The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review
Abstract
:1. Introduction
2. Overview of AMPs Covalently Immobilized on a Metal Surface
AMP Family | AMP (Name/Sequence) | Origin (Structure) | Substrate | Biological Activity | Ref. |
---|---|---|---|---|---|
Mammalian cathelicidins and their synthetic derivatives | LL-37: LLGDFFRKSKEKIGKEFKRIVQRIKDFLRNLVPRTES | Human cathelicidin (alfa-helical) | Ti | In vitro antimicrobial activity against Escherichia coli | [59] |
FK-16: FKRIVQRIKDFLRNLV-NH2 | Fragment 17–32 of LL-37 | Ti | In vitro antimicrobial activity against ESKAPE pathogens | [82] | |
KR-12: KRIVQRIKDFLR-NH2 | Fragment 18–29 of LL-37 | Ti | In vitro antimicrobial activity against methicillin-susceptible and –resistant S. epidermidis | [91] | |
Tet213: KRWWKWWRRC | Synthetic peptide of the Tet series | Ti-coated silicon wafers | In vitro antimicrobial activity against P. aeruginosa; | [71] | |
Tet213 + several analogues of tet series Tet20: KRWRIRVRVIRKC | Synthetic peptides of Tet library | Ti-coated silicon wafers; Ti-wires | In vitro antimicrobial activity against P. aeruginosa and S. aureus; In vivo S. aureus rat infection model; | [73] | |
HHC36 (Tet213): KRWWKWWRR | Synthetic peptide of Tet series; | Ti; | HHC36 mixed together with RGD peptide in different proportions; In vitro antimicrobial activity against E. coli and S. aureus; | [68] | |
HHC36-polymer | HHC36 conjugated to a temperature-sensitive polymer; | Ti rods; | In vivo rabbit S. aureus infection; | [77] | |
HHC36 | HHC36; | Ti wafers and rods; | In vitro antimicrobial activity against E. coli and S. aureus; in vivo rabbit S. aureus infection model; | [76] | |
Mammalian cathelicidins and their synthetic derivatives | FP | Fusion peptide: HHC36 + QK angiogenic sequence added to the N-terminus of AMP | Ti wafers and rods; | In vitro antimicrobial activity against E. coli, S. aureus and MRSA; in vivo rabbit S. aureus infection model | [74] |
HHC36 + RGD | HHC36 and RGD peptides mixed in optimized proportions | Ti squares | In vitro antimicrobial activity against S. aureus; in vivo rabbit S. aureus infection model | [75] | |
BMAP-27(1-18): GRFKRFRKKFKKLFKKLS-NH2 | Fragment 1–18 of BMAP-27 (alfa-helical) | Ti; Ti and agarose resin | In vitro antimicrobial activity against S. epidermidis | [92,93] | |
Histatin peptides and synthetic derivatives | Histatin 1: DSpHEKRHHGYRRKFHEKHHSHREFPFYGDYGSNYLYDN | Histidin-rich peptide isolated from human parotid secretion [97] | Ti | Antimicrobial activity not investigated; effects on osteoblast-like cells in vitro (adhesion, proliferation and differentiation) | [98] |
Dhvar5: LLLFLLKKRKKRKY | Synthetic peptide derived from the active domain (amino acids 11–24) of histatin 5 | Ti | In vitro antimicrobial activity against S. aureus | [69] | |
JH8194: KRLFRRWQWRMKKY | Synthetic peptide inspired by histatin and other salivary peptides [99] | Ti | In vitro antimicrobial activity against P. gingivalis | [83] | |
effects on osteoblast-like cells In vitro | [98] | ||||
Defensin-derived peptides | SESB2V: [(RGRKVVRR)2K]2KK | Synthetic branched AMP inspired by the C-terminal end of HBD3 | Ti alloy | In vitro antimicrobial activity against B. cereus, E. coli, S. aureus, P. aeruginosa, in vivo rabbit keratitis model | [100,101] |
Fragments and derivatives from human proteins | GL13K: GKIIKLKASLKLL-NH2 | Synthetic peptide derived from the fragment 141–153 of Parotid secretory protein [102] | Ti | In vitro antimicrobial activity against P. gingivalis, S. gordonii | [84,85,86] |
