients after elective cardiac surgery: A prospective cohort study. Ann. Intensive Care 2016, 6, 116. [Google Scholar] [CrossRef]
- Huh, J.W.; Lim, C.-M.; Koh, Y.; Hong, S.-B.; Kim, W.Y. A comparison of acute kidney injury classifications in patients with severe sepsis and septic shock. Am. J. Med. Sci. 2012, 344, 350–356. [Google Scholar] [CrossRef]
- Lopes, J.A.; Fernandes, P.; Jorge, S.; Gonçalves, S.; Alvarez, A.; E Silva, Z.C.; França, C.; Prata, M.M. Acute kidney injury in intensive care unit patients: A comparison between the RIFLE and the Acute Kidney Injury Network classifications. Crit. Care 2008, 12, R110. [Google Scholar] [CrossRef]
- Macedo, E.; Malhotra, R.; Granado, R.C.-D.; Fedullo, P.; Mehta, R.L. Defining urine output criterion for acute kidney injury in critically ill patients. Nephrol. Dial. Transplant. 2011, 26, 509–515. [Google Scholar] [CrossRef]
- Heilmann, E.; Gregoriano, C.; Wirz, Y.; Luyt, C.-E.; Wolff, M.; Chastre, J.; Tubach, F.; Christ-Crain, M.; Bouadma, L.; Annane, D.; et al. Association of kidney function with effectiveness of procalcitonin-guided antibiotic treatment: A patient-level meta-analysis from randomized controlled trials. Clin. Chem. Lab. Med. 2020, 59, 441–453. [Google Scholar] [CrossRef]
- Wu, S.C.; Liang, C.; Zhang, Y.; Hu, W. Elevated serum procalcitonin level in patients with chronic kidney disease without infection: A case-control study. J. Clin. Lab. Anal. 2020, 34, e23065. [Google Scholar] [CrossRef]
- Trimarchi, H.; Dicugno, M.; Muryan, A.; Lombi, F.; Iturbe, L.; Raña, M.S.; Young, P.; Nau, K.; Iriarte, R.; Pomeranz, V.; et al. Pro-calcitonin and inflammation in chronic hemodialysis. Medicina 2013, 73, 411–416. [Google Scholar]
- Rodriguez, A.; Rodríguez, L.F.; Reyes, J.; Monclou, B.; Suberviola, M.; Bodí, G.; Sirgo, J.; Solé-Violán, J.; Guardiola, J.; Barahona, D.; et al. Relationship between acute kidney injury and serum procalcitonin (PCT) concentration in critically ill patients with influenza infection. Med. Intensiva 2018, 42, 399–408. [Google Scholar] [CrossRef]
- Lam, S.W.; Bauer, S.R.; Fowler, R.; Duggal, A. Systematic Review and Meta-Analysis of Procalcitonin-Guidance versus Usual Care for Antimicrobial Management in Critically Ill Patients: Focus on Subgroups Based on Antibiotic Initiation, Cessation, or Mixed Strategies. Crit. Care Med. 2018, 46, 684–690. [Google Scholar] [CrossRef] [PubMed]
- Shorr, A.F.; Tabak, Y.P.; Gupta, V.; Johannes, R.; Liu, L.Z.; Kollef, M.H. Morbidity and cost burden of methicillin-resistant Staphylococcus aureus in early onset ventilator-associated pneumonia. Crit. Care 2006, 10, R97. [Google Scholar] [CrossRef] [PubMed]
- Colaneri, M.; Di Carlo, D.; Amatu, A.; Marvulli, L.N.; Corbella, M.; Petazzoni, G.; Cambieri, P.; Muzzi, A.; Bandi, C.; Di Matteo, A.; et al. Ventilator-Associated Pneumonia Due to MRSA vs. MSSA: What Should Guide Empiric Therapy? Antibiotics 2022, 11, 851. [Google Scholar] [CrossRef] [PubMed]
