Evaluation of an Antifungal Stewardship Initiative Targeting Micafungin at an Academic Medical Center
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Intervention
4.2. Inclusion and Exclusion Criteria
4.3. Outcomes
4.4. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taei, M.; Chadeganipour, M.; Mohammadi, R. An alarming rise of non-albicans Candida species and uncommon yeasts in the clinical samples; a combination of various molecular techniques for identification of etiologic agents. BMC Res. Notes 2019, 12, 779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fournier, P.; Schwebel, C.; Maubon, D.; Vesin, A.; Lebeau, B.; Foroni, L.; Hamidfar-Roy, R.; Cornet, M.; Timsit, J.-F.; Pelloux, H. Antifungal use influences Candida species distribution and susceptibility in the intensive care unit. J. Antimicrob. Chemother. 2011, 66, 2880–2886. [Google Scholar] [CrossRef] [PubMed]
- Grossman, N.; Chiller, T.M.; Lockhart, S.R. Epidemiology of Echinocandin Resistance in Candida. Curr. Fungal Infect. Rep. 2014, 8, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kadri, S.S. Key Takeaways From the U.S. CDC’s 2019 Antibiotic Resistance Threats Report for Frontline Providers. Crit. Care Med. 2020, 48, 939–945. [Google Scholar] [CrossRef]
- Nett, J.E.; Andes, D.R. Antifungal Agents: Spectrum of Activity, Pharmacology, and Clinical Indications. Infect. Dis. Clin. N. Am. 2016, 30, 51–83. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 18026. [Google Scholar] [CrossRef]
- Poissy, J.; Funginos, T.; Damonti, L.; Bignon, A.; Khanna, N.; Von Kietzell, M.; Boggian, K.; Neofytos, D.; Vuotto, F.; Coiteux, V.; et al. Risk factors for candidemia: A prospective matched case-control study. Crit. Care 2020, 24, 109. [Google Scholar] [CrossRef]
- Vallabhaneni, S.; Baggs, J.; Tsay, S.; Srinivasan, A.R.; Jernigan, J.A.; Jackson, B.R. Trends in antifungal use in US hospitals, 2006–2012. J. Antimicrob. Chemother. 2018, 73, 2867–2875. [Google Scholar] [CrossRef] [Green Version]
- Yapar, N. Epidemiology and risk factors for invasive candidiasis. Ther. Clin. Risk Manag. 2014, 10, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Clancy, C.J.; Nguyen, M.H. Finding the “Missing 50%” of Invasive Candidiasis: How Nonculture Diagnostics Will Improve Understanding of Disease Spectrum and Transform Patient Care. Clin. Infect. Dis. 2013, 56, 1284–1292. [Google Scholar] [CrossRef]
- Clancy, C.J.; Nguyen, M.H. Non-Culture Diagnostics for Invasive Candidiasis: Promise and Unintended Consequences. J. Fungi 2018, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Hang, J.-P.; Zhang, L.; Wang, F.; Zhang, D.-C.; Gong, F.-H. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-d-glucan for invasive fungal infection: Focus on cutoff levels. J. Microbiol. Immunol. Infect. 2015, 48, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Karageorgopoulos, D.E.; Vouloumanou, E.K.; Ntziora, F.; Michalopoulos, A.; Rafailidis, P.I.; Falagas, M.E. β-D-Glucan Assay for the Diagnosis of Invasive Fungal Infections: A Meta-analysis. Clin. Infect. Dis. 2011, 52, 750–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehanna, H.M.; Moledina, J.; Travis, J. Refeeding syndrome: What it is, and how to prevent and treat it. BMJ 2008, 336, 