Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections
Abstract
:1. Introduction
2. Results
2.1. Baseline Characteristics
2.2. Implementation of mRDT ASP on Time to Optimal Therapy
2.3. Implementation of Verigene® BC-GP mRDT ASP on Mortality
2.4. Early Time to Optimal Therapy and Mortality
3. Discussion
4. Materials and Methods
4.1. Implementation Phases
4.1.1. Pre-Implementation
4.1.2. Implementation
4.1.3. Post-Implementation
4.2. Data Collection and Definitions
4.3. Outcomes
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Antibiotic Resistance Threats in the United States, A., GA: & U.S. Department of Health and Human Services, C. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 1 October 2022).
- Edmond, M.B.; Ober, J.F.; Dawson, J.D.; Weinbaum, D.L.; Wenzel, R.P. Vancomycin-resistant enterococcal bacteremia: Natural history and attributable mortality. Clin. Infect. Dis. 1996, 23, 1234–1239. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Willems, R.J.L.; Friedrich, A.W.; Rossen, J.W.A.; Bathoorn, E. Enterococcus faecium: From microbiological insights to practical recommendations for infection control and diagnostics. Antimicrob. Resist. Infect. Control 2020, 9, 130. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Zhou, Z.; Wang, L.-S.; Fang, Y.; Li, Y.-H.; Chu, C.-I. The Risk Factors, Costs, and Survival Analysis of Invasive VRE Infections at a Medical Center in Eastern Taiwan. Int. J. Infect. Dis. 2017, 54, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Cheah, A.L.; Spelman, T.; Liew, D.; Peel, T.; Howden, B.P.; Spelman, D.; Grayson, M.L.; Nation, R.L.; Kong, D.C. Enterococcal bacteraemia: Factors influencing mortality, length of stay and costs of hospitalization. Clin. Microbiol. Infect. 2013, 19, E181–E189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.H.; Chin, B.S.; Lee, H.S.; Jeong, S.J.; Choi, H.K.; Kim, C.O.; Yong, D.; Choi, J.Y.; Song, Y.G.; Lee, K.; et al. Vancomycin-resistant enterococci bacteremia: Risk factors for mortality influence of antimicrobial therapy on clinical outcome. J. Infect. 2009, 58, 182–190. [Google Scholar] [CrossRef]
- Gold, H.S. Vancomycin-resistant enterococci: Mechanisms and clinical observations. Clin. Infect. Dis. 2001, 33, 210–219. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M.S., Clewell, D.B., Ike, Y., Shankar, N., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Hemapanpairoa, J.; Changpradub, D.; Thunyaharn, S.; Santimaleeworagun, W. Does Vancomycin Resistance Increase Mortality? Clinical Outcomes and Predictive Factors for Mortality in Patients with Enterococcus faecium Infections. Antibiotics 2021, 10, 105. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Picciarella, A.; Russo, R.; d’Ettorre, G.; Ceccarelli, G. Time to Effective Therapy Is an Important Determinant of Survival in Bloodstream Infections Caused by Vancomycin-Resistant Enterococcus spp. Int. J. Mol. Sci. 2022, 23, 11925. [Google Scholar] [CrossRef] [PubMed]
- Alevizakos, M.; Gaitanidis, A.; Nasioudis, D.; Tori, K.; Flokas, M.E.; Mylonakis, E. Colonization with Vancomycin-Resistant Enterococci and Risk for Bloodstream Infection Among Patients with Malignancy: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2017, 4, ofw246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.-Y.; Lee, D.-G.; Choi, S.-M.; Kwon, J.-C.; Kim, S.-H.; Choi, J.-K.; Park, S.H.; Park, Y.-J.; Choi, J.-H.; Yoo, J.-H. Impact of vancomycin resistance on mortality in neutropenic patients with enterococcal bloodstream infection: A retrospective study. BMC Infect. Dis. 2013, 13, 504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaas, A.K.; Song, X.; Tucker, P.; Perl, T.M. Risk factors for development of vancomycin-resistant enterococcal bloodstream infection in patients with cancer who are colonized with vancomycin-resistant enterococci. Clin. Infect. Dis. 2002, 35, 1139–1146. [Google Scholar] [CrossRef]