- Turner, S.C.; Seligson, N.D.; Parag, B.; Shea, K.M.; Hobbs, A.L. Evaluation of the timing of MRSA PCR nasal screening: How long can a negative assay be used to rule out MRSA-positive respiratory cultures? Am. J. Health Syst. Pharm. 2021, 78 (Suppl. S2), S57–S61. [Google Scholar] [CrossRef] [PubMed]
- Ziakas, P.D.; Anagnostou, T.; Mylonakis, E. The prevalence and significance of methicillin-resistant Staphylococcus aureus colonization at admission in the general ICU Setting: A meta-analysis of published studies. Crit. Care Med. 2014, 42, 433–444. [Google Scholar] [CrossRef]
- Dangerfield, B.; Chung, A.; Webb, B.; Seville, M.T. Predictive value of methicillin-resistant Staphylococcus aureus (MRSA) nasal swab PCR assay for MRSA pneumonia. Antimicrob. Agents Chemother. 2014, 58, 859–864. [Google Scholar] [CrossRef]
- Tai, C.H.; Liu, W.-L.; Pan, S.-C.; Ku, S.-C.; Lin, F.-J.; Wu, C.-C. Evaluation of the Negative Predictive Value of Methicillin-Resistant Staphylococcus aureus Nasal Swab Screening in the Medical Intensive Care Units and Its Effect on Antibiotic Duration. Infect. Drug Resist. 2022, 15, 1259–1266. [Google Scholar] [CrossRef]
- Parente, D.M.; Cunha, C.; Mylonakis, E.; Timbrook, T.T. The Clinical Utility of Methicillin-Resistant Staphylococcus aureus (MRSA) Nasal Screening to Rule Out MRSA Pneumonia: A Diagnostic Meta-analysis with Antimicrobial Stewardship Implications. Clin. Infect. Dis. 2018, 67, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chotiprasitsakul, D.; Tamma, P.D.; Gadala, A.; Cosgrove, S.E. The Role of Negative Methicillin-Resistant Staphylococcus aureus Nasal Surveillance Swabs in Predicting the Need for Empiric Vancomycin Therapy in Intensive Care Unit Patients. Infect. Control Hosp. Epidemiol. 2018, 39, 290–296. [Google Scholar] [CrossRef]
- Langsjoen, J.; Brady, C.; Obenauf, E.; Kellie, S. Nasal screening is useful in excluding methicillin-resistant Staphylococcus aureus in ventilator-associated pneumonia. Am. J. Infect. Control 2014, 42, 1014–1015. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; Mullen, C.; Mistry, B.; Cucci, M. Performance of nasal methicillin-resistant Staphylococcus aureus screening for intra-abdominal infections in critically ill adult patients. Pharmacotherapy 2021, 41, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Dadzie, P.; Dietrich, T.; Ashurst, J. Impact of a Pharmacist-driven Methicillin-resistant Staphylococcus aureus Polymerase Chain Reaction Nasal Swab Protocol on the De-escalation of Empiric Vancomycin in Patients with Pneumonia in a Rural Healthcare Setting. Cureus 2019, 11, e6378. [Google Scholar] [CrossRef] [PubMed]
- Woolever, N.L.; Schomberg, R.J.; Cai, S.; Dierkhising, R.A.; Dababneh, A.S.; Kujak, R.C. Pharmacist-Driven MRSA Nasal PCR Screening and the Duration of Empirical Vancomycin Therapy for Suspected MRSA Respiratory Tract Infections. Mayo Clin. Proc. Innov. Qual. Outcomes 2020, 4, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Diep, C.; Meng, L.; Pourali, S.; Hitchcock, M.M.; Alegria, W.; Swayngim, R.; Ran, R.; Banaei, N.; Deresinski, S.; Holubar, M. Effect of rapid methicillin-resistant Staphylococcus aureus nasal polymerase chain reaction screening on vancomycin use in the intensive care unit. Am. J. Health Pharm. 2021, 78, 2236–2244. [Google Scholar] [CrossRef]