1495–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.H.; Wissel, M.C.; Shields, R.K.; Salomoni, M.A.; Hao, B.; Press, E.G.; Cheng, S.; Mitsani, D.; Vadnerkar, A.; Silveira, F.P.; et al. Performance of Candida Real-time Polymerase Chain Reaction, -D-Glucan Assay, and Blood Cultures in the Diagnosis of Invasive Candidiasis. Clin. Infect. Dis. 2012, 54, 1240–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrosky-Zeichner, L.; Alexander, B.D.; Kett, D.H.; Vazquez, J.; Pappas, P.G.; Saeki, F.; Ketchum, P.A.; Wingard, J.; Schiff, R.; Tamura, H.; et al. Multicenter Clinical Evaluation of the (1→3) β-D-Glucan Assay as an Aid to Diagnosis of Fungal Infections in Humans. Clin. Infect. Dis. 2005, 41, 654–659. [Google Scholar] [CrossRef]
- Tissot, F.; Lamoth, F.; Hauser, P.M.; Orasch, C.; Flückiger, U.; Siegemund, M.; Zimmerli, S.; Calandra, T.; Bille, J.; Eggimann, P.; et al. β-Glucan Antigenemia Anticipates Diagnosis of Blood Culture–Negative Intraabdominal Candidiasis. Am. J. Respir. Crit. Care Med. 2013, 188, 1100–1109. [Google Scholar] [CrossRef]
- Garey, K.W.; Rege, M.; Pai, M.P.; Mingo, D.E.; Suda, K.J.; Turpin, R.S.; Bearden, D. Time to Initiation of Fluconazole Therapy Impacts Mortality in Patients with Candidemia: A Multi-Institutional Study. Clin. Infect. Dis. 2006, 43, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Morrell, M.; Fraser, V.J.; Kollef, M.H. Delaying the Empiric Treatment of Candida Bloodstream Infection until Positive Blood Culture Results Are Obtained: A Potential Risk Factor for Hospital Mortality. Antimicrob. Agents Chemother. 2005, 49, 3640–3645. [Google Scholar] [CrossRef] [Green Version]
- Taur, Y.; Cohen, N.; Dubnow, S.; Paskovaty, A.; Seo, S.K. Effect of Antifungal Therapy Timing on Mortality in Cancer Patients with Candidemia. Antimicrob. Agents Chemother. 2010, 54, 184–190. [Google Scholar] [CrossRef]
- Bailly, S.; Bouadma, L.; Azoulay, E.; Orgeas, M.G.; Adrie, C.; Souweine, B.; Schwebel, C.; Maubon, D.; Hamidfar-Roy, R.; Darmon, M.; et al. Failure of Empirical Systemic Antifungal Therapy in Mechanically Ventilated Critically Ill Patients. Am. J. Respir. Crit. Care Med. 2015, 191, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, R.P.; Levy, M.M.; Carlet, J.M.; Bion, J.; Parker, M.M.; Jaeschke, R.; Reinhart, K.; Angus, D.C.; Brun-Buisson, C.; Beale, R.; et al. Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock: 2008. Crit. Care Med. 2008, 36, 296–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 62, e1–e50. [Google Scholar] [CrossRef] [Green Version]
- Alexander, B.D.; Johnson, M.D.; Pfeiffer, C.D.; Jiménez-Ortigosa, C.; Catania, J.; Booker, R.; Castanheira, M.; Messer, S.A.; Perlin, D.S.; Pfaller, M.A. Increasing Echinocandin Resistance in Candida glabrata: Clinical Failure Correlates With Presence of FKS Mutations and Elevated Minimum Inhibitory Concentrations. Clin. Infect. Dis. 2013, 56, 1724–1732. [Google Scholar] [CrossRef] [Green Version]
- Bilal, H.; Shafiq, M.; Hou, B.; Islam, R.; Khan, M.N.; Khan, R.U.; Zeng, Y. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence 2022, 13, 1573–1589. [Google Scholar] [CrossRef]
- Ebihara, F.; Maruyama, T.; Kikuchi, K.; Kimura, T.; Hamada, Y. Antifungal Stewardship Task Shifting Required of Pharmacists. Med. Mycol. J. 2022, 63, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Msc, M.V.; Renaud, H.J.; Summerbell, R.; Shear, N.H.; Piguet, V. The increasing problem of treatment-resistant fungal infections: A call for antifungal stewardship programs. Int. J. Dermatol. 2021, 60, e474–e479. [Google Scholar] [CrossRef]