hLF1-11: GRRRRSVQWCA | Fragment 1–11 of human lactoferrin | Ti | In vitro antimicrobial activity against S. sanguinis and L. salivarius and multispecies biofilm | [87,88,89] | |
hLF1-11 plus RGD sequence | The antimicrobial and the cell-adhesive sequence are tethered to the same anchor | Ti | In vitro antimicrobial activity against S. aureus and S. sanguinis; improved osteoblast cell adhesion | [90] | |
Amphibian AMPs | Magainin 1: GIGKFLHSAGKFGKAFVGEIMKS | Frog skin secretion | Chitosan-coated stainless steel | In vitro antimicrobial activity against L. ivanovii | [95] |
gold | In vitro antimicrobial activity against L. ivanovii, E. faecalis and S. aureus | [94] | |||
Temporin SHa: FLSGIVGMLGKLF-NH2 and several analogues | Selected silylated derivatives (N-, C-, and in the middle of peptide sequence); several sequence analogues | Ti | In vitro antimicrobial activity against E. coli and S. epidermidis; | [103] | |
Gold | In vitro antimicrobial activity against L. ivanovii | [96] | |||
Synthetic derivatives of insect AMPs | CM (cecropin-melittin): KWKLFKKIGAVLKVL-NH2 | Hybrid peptide composed of residues 1–7 of cecropin A and 2–9 of melittin [104] | Gold nanoparticles deposited to glass and Ti | In vitro antimicrobial activity against E. coli, P. aeruginosa, K. pneumoniae, S. aureus and S. haemolyticus | [65] |
Synthetic derivatives of insect AMPs | Melimine (melittin-protamine): TLISWIKNKRKQRPRVSRRRRRRGGRRRR | Hybrid peptide composed of residues 15–26 of melittin (from bee venom) and 16–32 of protamine (from salmon sperm) | Ti disks | In vitro antimicrobial activity against P. aeruginosa and S. aureus; In vivo subcutaneous mouse and rat models of S. aureus infection | [66] |
Plant AMPs | Plant-derived cyclotides: a complex mixture of cyclic peptides | Cyclic peptides purified from Viola philippica Cav., a chinese medicinal plant | Stainless steel | In vitro antimicrobial activity against S. aureus | [105] |
Bacterial (lipo)peptides and synthetic analogues | Daptomycin: n-decanoyl-WND-cy(TG-Orn-DADGS-MeGlu-Kyn) | Lipopeptide from S. roseosporus | Ti alloy | In vitro antimicrobial activity against S. aureus | [67,78] |
Bacitracin: ICLEI-cy(KOrnIFHDD) | Cyclic AMP from B. subtilis | Ti alloy | In vitro antimicrobial activity against S. aureus and MRSA | [80] | |
In vivo rat femur implant-related infection model | [72] | ||||
Bacterial (lipo)peptides and synthetic analogues | GZ3.163: 4-methylhexanoyl-C-Dab-Dab-Dab-LF-Dab-Dab-L-NH2 | Analogue of battacin lipopeptide from P. tianmunesis | Glass, Silicon, Ti | In vitro antimicrobial activity against E. coli, P. aeruginosa and S. aureus; | [70] |
Gramicidin A Formyl-VGALAVVVWLWLWLWGNHCH2CH2OH | The major component of Gramicidin D, a mixture of gramicidins A (85%), B and C [106] | Gold-coated glass | In vitro antimicrobial activity against E. coli, L. ivanovi, E. faecalis, S. aureus and C. albicans | [79] |
3. AMPs’ Efficacy in the Immobilized Condition
AMP (Name) | Coupling Strategy | Peptide Orientation | Peptide Density on Surface | Spacer | Antimicrobial Effect | Ref. |
---|---|---|---|---|---|---|
Magainin 2 and synthetic analogues | Peptides synthesized with an acid-stable bond on a commercial polyamide resin | C-terminus | Not applicable | no | Contact-killing of E. coli and S. aureus; the reversed sequence of magainin 2 does not display activity | [108] |
LL-37 | Random (via amino groups) and site-specific (via a Cys residue added to N-terminus) binding to silanized Ti, with and without spacer | Random with/without spacer; N-terminus with/without spacer | 0.78–1.47 × 10−10 mol/cm2 (amino groups detection by sulfo-SDTB method) | PEG of 5400 Da | Killing of E. coli observed only with the N-terminally immobilized AMP with spacer (PI uptake), no correlation with peptide density | [59] |