- Marinucci, V.; Louzon, P.R.; Carr, A.; Hayes, J.; Sniffen, J.; Ruiz, A.L. Pharmacist-Driven Methicillin-Resistant S. aureus Polymerase Chain Reaction Testing for Pneumonia. Ann. Pharmacother. 2022, 10600280221121144. [Google Scholar] [CrossRef]
- Meng, L.; Pourali, S.; Hitchcock, M.M.; Ha, D.R.; Mui, E.; Alegria, W.; Fox, E.; Diep, C.; Swayngim, R.; Chang, A.; et al. Discontinuation Patterns and Cost Avoidance of a Pharmacist-Driven Methicillin-Resistant Staphylococcus aureus Nasal Polymerase Chain Reaction Testing Protocol for De-escalation of Empiric Vancomycin for Suspected Pneumonia. Open Forum Infect. Dis. 2021, 8, ofab099. [Google Scholar] [CrossRef] [PubMed]
- Diaz, R.; Afreixo, V.; Ramalheira, E.; Rodrigues, C.; Gago, B. Evaluation of vancomycin MIC creep in methicillin-resistant Staphylococcus aureus infections-a systematic review and meta-analysis. Clin. Microbiol. Infect. 2018, 24, 97–104. [Google Scholar] [CrossRef]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017, 90, 269–281. [Google Scholar]
- Bhat, N.; O’Brien, K.; Karron, R.A.; Driscoll, A.J.; Murdoch, D.R. Use and evaluation of molecular diagnostics for pneumonia etiology studies. Clin. Infect. Dis. 2012, 54 (Suppl. D2), S153–S158. [Google Scholar] [CrossRef]
- Murdoch, D.R. How recent advances in molecular tests could impact the diagnosis of pneumonia. Expert Rev. Mol. Diagn. 2016, 16, 533–540. [Google Scholar] [CrossRef]
- Yilmaz, G.; Buccambuso, M.; Edwards, T.; Hockin, M.; Alberti-Segui, C.; Weber, C.; Dubrost, C.; Arce, J.; Lems, R.; O’Connor, L.; et al. Analytical reactivity of the FilmArray® Pneumonia Panel plus for identification of viruses, bacteria and antimicrobial resistance genes from lower respiratory tract samples. In Proceedings of the 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Madrid, Spain, 21–24 April 2018. [Google Scholar]
- Hanson, K.E.; Azar, M.M.; Banerjee, R.; Chou, A.; Colgrove, R.C.; Ginocchio, C.C.; Hayden, M.K.; Holodiny, M.; Jain, S.; Koo, S.; et al. Molecular Testing for Acute Respiratory Tract Infections: Clinical and Diagnostic Recommendations from the IDSA’s Diagnostics Committee. Clin. Infect. Dis. 2020, 71, 2744–2751. [Google Scholar] [CrossRef]
- The BioFire FilmArray Pneumonia (PN) Panel: Syndromic Infectious Disease Testing for Pneumonia. Available online: https://www.biofiredx.com/products/the-filmarray-panels/filmarray-pneumonia/ (accessed on 15 December 2022).
- Unyvero Applications. Available online: https://curetis.com/products/applications/#hpn (accessed on 15 December 2022).
- NxTAG Respiratory Pathogen Panel. Available online: https://www.luminexcorp.com/nxtag-respiratory-pathogen-panel/ (accessed on 15 December 2022).
- Seeplex PneumoBacter ACE Detection. Available online: https://www.seegene.com/assays/seeplex_pneumobacter_ace_detection (accessed on 15 December 2022).
- NeoPlex RB-8 Detection Kit. Available online: https://laboshop.ae/product/neoplex-rb-8-detection-kit765 (accessed on 15 December 2022).