- Timbrook, T.T.; Morton, J.B.; McConeghy, K.W.; Caffrey, A.R.; Mylonakis, E.; LaPlante, K.L. The Effect of Molecular Rapid Diagnostic Testing on Clinical Outcomes in Bloodstream Infections: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2017, 64, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Dunbar, S.A.; Gardner, C.; Das, S. Diagnosis and Management of Bloodstream Infections with Rapid, Multiplexed Molecular Assays. Front. Cell. Infect. Microbiol. 2022, 12, 859935. [Google Scholar] [CrossRef]
- Magill, S.S.; O’Leary, E.; Ray, S.M.; Kainer, M.A.; Evans, C.; Bamberg, W.M.; Johnston, H.; Janelle, S.J.; Oyewumi, T.; Lynfield, R.; et al. Assessment of the Appropriateness of Antimicrobial Use in US Hospitals. JAMA Netw. Open 2021, 4, e212007. [Google Scholar] [CrossRef]
- Banerjee, R.; Komarow, L.; Virk, A.; Rajapakse, N.; Schuetz, A.N.; Dylla, B.; Earley, M.; Lok, J.; Kohner, P.; Ihde, S.; et al. Randomized Trial Evaluating Clinical Impact of RAPid IDentification Susceptibility Testing for Gram-negative Bacteremia: RAPIDS-GN. Clin. Infect. Dis. 2021, 73, e39–e46. [Google Scholar] [CrossRef]
- Zasowski, E.J.; Claeys, K.C.; Lagnf, A.M.; Davis, S.L.; Rybak, M.J. Time Is of the Essence: The Impact of Delayed Antibiotic Therapy on Patient Outcomes in Hospital-Onset Enterococcal Bloodstream Infections. Clin. Infect. Dis. 2016, 62, 1242–1250. [Google Scholar] [CrossRef] [Green Version]
- Gawrys, G.W.; Tun, K.; Jackson, C.B.; Astorga, B.; Fetchick, R.J.; Septimus, E.; Lee, G.C. The impact of rapid diagnostic testing, surveillance software, and clinical pharmacist staffing at a large community hospital in the management of Gram-negative bloodstream infections. Diagn. Microbiol. Infect. Dis. 2020, 98, 115084. [Google Scholar] [CrossRef]
- McGregor, J.C.; Rich, S.E.; Harris, A.D.; Perencevich, E.N.; Osih, R.; Lodise, T.P.; Miller, R.R.; Furuno, J.P. A systematic review of the methods used to assess the association between appropriate antibiotic therapy and mortality in bacteremic patients. Clin. Infect. Dis. 2007, 45, 329–337. [Google Scholar] [CrossRef]
- Korvick, J.A.; Bryan, C.S.; Farber, B.; Beam, T.R., Jr.; Schenfeld, L.; Muder, R.R.; Weinbaum, D.; Lumish, R.; Gerding, D.N.; Wagener, M.M.; et al. Prospective observational study of Klebsiella bacteremia in 230 patients: Outcome for antibiotic combinations versus monotherapy. Antimicrob. Agents Chemother. 1992, 36, 2639–2644. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.-L.; Chuang, Y.-C.; Chang, H.-C.; Chen, Y.-C.; Wang, J.-T.; Chang, S.-C. Microbiological and clinical characteristics of vancomycin-resistant Enterococcus faecium bacteraemia in Taiwan: Implication of sequence type for prognosis. J. Antimicrob. Chemother. 2012, 67, 2243–2249. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. M100-S24: Performance standards for antimicrobial susceptibility testing; 24th informational supplement. In CLSI Document M100-S20; CLSI: Wayne, PA, USA, 2014. [Google Scholar]
- Bauer, K.A.; Perez, K.K.; Forrest, G.N.; Goff, D.A. Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin. Infect. Dis. 2014, 59 (Suppl. S3), S134–S145. [Google Scholar] [CrossRef]
- Sango, A.; McCarter, Y.S.; Johnson, D.; Ferreira, J.; Guzman, N.; Jankowski, C.A.; Renvoisé, A.; Decré, D.; Amarsy-Guerle, R.; Huang, T.-D.; et al. Stewardship approach for optimizing antimicrobial therapy through use of a rapid microarray assay on blood cultures positive for Enterococcus species. J. Clin. Microbiol. 2013, 51, 4008–4011. [Google Scholar] [CrossRef] [Green Version]
- DiazGranados, C.A.; Jernigan, J.A. Impact of vancomycin resistance on mortality among patients with neutropenia and enterococcal bloodstream infection. J. Infect. Dis. 2005, 191, 588–595. [Google Scholar] [CrossRef]
- Carvalho, A.S.; Lagana, D.; Catford, J.; Shaw, D.; Bak, N. Bloodstream infections in neutropenic patients with haematological malignancies. Infect. Dis. Health 2020, 25, 22–29. [Google Scholar] [CrossRef]