Tet peptides library (122 AMPs) | SPOT synthesis of peptides on cellulose by using the CAPE linker chemistry; biotin-streptavidin tethering to plastic | C-terminus; N-terminus; | 50 and/or 200 nmol/spot | no | >90% inhibition of P. aeruginosa by short (9-, 12-, 13-mer) cationic AMPs (luminescence); decreased viability of P. aeruginosa, S. aureus and C. albicans (CFU counts); no direct correlation with aa sequence parameters; positive correlation with peptide density | [58] |
Cationic and amphiphilic model peptides: KLAL and MK5E, and acetylated/PEGylated derivatives | Solid phase synthesis on different PEG bearing resins by Fmoc chemistry, oxime-forming ligation and thioalkylation | C- and N-terminus and side-chain immobilization | 0.024–0.133 and 0.15–0.25 µmol/mg depending on resin (not directly applicable to a surface) | PEG of 3000, 400 and 200 Da, depending on resin | Best effect against B. subtilis and E. coli with longer spacer even at lower density, no influence by AMP orientation | [55] |
Melittin, buforin 2, tritrpticin, and KLAL | Coupling of AOA modified synthetic peptides to a PEG bearing resin by oxime-forming ligation | C- and N-terminus | 0.02–0.147 µmol/mg resin (not directly applicable to a surface) | PEG of 3 kDa | Best effect with membrane-active KLAL and C-oriented melittin | [56] |
Tet213 + several Tet peptides | AMPs conjugated to acrylamide-based copolymer brushes covalently grafted on Ti | C-terminus | 10–14 peptides/nm2 (corresponding to 3–6 µg/cm2) | Not specifically added (the brush itself functions as handle and spacer) | Most brush-conjugated AMPs showed similar high potency against P. aeruginosa and S. aureus (luminescence, fluorescence and CFU counts) | [73] |
Tet213 | Tet213 conjugated to acrylamide-based copolymer brushes covalently grafted on Ti; optimization of composition (DMA:APMA ratio) and graft densities | C-terminus | 12–15 peptides/nm2, positively correlated with polymer chains density at 5:1 DMA:APMA ratio | Not specifically added (the brush itself functions as handle and spacer) | Antimicrobial activity against P. aeruginosa in general positively correlated to peptide surface density (luminescence) | [71] |
IDR1010 | AMP of the Tet series tethered to an acrylamide-based polymer brush formed on quartz slides | C-terminus | 7.5–16 peptides/nm2 (corresponding to 2.5–5.4 µg/cm2), depending on DMA:APMA ratio | Not investigated (focus on structural modifications induced by interaction with LUVs) | [109] | |
BMAP27 and other AMPs of diverse origin, structure and mode of action | Comparison of four different coupling chemistries on preactivated reactive surfaces suitable for grafting of amino-compounds | random | Peptide density expressed relative to that obtained by aldehyde mediated coupling (fluorescent epicocconone staining) | no | Decrease in E. coli viability observed with NHS and aldehyde coupled BMAP-27, LL-37 and Polymyxin B (membrane depolarization) | [32] |
SMAP-29 | Coupling of –SH containing AMP to paramagnetic beads, suitable for amino-groups, via a maleimide-bearing heterobifunctional linker, and to silanized glass | N- and C-terminus | 3–7 × 10−3 µmol/cm2 (beads) and 1.8–2.5 × 10−3 µmol/cm2 (glass) | PEG12 | Differentiated killing of selected G+ and G- strains; in general soluble more active than immobilized and C-oriented more active than N-oriented AMP | [107] |