- Rappo, U.; Schuetz, A.N.; Jenkins, S.G.; Calfee, D.P.; Walsh, T.J.; Wells, M.T.; Hollenberg, J.P.; Glesby, M.J. Impact of Early Detection of Respiratory Viruses by Multiplex PCR Assay on Clinical Outcomes in Adult Patients. J. Clin. Microbiol. 2016, 54, 2096–2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, K.A.; Perez, K.K.; Forrest, G.N.; Goff, D.A. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin. Infect. Dis. 2014, 59 (Suppl. S3), S134–S145. [Google Scholar] [CrossRef]
- Monard, C.; Pehlivan, J.; Auger, G.; Alviset, S.; Dinh, A.T.; Duquaire, P.; Gastli, N.; D’Humières, C.; Maamar, A.; Boibieux, A.; et al. Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. Crit. Care 2020, 24, 434. [Google Scholar] [CrossRef]
- Darie, A.M.; Khanna, N.; Jahn, K.; Osthoff, M.; Bassetti, S.; Osthoff, M.; Schumann, D.M.; Albrich, W.C.; Hirsch, H.; Brutsche, M.; et al. Fast multiplex bacterial PCR of bronchoalveolar lavage for antibiotic stewardship in hospitalised patients with pneumonia at risk of Gram-negative bacterial infection (Flagship II): A multicentre, randomised controlled trial. Lancet Respir. Med. 2022, 10, 877–887. [Google Scholar] [CrossRef] [PubMed]
- Peiffer-Smadja, N.; Bouadma, L.; Mathy, V.; Allouche, K.; Patrier, J.; Reboul, M.; Montravers, P.; Timsit, J.-F.; Armand-Lefevre, L. Performance and impact of a multiplex PCR in ICU patients with ventilator-associated pneumonia or ventilated hospital-acquired pneumonia. Crit. Care 2020, 24, 366. [Google Scholar] [CrossRef]
- Cremet, L.; Gaborit, B.; Bouras, M.; Drumel, T.; Guillotin, F.; Poulain, C.; Persyn, E.; Lakhal, K.; Rozec, B.; Vibet, M.-A.; et al. Evaluation of the FilmArray® Pneumonia Plus Panel for Rapid Diagnosis of Hospital-Acquired Pneumonia in Intensive Care Unit Patients. Front. Microbiol. 2020, 11, 2080. [Google Scholar] [CrossRef]
- Guillotin, F.; Poulain, C.; Gaborit, B.; Bouras, M.; Cinotti, R.; Lakhal, K.; Vourc’H, M.; Rozec, B.; Asehnoune, K.; Vibet, M.-A.; et al. Potential Impact of Rapid Multiplex PCR on Antimicrobial Therapy Guidance for Ventilated Hospital-Acquired Pneumonia in Critically Ill Patients, A Prospective Observational Clinical and Economic Study. Front. Cell. Infect. Microbiol. 2022, 12, 804611. [Google Scholar] [CrossRef]
- Buchan, B.W.; Windham, S.; Balada-Llasat, J.-M.; Leber, A.; Harrington, A.; Relich, R.; Murphy, C.; Bard, J.D.; Naccache, S.; Ronen, S.; et al. Practical Comparison of the BioFire FilmArray Pneumonia Panel to Routine Diagnostic Methods and Potential Impact on Antimicrobial Stewardship in Adult Hospitalized Patients with Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Ruan, S.-Y.; Pan, S.-C.; Lee, T.-F.; Chien, J.-Y.; Hsueh, P.-R. Performance of a multiplex PCR pneumonia panel for the identification of respiratory pathogens and the main determinants of resistance from the lower respiratory tract specimens of adult patients in intensive care units. J. Microbiol. Immunol. Infect. 2019, 52, 920–928. [Google Scholar] [CrossRef]
- Ghadikolai, A.; Sinclair, W.; Wallentine, J.; Carlquist, J.; Lopansri, B.K. A Comparison of Two Molecular Panels for Culture Independent Detection of Lower Respiratory Tract Pathogens. 2020. Available online: https://www.opgen.com/2021/05/27/a-comparison-of-two-molecular-panels-for-culture-independent-detection-of-lower-respiratory-tract-pathogens-2/ (accessed on 28 December 2022).