- Horowitz, J.G.; Gawrys, G.W.; Lee, G.C.; Ramirez, B.A.; Elledge, C.M.; Shaughnessy, P.J. Early antimicrobial prophylaxis in autologous stem cell transplant recipients: Conventional versus an absolute neutrophil count-driven approach. Transpl. Infect. Dis. 2021, 23, e13689. [Google Scholar] [CrossRef]
- Benamu, E.; Deresinski, S. Vancomycin-resistant enterococcus infection in the hematopoietic stem cell transplant recipient: An overview of epidemiology, management, and prevention. F1000Res 2018, 7, 3. [Google Scholar] [CrossRef]
- Walker, T.; Dumadag, S.; Lee, C.J.; Lee, S.H.; Bender, J.M.; Abbott, J.C.; She, R.C. Clinical Impact of Laboratory Implementation of Verigene BC-GN Microarray-Based Assay for Detection of Gram-Negative Bacteria in Positive Blood Cultures. J. Clin. Microbiol. 2016, 54, 1789–1796. [Google Scholar]
- Gerson, S.L.; Kaplan, S.L.; Bruss, J.B.; Le, V.; Arellano, F.M.; Hafkin, B.; Kuter, D.J. Hematologic effects of linezolid: Summary of clinical experience. Antimicrob. Agents Chemother. 2002, 46, 2723–2726. [Google Scholar]
Characteristic | Pre-Implementation (n = 50) | Post-Implementation (n = 54) | p |
---|---|---|---|
Age (years), median (IQR) | 58 (46.8–72.0) | 57 (42.5–68.0) | 0.411 |
Sex (male), n (%) | 27 (54) | 36 (66.7) | 0.187 |
ICU admission, n (%) | 33 (66) | 31 (57.4) | 0.368 |
Pitt bacteremia score (IQR) | 2.0 (0–5) | 2.0 (0–4) | 0.436 |
High-risk patients *, n (%) | 24 (48) | 28 (51.8) | 0.971 |
HSCT recipient | 17 (34) | 19 (35.2) | 0.899 |
Active malignancies | 4 (8) | 5 (9.3) | 1.000 |
Solid organ transplant | 3 (6) | 4 (7.4) | 1.000 |
Neutropenia (ANC < 500 cells/mm3), n (%) | 17 (34) | 15 (27.8) | 0.492 |
Infection sources, n (%) | - | - | 0.893 |
Gastrointestinal/intra-abdominal | 31 (62) | 32 (59.3) | - |
Catheter-related | 6 (12) | 10 (18.5) | - |
Skin and skin structure | 4 (8) | 4 (7.4) | - |
Urinary/genitourinary | 5 (10) | 6 (11.1) | - |
Unknown | 4 (8) | 2 (3.7) | - |
Pre-Implementation (n = 50) | Post-Implementation (n = 54) | p | |
---|---|---|---|
Median (IQR) time (hours) from GS to antimicrobial therapy optimization | 49.1 (29.9–63.4) | 13.4 (5.7–49.5) | 0.034 |
VRE coverage at 24 h from GS, n (%) | 15 (30.0) | 38 (70.4) | <0.001 |
Optimized antibiotic, n (%) | 0.356 | ||
Linezolid | 8 (16.0) | 4 (7.4) | - |
Daptomycin † | 41 (82.0) | 48 (88.9) | 0.244 |
Standard dose | 28 (68.3) | 27 (56.3) | - |
High dose | 13 (31.7) | 21 (43.8) | - |
Piperacillin- tazobactam § | 1 (2.0) | 2 (3.7) | - |
In-hospital all-cause mortality, n (%) | 16 (32.0) | 6 (11.1) | 0.009 |
Median (IQR) hospital LOS (days) * | 19.8 (12.2–47.5) | 23.5 (14.3–39.2) | 0.959 |
Median (IQR) ICU LOS (days) * | 4.1 (2.8–6.8) | 6.0 (2.4–15.3) | 0.775 |
aRR (95% CI) | p | |
---|---|---|
Post-implementation group | 1.841 (1.234–2.746) | 0.003 |
Age | 0.996 (0.984–1.007) | 0.459 |
Sex | 0.936 (0.626–1.401) | 0.749 |
PBS | 1.000 (0.920–1.087) | 0.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandy, S.M.; Jackson, C.B.; Black, C.A.; Godinez, W.; Gawrys, G.W.; Lee, G.C. Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections. Antibiotics 2023, 12, 210. https://doi.org/10.3390/antibiotics12020210
Bandy SM, Jackson CB, Black CA, Godinez W, Gawrys GW, Lee GC. Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections. Antibiotics. 2023; 12(2):210. https://doi.org/10.3390/antibiotics12020210
Chicago/Turabian StyleBandy, Sarah M., Christopher B. Jackson, Cody A. Black, William Godinez, Gerard W. Gawrys, and Grace C. Lee. 2023. "Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections" Antibiotics 12, no. 2: 210. https://doi.org/10.3390/antibiotics12020210
APA StyleBandy, S. M., Jackson, C. B., Black, C. A., Godinez, W., Gawrys, G. W., & Lee, G. C. (2023). Molecular Rapid Diagnostics Improve Time to Effective Therapy and Survival in Patients with Vancomycin-Resistant Enterococcus Bloodstream Infections. Antibiotics, 12(2), 210. https://doi.org/10.3390/antibiotics12020210