hLF1-11 | Coupling of –SH containing AMP to I-CH2-groups on APTES-silanized Ti and on acrylamide-based copolymer brushes on silanized Ti | N-terminus with/without spacer | 0.9 µg/cm2, for coupling without brushes and 1.3–1.7 µg/cm2 for coupling to polymer brushes | 3 units of 6-aminohexanoic acid for coupling to silanized Ti, no spacer added for coupling to copolymer brushes | Adhesion of and biofilm formation by S. sanguinis and L. salivarius reduced to different extent; antibacterial effect damped after 2 h samples sonication | [88] |
hLF1-11 | Comparison between silver-coated Ti, AMP-functionalized silanized Ti, and AMP conjugated to acrylamide-based copolymer brushes on Ti | N-terminus with/without spacer | Not reported | 3 units of 6-aminohexanoic acid for coupling to silanized Ti, no spacer added for coupling to copolymer brushes; | AMP coupled to polymer brushes most effective against oral plaque adhesion; AMP shows overall comparable potency to Ag in long-term (3 weeks) biofilm inhibition | [89] |
Dhvar5 | Coupling of –SH bearing analogues to –SH derivatized chitosan (coated to Ti) via disulfide bridge formation | N- and C-terminus | 1.5–2.4 ng/mm2 (fluorescence assay) | Aminohexanoic acid, aminobutanoic acid and Gly-Gly-Cys; | N-oriented AMP has activity against S. aureus adhesion regardless of spacer type | [69] |
Hybrid cecropin-melittin | Coupling of –SH containing peptide to a maleimide function on gold nanoparticles coated to glass/Ti | C-terminus | 46–110 µg/cm2 | PEG of 1 kDa | Dose-dependent bactericidal effect; best effect with PEG and higher density | [65] |
Cecropin A | Coupling of maleimide-modified analogues to –SH groups exposed on a PEG hydrogel | C-terminus and in the middle of the sequence | 90–990 µM depending on coating composition (Determined indirectly by quantification of reactive –SH groups); focus on coating thickness and other properties | Four Gly residues | Potent bactericidal activity against E. coli exerted by C-oriented analogues with no influence by the presence of spacer and positive correlation with AMP concentration (Live/Dead fluorescence staining) | [110] |
FK-16 | Coupling of –SH containing peptide to a maleimide function on silanized Ti | C-terminus | 6 × 10−10 mol/cm2 (amino groups detection by sulfo-SDTB method) | 6-maleimido hexanoic acid | Viability of ESKAPE pathogens inhibited to various extent except E. cloacae | [82] |
Temporin SHa | Coupling of several analogues, bearing a hydroxysilane moiety at the N- or C-terminus or in the middle of the sequence, to silanized Ti | N- and C-terminus and in the middle of the sequence;| | 1.3–1.9 peptides/nm2 | no | Maximum activity (50–60% killing) obtained with the AMP anchored in the middle of its sequence | [103] |
coupling of analogues to SAM on gold | N- and C-terminus | overall equal potency against L. ivanovii | [96] | |||
HHC36 (Tet213) | HHC36 conjugated (via click-chemistry) to a temperature-sensitive polymer coated to dopaminated Ti | N-terminus | 0.64 µg/cm2 (QCM analysis) | Not specifically added (the polymer itself functions as handle and spacer) | Temperature-dependent killing of S. aureus and E. coli due to peculiarity of the polymer | [77] |
HHC36 (Tet213) | PEGylated HHC36 conjugated (via click-chemistry) to silanized Ti | N-terminus | 0.58–0.92 µg/cm2 (QCM analysis) | PEG12 | Dose-dependent decrease in CFU counts of S. aureus and E. coli, according to gradually increased AMP density | [76] |