- Personne, Y.; Ozongwu, C.; Platt, G.; Basurto-Lozada, P.; Shamin, M.; Gant, V.A.; Zumla, A.; Enne, V.I. ‘Sample-in, answer-out’? Evaluation and comprehensive analysis of the Unyvero P50 pneumonia assay. Diagn. Microbiol. Infect. Dis. 2016, 86, 5–10. [Google Scholar] [CrossRef]
- Schulte, B.; Eickmeyer, H.; Heininger, A.; Juretzek, S.; Karrasch, M.; Denis, O.; Roisin, S.; Pletz, M.W.; Klein, M.; Barth, S.; et al. Detection of pneumonia associated pathogens using a prototype multiplexed pneumonia test in hospitalized patients with severe pneumonia. PLoS ONE 2014, 9, e110566. [Google Scholar] [CrossRef] [PubMed]
- Tellapragada, C.; Ydsten, K.A.; Ternhag, A.; Giske, C.G. Evaluation of a pneumonia multiplex PCR panel for detection of bacterial respiratory tract pathogens from serial specimens collected from hospitalized COVID-19 patients. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1093–1098. [Google Scholar] [CrossRef]
- Foschi, C.; Zignoli, A.; Gaibani, P.; Vocale, C.; Rossini, G.; Lafratta, S.; Liberatore, A.; Turello, G.; Lazzarotto, T.; Ambretti, S. Respiratory bacterial co-infections in intensive care unit-hospitalized COVID-19 patients: Conventional culture vs BioFire FilmArray pneumonia Plus panel. J. Microbiol. Methods 2021, 186, 106259. [Google Scholar] [CrossRef]
- Kerr, S.; Graue, C.; Broadbent, K.; Balada-Llasat, J.M.; Carroll, A. Clinical evaluation of the BioFire FilmArray Pneumonia Panel plus. In Proceedings of the European Society of Clinical Microbiology and Infectious Diseases Meeting, Basel, Switzerland, 21–24 April 2018. [Google Scholar]
- Faron, M.L.; Mahmutoglu, D.; Huang, A.; Balada-Llasat, J.M.; Relich, R.F.; Humphries, R.; Miller, S.; Harrington, A.; Murphy, C.; Leber, A.; et al. Clinical evaluation of a semi-quantitative multiplex molecular assay for the identification of bacteria, viruses and fungi in lower respiratory specimens. In Proceedings of the European Society of Clinical Microbiology and Infectious Diseases Meeting, Basel, Switzerland, 21–24 April 2018. [Google Scholar]
- Munson, E.L.; Diekema, D.J.; Beekmann, S.E.; Chapin, K.C.; Doern, G.V. Detection and treatment of bloodstream infection: Laboratory reporting and antimicrobial management. J. Clin. Microbiol. 2003, 41, 495–497. [Google Scholar] [CrossRef]
- Gonzalez, M.D.; Chao, T.; Pettengill, M.A. Modern Blood Culture: Management Decisions and Method Options. Clin. Lab. Med. 2020, 40, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Albin, O.R.; Pogue, J.M.; Petty, L.A.; Kaye, K.S. Asymptomatic bacterisputia: Rethinking diagnostic stewardship in pneumonia. Infect. Control Hosp. Epidemiol. 2021, 42, 737–739. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, J.; Yamakawa, K.; Ohta, Y.; Nakamura, K.; Hashimoto, H.; Kawada, M.; Takahashi, H.; Yamagiwa, T.; Kodate, A.; Miyamoto, K.; et al. Effect of Gram Stain-Guided Initial Antibiotic Therapy on Clinical Response in Patients with Ventilator-Associated Pneumonia: The GRACE-VAP Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e226136. [Google Scholar] [CrossRef]