- Johnson, M.D.; E Lewis, R.; Ashley, E.S.D.; Ostrosky-Zeichner, L.; Zaoutis, T.; Thompson, G.R.; Andes, D.R.; Walsh, T.J.; Pappas, P.G.; A Cornely, O.; et al. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J. Infect. Dis. 2020, 222, S175–S198. [Google Scholar] [CrossRef]
- Hare, D.; Coates, C.; Kelly, M.; Cottrell, E.; Connolly, E.; Muldoon, E.; Connell, B.O.; Rogers, T.; Talento, A. Antifungal stewardship in critical care: Implementing a diagnostics-driven care pathway in the management of invasive candidiasis. Infect. Prev. Pract. 2020, 2, 100047. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Srinivasan, A.; Barie, P.S.; Chastre, J.; Cruz, C.S.D.; Douglas, I.S.; Ecklund, M.; Evans, S.E.; Gerlach, A.T.; Hicks, L.A.; et al. Antibiotic Stewardship in the Intensive Care Unit. An Official American Thoracic Society Workshop Report in Collaboration with the AACN, CHEST, CDC, and SCCM. Ann. Am. Thorac. Soc. 2020, 17, 531–540. [Google Scholar] [CrossRef]
- Goff, D.A.; Bauer, K.A.; Reed, E.E.; Stevenson, K.B.; Taylor, J.J.; West, J.E. Is the “low-hanging fruit” worth picking for antimicrobial stewardship programs? Clin. Infect. Dis. 2012, 55, 587–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelson, M.; Morris, A.M.; Thursky, K.; Pulcini, C. How to start an antimicrobial stewardship programme in a hospital. Clin. Microbiol. Infect. 2019, 26, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Khanina, A.; Urbancic, K.F.; Haeusler, G.M.; Kong, D.C.M.; Douglas, A.P.; Tio, S.Y.; Worth, L.J.; A Slavin, M.; A Thursky, K. Establishing essential metrics for antifungal stewardship in hospitals: The results of an international Delphi survey. J. Antimicrob. Chemother. 2020, 76, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Kara, E.; Metan, G.; Bayraktar-Ekincioglu, A.; Gulmez, D.; Arikan-Akdagli, S.; Demirkazik, F.; Akova, M.; Unal, S.; Uzun, O. Implementation of Pharmacist-Driven Antifungal Stewardship Program in a Tertiary Care Hospital. Antimicrob. Agents Chemother. 2021, 65, e0062921. [Google Scholar] [CrossRef] [PubMed]
- López-Medrano, F.; Juan, R.S.; Lizasoain, M.; Catalán, M.; Ferrari, J.; Chaves, F.; Lumbreras, C.; Montejo, J.; de Tejada, A.H.; Aguado, J. A non-compulsory stewardship programme for the management of antifungals in a university-affiliated hospital. Clin. Microbiol. Infect. 2013, 19, 56–61. [Google Scholar] [CrossRef]
- Micallef, C.; Aliyu, S.H.; Santos, R.; Brown, N.M.; Rosembert, D.; Enoch, D.A. Introduction of an antifungal stewardship programme targeting high-cost antifungals at a tertiary hospital in Cambridge, England. J. Antimicrob. Chemother. 2015, 70, 1908–1911. [Google Scholar] [CrossRef] [Green Version]
- Mondain, V.; Lieutier, F.; Hasseine, L.; Gari-Toussaint, M.; Poiree, M.; Lions, C.; Pulcini, C. A 6-year antifungal stewardship programme in a teaching hospital. Infection 2013, 41, 621–628. [Google Scholar] [CrossRef]
- Schuster, M.G.; Edwards, J.E., Jr.; Sobel, J.D.; Darouiche, R.O.; Karchmer, A.W.; Hadley, S.; Slotman, G.; Panzer, H.; Biswas, P.; Rex, J.H. Empirical fluconazole versus placebo for intensive care unit patients: A randomized trial. Ann. Intern. Med. 2008, 149, 83–90. [Google Scholar] [CrossRef]