HHC36 and RGD peptides mixed in optimized proportions | Two phases procedure: each peptide separately conjugated via thiol-ene chemistry to silanized Ti to obtain a gradient surface, then dual-peptide functionalization (same coupling chemistry) by using optimized parameters extracted from the gradient surface; | N-terminus | 0.16–0.49 (AMP) and 0.035–0.026 (RGD) µg/cm2 (fluorescent dye detection with respect to a titration curve) | A short CPAPAP sequence added to N-terminus as handle/spacer | Best combination of antimicrobial activity and biocompatibility achieved at AMP:RGD molar ratio of 5.3:1 | [75] |
4. Mode of Action of Surface-Immobilized AMPs
AMP (Name) | Structural Features in Solution/Methods | Mode of Action in Solution/Methods | Structural Features on Surface/Methods | Mode of Action on Surface/Methods | Ref. |
---|---|---|---|---|---|
Magainin 2 | amphipathic alfa-helical (CD, Raman, FTIR, NMR) [118] | Membrane permeabilization [118] | Analogues with no predicted helical conformation are not active; reversed sequence of magainin 2 not active | Contact-killing | [108] |
LL-37 | amphipathic alfa-helical with self-association into oligomeric bundles (CD, NMR) [119] | Transient toroidal pore formation [119] | N-terminally linked AMP, secondary structure not determined | Membrane permeabilization (PI uptake); | [59] |
Permeabilization of OM and IM of E. coli ML35p (chromogenic assay) | Peptide C-terminally linked to gold nanoparticles | Permeabilization of OM and IM of E. coli ML35p (chromogenic assay) | [115] | ||
Tet series, a library of synthetic peptides derived from bovine dodecapeptide and indolicidin | Transition from random coil to β-structure in the presence of liposomes (CD) [120] | Membrane depolarization of S. aureus and E. coli (potentiometric fluorescent dye) [120] | SAR study (charge, hydrophobic and polar fraction, hydrophobic moment) | Membrane permeabilization (ATP release, SEM) and membrane depolarization (potentiometric fluorescent dye) | [58] |
Cationic and amphiphilic model peptides | amphipathic α-helical (CD) | Membrane permeabilization (LUVs, calcein release) | Not determined | Membrane permeabilization (LUVs, calcein release) | [55] |
Melittin, buforin 2, tritrpticin, and KLAL | Melittin amphipathic α-helical (CD) [118] | Gram- OM and IM permeabilization (LUVs, calcein release) | Not determined | Melittin (C-term) and KLAL induce membrane permeabilization (LUVs, calcein release) | [56] |
Tet20 | amphipathic α-helical in the presence of lipid vesicles (CD) | - | Conformational transition in the presence of lipid vesicles (CD with AMP tethered to polymer brush formed on quartz slides) | - | [73] |
IDR1010 | amphipathic α-helical in the presence of lipid vesicles (CD) | - | Conformational transition in the presence of lipid vesicles (CD with AMP tethered to polymer brush formed on quartz slides) | Not investigated | [109] |
GL13K | β-sheet conformation [121] | Interaction with artificial membranes and formation of holes [121] | Not determined | S. gordonii cell wall rupture (SEM of bacteria cultured in drip-flow bioreactor) | [85] |
Cecropin A | Transition from random to α-helical conformation in the presence of SDS and LTA from B. subtilis and S.aureus (CD) | Membrane permeabilization [118] | More β-strand content in water and even more a-helix in the presence of SDS, regardless of orientation; transition to a-helix in the presence of LTA dependent on orientation and LTA type (CD of quartz slides-immobilized AMPs) | LTA-binding by the C-oriented AMP higher respect to the N-oriented AMP, and dependent on LTA type (fluorescence assay) | [111] |