- Musgrove, M.A.; Kenney, R.M.; Kendall, R.E.; Peters, M.; Tibbetts, R.; Samuel, L.; Davis, S.L. Microbiology Comment Nudge Improves Pneumonia Prescribing. Open Forum Infect. Dis. 2018, 5, ofy162. [Google Scholar] [CrossRef]
- Puzniak, L.; DePestel, D.D.; Srinivasan, A.; Ye, G.; Murray, J.; Merchant, S.; DeRyke, C.A.; Gupta, V. A Combination Antibiogram Evaluation for Pseudomonas aeruginosa in Respiratory and Blood Sources from Intensive Care Unit (ICU) and Non-ICU Settings in U.S. Hospitals. Antimicrob. Agents Chemother. 2019, 63, e02564-18. [Google Scholar] [CrossRef] [PubMed]
- Klinker, K.P.; Hidayat, L.K.; DeRyke, C.A.; DePestel, D.D.; Motyl, M.; Bauer, K.A. Antimicrobial stewardship and antibiograms: Importance of moving beyond treaditional antibiograms. Therapeutic Adv. Infect. Dis. 2021, 8, 20499361211011373. [Google Scholar] [CrossRef] [PubMed]
- Stone, N.D.; O’Hara, C.M.; Williams, P.P.; McGowan, J.E., Jr.; Tenover, F.C. Comparison of disk diffusion, VITEK 2; broth microdilution antimicrobial susceptibility test results for unusual species of Enterobacteriaceae. J. Clin. Microbiol. 2007, 45, 340–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, D.M.; Wallace, M.A.; Burnham, C.D. Stop Waiting for Tomorrow: Disk Diffusion Performed on Early Growth Is an Accurate Method for Antimicrobial Susceptibility Testing with Reduced Turnaround Time. J. Clin. Microbiol. 2022, 60, e0300720. [Google Scholar] [CrossRef] [PubMed]
- Humphries, R.M.; Kircher, S.; Ferrell, A.; Krause, K.M.; Malherbe, R.; Hsiung, A.; Burnham, C.-A.D. The Continued Value of Disk Diffusion for Assessing Antimicrobial Susceptibility in Clinical Laboratories: Report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J. Clin. Microbiol. 2018, 56, e00437-18. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; Daneman, N.; Diong, C.; Marchand-Austin, A.; Adomako, K.; Saedi, A.; Schwartz, K.L.; Johnstone, J.; MacFadden, D.R.; Matukas, L.M.; et al. Antibiotic susceptibility reporting and association with antibiotic prescribing: A cohort study. Clin. Microbiol. Infect. 2021, 27, 568–575. [Google Scholar] [CrossRef]
- Liao, S.; Rhodes, J.; Jandarov, R.; Devore, Z.; Sopirala, M.M. Out of Sight-Out of Mind: Impact of Cascade Reporting on Antimicrobial Usage. Open Forum Infect. Dis. 2020, 7, ofaa002. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Momattin, H.; Al-Habboubi, F.; Dancer, S. Restrictive reporting of selected antimicrobial susceptibilities influences clinical prescribing. J. Infect. Public Health 2015, 8, 234–241. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial co-infection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Lansbury, L.; Lim, B.; Baskaran, V.; Lim, W.S. Co-infections in people with COVID-19: A systematic review and meta-analysis. J. Infect. 2020, 81, 266–275. [Google Scholar] [CrossRef]
- Wei, W.; Ortwine, J.K.; Mang, N.S.; Joseph, C.; Hall, B.C. Limited Role for Antibiotics in COVID-19: Scarce Evidence of Bacterial Coinfection. 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.06.16.20133181v1 (accessed on 21 December 2022).