- Timsit, J.F.; Azoulay, E.; Schwebel, C.; Charles, P.E.; Cornet, M.; Souweine, B.; Klouche, K.; Jaber, S.; Trouillet, J.L.; Bruneel, F.; et al. Empirical Micafungin Treatment and Survival Without Invasive Fungal Infection in Adults With ICU-Acquired Sepsis, Candida Colonization, and Multiple Organ Failure: The EMPIRICUS Randomized Clinical Trial. JAMA 2016, 316, 1555–1564. [Google Scholar] [CrossRef]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Brüggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Genet. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Cai, X.; Li, R.; Zheng, B.; Yang, E.; Liang, T.; Yang, X.; Wan, Z.; Liu, W. Two Sequential Clinical Isolates of Candida glabrata with Multidrug-Resistance to Posaconazole and Echinocandins. Antibiotics 2021, 10, 1217. [Google Scholar] [CrossRef] [PubMed]
- Hanson, K.E.; Pfeiffer, C.D.; Lease, E.D.; Balch, A.H.; Zaas, A.K.; Perfect, J.R.; Alexander, B.D. β-D-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: A randomized pilot study. PLoS ONE 2012, 7, e42282. [Google Scholar]
- Higashi, Y.; Niimi, H.; Sakamaki, I.; Yamamoto, Y.; Kitajima, I. Rapid Identification of Candida Species in Candidemia Directly from Blood Samples Using Imperfect Match Probes. Sci. Rep. 2020, 10, 5828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Kang, M.; Li, D.; Wang, T.; Kuang, Z.; Ma, Y. Performance of a new Candida anti-mannan IgM and IgG assays in the diagnosis of candidemia. Rev. Inst. Med. Trop. São Paulo 2020, 62, e25. [Google Scholar] [CrossRef]
- Park, B.R.G.; Kim, T.-H.; Kim, H.R.; Lee, M.-K. Comparative analysis of simulated candidemia using two different blood culture systems and the rapid identification of Candida albicans. Ann. Clin. Lab. Sci. 2011, 41, 251–256. [Google Scholar]
- Sawai, T.; Nakao, T.; Yamaguchi, S.; Yoshioka, S.; Matsuo, N.; Suyama, N.; Yanagihara, K.; Mukae, H. Detection of high serum levels of β-D-Glucan in disseminated nocardial infection: A case report. BMC Infect. Dis. 2017, 17, 272. [Google Scholar] [CrossRef]
- Tschopp, J.; Brunel, A.S.; Spertini, O.; Croxatto, A.; Lamoth, F.; Bochud, P.Y. High False-Positive Rate of (1,3)-β-D-Glucan in Onco-Hematological Patients Receiving Immunoglobulins and Therapeutic Antibodies. Clin. Infect. Dis. 2022, 75, 330–333. [Google Scholar] [CrossRef]
- Zheng, S.; Ng, T.Y.; Li, H.; Tan, A.L.; Tan, T.T.; Tan, B.H. A dedicated fungal culture medium is useful in the diagnosis of fungemia: A retrospective cross-sectional study. PLoS ONE 2016, 11, e0164668. [Google Scholar] [CrossRef] [Green Version]
- Moni, M.; Sidharthan, N.; Sudhir, S.; Prabhu, B.; Nampoothiri, V.; James, J.; Philip, J.M.; Thomas, J.; Antony, R.; Mohamed, Z.U.; et al. A quality improvement initiative to improve the appropriateness of candidemia management by the implementation of a comprehensive candidemia care bundle at a tertiary care hospital in South India: Results of a quasi-experimental study. Medicine 2022, 101, e28906. [Google Scholar] [CrossRef]
- Andruszko, B.; Ashley, E.D. Antifungal Stewardship: An Emerging Practice in Antimicrobial Stewardship. Curr. Clin. Microbiol. Rep. 2016, 3, 111–119. [Google Scholar] [CrossRef]