Cecropin A | Transition from random to α-helical conformation in the presence of 50% TFE with quantitative differences among analogues | Membrane permeabilization [118] | Transition from random to α-helical conformation in the presence of 50% TFE with quantitative differences among analogues | Not specifically investigated; remarkably better killing observed with the C-oriented analog | [110] |
Hybrid cecropin-melittin | amphipathic α-helical (CD) | Permeabilization of OM and IM of E. coli ML35p (chromogenic assay) | Not determined | Permeabilization of OM and IM of E. coli ML35p (chromogenic assay) | [65] |
hLF1-11 + RGD anchored together | - | - | - | Clearly altered morphology of S. aureus and S. sanguinis (SEM) | [90] |
Cecropin P1 | Transition from random to α-helical conformation in the presence of a PG bilayer (SFG) | Electrostatic interaction of AMP with and insertion into the PG bilayer (SFG) | Immobilized AMP on SAM adopts α-helical conformation in water with reduced signal intensity upon addition of POPG vesicles (SFG) | Immobilized AMP interacts with POPG vesicles by changing its orientation or conformation (SFG) | [112] |
Melimine and a synthetic, highly cationic derivative, Mel4 | Melimine adopts helical structure in the presence of 40% TFE [122] | Cell membrane depolarization of P. aeruginosa and S. aureus (fluorescence potentiometric dye assay) [122] | CD recorded with free and bound Mel4 in the presence of lipid vesicles (anionic and zwitterionic) | P. aeruginosa LPS binding, inner membrane perturbation followed by ATP leakage and DNA/RNA release (both AMPs); | [114] |
S. aureus LTA binding, membrane depolarization, ATP leakage and DNA/RNA release (melimine), S. aureus LTA binding, release of autolysins, membrane depolarization and ATP leakage (Mel4) (LAL, fluorescence, luminescence) | S. aureus LTA binding, membrane depolarization, ATP leakage and DNA/RNA release (melimine), S. aureus LTA binding, release of autolysins, membrane depolarization and ATP leakage (Mel4) (LAL, fluorescence, luminescence) | [57] | |||
BMAP-27(1-18) | amphipathic alfa-helical (CD) [123] | S. epidermidis membrane perturbation (fluorescence assay) | Not determined | Altered morphology of S. epidermidis (ghost-like cells observed by SEM), membrane perturbation higher by the C-oriented AMP (fluorescence assay) | [92,93] |
hyperbranched polylysine covalently tethered to Ti | - | - | Not determined | CFU reduction in S. aureus and E. coli, ROS production and increased expression of oxidative stress-related genes, remarkably altered morphology (CFU counts, fluorescence, qRT-PCR, TEM) | [124] |
5. Cytocompatibility and Additional Effects of Surface-Immobilized AMPs
Tethered AMP | Cell Type (Assay) | Effects | Co-Culture In Vitro (Outcome) | Animal Model (Outcome) | Ref. |
---|---|---|---|---|---|
Tet library on cellulose sheet | Human red blood cells (hemoglobin release) | No hemolytic activity by tethered AMPs | - | - | [58] |
Tet20 on Ti wire and slides | Human platelet activation (flow cytometry); complement activation (sheep erythrocytes); osteoblast-like MG-63 cells (cell viability by metabolic dye, cell adhesion by cell counts on SEM images); | No platelet and complement activation; no toxicity to MG-63 cells at 5 d and improved cell adhesion at 48 h cell culture | - | Rat subcutaneous infection model with S. aureus (85% CFU decrease 7 d after implantation) | [73] |
BMAP27 coupled to a preactivated reactive surface suitable for grafting of amino-compounds | Monocytic cell line U937 (live-dead staining) | No cytotoxicity after 2 h-incubation | Selective toxicity against bacteria in a mixed culture of U937 cells and E. coli | - | [32] |