- Lippi, G.; Plebani, M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chim. Acta 2020, 505, 190–191. [Google Scholar] [CrossRef]
- Hu, R.; Han, C.; Pei, S.; Yin, M.; Chen, X. Procalcitonin levels in COVID-19 patients. Int. J. Antimicrob. Agents 2020, 56, 106051. [Google Scholar] [CrossRef] [PubMed]
- Gadotti, A.C.; Deus, M.d.C.; Telles, J.P.; Wind, R.; Goes, M.; Ossoski, R.G.C.; de Padua, A.M.; de Noronha, L.; Moreno-Amaral, A.; Baena, C.P.; et al. IFN-gamma is an independent risk factor associated with mortality in patients with moderate and severe COVID-19 infection. Virus Res. 2020, 289, 198171. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.; Moreno, G.; Martín-Loeches, I.; Gomez-Bertomeu, F.; Sarvisé, C.; Gómez, J.; Bodí, M.; Díaz, E.; Papiol, E.; Trefler, S.; et al. Prognostic Value of Procalcitonin and C-Reactive Protein in 1608 Critically Ill Patients with Severe Influenza Pneumonia. Antibiotics 2021, 10, 350. [Google Scholar] [CrossRef] [PubMed]
- Pfister, R.; Kochanek, M.; Leygeber, T.; Brun-Buisson, C.; Cuquemelle, E.; Machado, M.B.P.; Piacentini, E.; Hammond, N.E.; Ingram, P.R.; Michels, G. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: A prospective cohort study, systematic review and individual patient data meta-analysis. Crit. Care 2014, 18, R44. [Google Scholar] [CrossRef] [PubMed]
- Habib, G.; Mahmood, K.; Gul, H.; Tariq, M.; Ain, Q.U.; Hayat, A.; Rehman, M.U. Pathophysiology of Methicillin-Resistant Staphylococcus aureus Superinfection in COVID-19 Patients. Pathophysiology 2022, 29, 405–413. [Google Scholar] [CrossRef]
- Baker, M.A.; E Sands, K.; Huang, S.S.; Kleinman, K.; Septimus, E.J.; Varma, N.; Blanchard, J.; Poland, R.E.; Coady, M.H.; Yokoe, D.S.; et al. The Impact of Coronavirus Disease 2019 (COVID-19) on Healthcare-Associated Infections. Clin. Infect. Dis. 2022, 74, 1748–1754. [Google Scholar] [CrossRef]
- Tamma, P.D.; Cosgrove, S.E. Antimicrobial stewardship. Infect. Dis. Clin. N. Am. 2011, 25, 245–260. [Google Scholar] [CrossRef]
Panel | Bacterial Target | Viral Targets | Resistance Target | Turnaround Time | Sensitivity and Specificity |
---|---|---|---|---|---|
BioFire® FilmArray® Pneumonia Panel | Semi-Qualitative: Acinetobactercalcoaceticus-baumannii complex Enterobacter cloacae complex Escherichia coli Haemophilus influenzae Klebsiella aerogenes Klebsiella oxytoca Klebsiella pneumoniae Moraxella catarrhalis Proteus spp. Pseudomonas aeruginosa Serratia marcescens Staphylococcus aureus Streptococcus agalactiae Streptococcus pneumoniae Streptococcus pyogenes Qualitative: Chlamydophila pneumoniae Legionella pneumophila Mycoplasma pneumoniae | Adenovirus Coronavirus Human metapneumovirus Human rhinovirus/enterovirus Influenza A virus Influenza B virus Parainfluenza virus Respiratory syncytial virus | Carbapenesmases: blaKPC blaIMP blaNDM blaOXA-48 blaVIM Extended-spectrum β-lactamases: blaCTX-M Methicillin resistance: mecA/C MREJ | ~1 h | Sensitivity: 96.2% Specificity: 97.2% |
Panel | Bacterial Target | Viral Targets | Resistance Target | Turnaround Time | Sensitivity and Specificity |
---|---|---|---|---|---|