- Schouten, J.; De Waele, J.; Lanckohr, C.; Koulenti, D.; Haddad, N.; Rizk, N.; Sjövall, F.; Kanj, S.S. Antimicrobial stewardship in the ICU in COVID times: The known unknowns. Int. J. Antimicrob. Agents 2021, 58, 106409. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou-Olivgeris, M.; Kolonitsiou, F.; Kefala, S.; Spiliopoulou, A.; Aretha, D.; Bartzavali, C.; Siapika, A.; Marangos, M.; Fligou, F. Increased incidence of candidemia in critically ill patients during the Coronavirus Disease 2019 (COVID-19) pandemic. Braz. J. Infect. Dis. 2022, 26, 102353. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef] [PubMed]
Variable Median (IQR) or n (%) | Pre-Intervention Group (n = 141) | Post-Intervention Group (n = 141) | p-Value |
---|---|---|---|
Age (years) | 54 (41, 66) | 58 (42, 66) | 0.337 |
Weight | 84 (68, 104) | 81 (61, 102) | 0.141 |
Serum creatinine a | 1.3 (0.54, 2.40) | 1.7 (0.61, 2.7) | 0.038 |
Charlson Comorbidity Index | 3 (1, 5) | 3 (1, 5) | 0.293 |
Fungal culture b positive for Candida spp. (previous 12 months) | 10 (7) | 5 (4) | 0.288 |
History of Cancer | 35 (25) | 24 (17) | 0.143 |
ICU admission a | 113 (80) | 117 (83) | 0.645 |
Abdominal surgery | 33 (23) | 26 (18) | 0.380 |
Parenteral nutrition a | 10 (7) | 16 (11) | 0.303 |
Mechanical ventilation a | 83 (59) | 83 (59) | 1 |
Vasopressors a | 75 (53) | 80 (57) | 0.632 |
Outcome Median (IQR) or n (%) | Pre-Intervention Group (n = 141) | Post-Intervention Group (n = 141) | p-Value |
---|---|---|---|
Micafungin days of therapy | 4 (3, 6) | 3 (2, 6) | 0.005 |
Hospital Length of Stay, days | 28 (12.5, 45) | 22 (12, 38) | 0.137 |
In-patient mortality | 64 (45) | 68 (48) | 0.634 |
Confirmed Candida infection a | 20 (14) | 21 (15) | 1.000 |
Micafungin adjustments b at 72 h Discontinuation De-escalation | 80 (66%) 11 (55%) | 77 (64%) 14 (67%) | 0.788 0.530 |
Beta-D-Glucan performed | 100 (71) | 94 (67) | 0.521 |
>1 Beta-D-Glucan | 36 (26) | 18 (13) | 0.001 |
Time to Beta-D-Glucan results, days | 2 (2, 3) | 3 (2, 4) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keck, J.M.; Cretella, D.A.; Stover, K.R.; Wagner, J.L.; Barber, K.E.; Jhaveri, T.A.; Vijayvargiya, P.; Garrigos, Z.E.; Wingler, M.J.B. Evaluation of an Antifungal Stewardship Initiative Targeting Micafungin at an Academic Medical Center. Antibiotics 2023, 12, 193. https://doi.org/10.3390/antibiotics12020193
Keck JM, Cretella DA, Stover KR, Wagner JL, Barber KE, Jhaveri TA, Vijayvargiya P, Garrigos ZE, Wingler MJB. Evaluation of an Antifungal Stewardship Initiative Targeting Micafungin at an Academic Medical Center. Antibiotics. 2023; 12(2):193. https://doi.org/10.3390/antibiotics12020193
Chicago/Turabian StyleKeck, J. Myles, David A. Cretella, Kayla R. Stover, Jamie L. Wagner, Katie E. Barber, Tulip A. Jhaveri, Prakhar Vijayvargiya, Zerelda Esquer Garrigos, and Mary Joyce B. Wingler. 2023. "Evaluation of an Antifungal Stewardship Initiative Targeting Micafungin at an Academic Medical Center" Antibiotics 12, no. 2: 193. https://doi.org/10.3390/antibiotics12020193
APA StyleKeck, J. M., Cretella, D. A., Stover, K. R., Wagner, J. L., Barber, K. E., Jhaveri, T. A., Vijayvargiya, P., Garrigos, Z. E., & Wingler, M. J. B. (2023). Evaluation of an Antifungal Stewardship Initiative Targeting Micafungin at an Academic Medical Center. Antibiotics, 12(2), 193. https://doi.org/10.3390/antibiotics12020193