Unyvero® Hospitalized Pneumonia Panel | Acinetobactercalcoaceticus-baumannii complex Chlamydia pneumoniae Citrobacter freundii Enterobacter cloacae complex Escherichia coli Haemophilus influenzae Klebsiella aerogenes Klebsiella oxytoca Klebsiella pneumoniae Klebsiella variicola Legionella pneumophila Moraxella catarrhalis Morganella morganii Mycoplasma pneumoniae Pneumocystis jiroveci Proteus spp. Pseudomonas aeruginosa Serratia marcescens Staphylococcus aureus Stenotrophomonas maltophilia Streptococcus pneumoniae | N/A | Carbapenesmases: blaKPC blaIMP blaNDM Extended-spectrum β-lactamases: blaOXA-23 blaOXA-23/40 blaOXA-48 blaOXA-58 blaVIM blaCTX-M Flouroquinolone resistance: gyrA83 gyrA87 Macrolide resistance: ermB mecA mecC Penicillin resistance: blaTEM blaSHV Sulfonamide resistance: stul 1 | ~4.5 h | Sensitivity: 91.4% Specificity: 99.5% |
Panel | Bacterial Target | Viral Targets | Resistance Target | Turnaround Time | Sensitivity and Specificity |
---|---|---|---|---|---|
NxTAG® Respiratory Pathogen Panel | Chlamydophila pneumoniae Mycoplasma pneumoniae Legionella pneumophila | Influenza A Influenza A H1 Influenza A H3 Influenza B RSV A RSV B Rhinovirus/Enterovirus Parainfluenza 1 Parainfluenza 2 Parainfluenza 3 Parainfluenza 4 Human Metapneumovirus Adenovirus Coronavirus HKU1 Coronavirus NL63 Coronavirus OC43 Human Bocavirus | N/A | ~4 h | Sensitivity: 95.2% Specificity: 99.6% |
Panel | Bacterial Target | Viral Targets | Resistance Target | Turnaround Time | Sensitivity and Specificity |
---|---|---|---|---|---|
Seeplex® PneumoBacter ACE detection | Chlamydophila pneumoniae Mycoplasma pneumoniae Legionella pneumophila Bordetella pertussis Haemophilus influenzae Streptococcus pneumoniae Internal Control | N/A | N/A | ~4 h | Sensitivity: 94.2% Specificity: 96.3% |
NeoPlex® RB-8 Detection Kit | Chlamydophila pneumoniae Mycoplasma pneumoniae Legionella pneumophila Bordetella pertussis Haemophilus influenzae Streptococcus pneumoniae | N/A | N/A | ~4 h | Sensitivity: 96.2% Specificity: 99.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adams, J.; Ferguson, K.; Hirschy, R.; Konopka, E.; Meckel, J.; Benanti, G.; Kuhrau, S.; Albarillo, F.; Chang, K.; Santarossa, M.; et al. Antimicrobial Stewardship Techniques for Critically Ill Patients with Pneumonia. Antibiotics 2023, 12, 295. https://doi.org/10.3390/antibiotics12020295
Adams J, Ferguson K, Hirschy R, Konopka E, Meckel J, Benanti G, Kuhrau S, Albarillo F, Chang K, Santarossa M, et al. Antimicrobial Stewardship Techniques for Critically Ill Patients with Pneumonia. Antibiotics. 2023; 12(2):295. https://doi.org/10.3390/antibiotics12020295
Chicago/Turabian StyleAdams, Jenna, Kaitlin Ferguson, RaeAnn Hirschy, Erica Konopka, Jordan Meckel, Grace Benanti, Shannon Kuhrau, Fritzie Albarillo, Kevin Chang, Maressa Santarossa, and et al. 2023. "Antimicrobial Stewardship Techniques for Critically Ill Patients with Pneumonia" Antibiotics 12, no. 2: 295. https://doi.org/10.3390/antibiotics12020295
APA StyleAdams, J., Ferguson, K., Hirschy, R., Konopka, E., Meckel, J., Benanti, G., Kuhrau, S., Albarillo, F., Chang, K., Santarossa, M., Sapozhnikov, J., Hoff, B., & Rech, M. A. (2023). Antimicrobial Stewardship Techniques for Critically Ill Patients with Pneumonia. Antibiotics, 12(2), 295. https://doi.org/10.3390/antibiotics12020295