hLF1-11 tethered to Ti with various strategies; | Human foreskin fibroblasts (cell quantification by enzymatic colorimetric assay) | No cytotoxicity at 4 h and 1 d incubation; cell proliferation at 4 h, 1 d, 3 d, and 7 d) | - | - | [87,88,89] |
hLF1-11 and RGD tethered to the same anchor on Ti | Human sarcoma osteogenic SaOS-2 cells (cell quantification as above, cell morphology by immuno-fluorescence, proliferation by metabolic dye and mineralization by staining with Alizarin Red S) | Cell attachment improved at 4 h in the presence of RGD; increased cell proliferation and mineralization at 27 d culture | Osteoblasts-bacteria co-culture (SaOS-2 cells attachment and spreading after 16 h on samples pre-challenged with bacteria (2 h S. aureus and S. sanguinis) | - | [90] |
Melimine tethered to Ti disks and buttons (mimicking implants) | - | - | - | Mice and rats subcutaneous S. aureus infection model (mice: 1.1 and 1.3 log CFU reduction after 5 d with 105 and 107 inoculum, respectively, and reduced clinical signs of inflammation; 1 log CFU reduction after 7 d with 105 inoculum; rats: 2 and 1.5 log CFU reduction after 5 d with 105 and 107 inoculum, respectively) | [66] |
GL13K conjugated to silanized Ti | Human gingival fibroblasts and mouse osteoblasts (fluorescence microscopy) | Cell numbers of both lines increased in time (1 d, 3 d, and 5 d) | - | - | [84] |
GL13K conjugated to microgroove Ti | Human gingival fibroblasts ((immuno-) fluorescent staining, cell viability by metabolic dye, cell morphology by SEM) | Cell adhesion at 2 h, 4 h, and 6 h, and proliferation at 12 h, 24 h, 48 h, and 3 d, 5 d, 7 d improved | - | - | [86] |
KR-12 tethered to Ti | Human BMMSCs (cell adhesion by fluorescent staining, cell viability by metabolic dye, cell morphology by confocal microscopy and SEM, osteogenic differentiation by ALP activity, collagen secretion, gene expression by qRT-PCR, mineralization by staining with Alizarin Red S) | Cell adhesion at 1 h, 2 h, and 3 h, and proliferation at 1 d, 3 d, and 5 d improved; good spreading morphology; increased ALP activity at 10 d; increased expression of osteogenic markers at 10 d and 14 d; | - | - | [91] |
FK-16 tethered to Ti | Human red blood cells (hemoglobin release); human epidermal keratinocytes HaCat (cell viability by metabolic dye) | No hemolytic activity by tethered AMPs; no cytotoxicity upon 3 h incubation | - | - | [82] |
Bacitracin immobilized on Ti alloy rods | - | - | - | Rat femur implant-related S. aureus infection model (reduction in bone pathology by micro-CT evaluation, CFU decrease in rods and bone tissue at 3 w after surgery); rat femur implant osseointegration model (improved osseointegration by micro-CT and bone formation by calcein and alizarin red S staining at 12 w after surgery) | [72] |
HHC36 (Tet213) mixed with RGD peptide in different proportions and coupled to Ti via click-chemistry | Rat bone mesenchimal stem cells (cell viability by metabolic dye) | Cell viability after 24 h decreased at 100% AMP and increased with increasing RGD% | - | - | [68] |
HHC36 conjugated (via click-chemistry) to a temperature-sensitive polymer coated to Ti | Rabbit red blood cells (hemoglobin release); BMMSCs (cell viability by metabolic dye and cell counts and morphology by confocal microscopy) | No hemolytic activity; improved cell viability and adhesion after 48 h | - | Rabbit S. aureus infection (91–99% CFU decrease and good biocompatibility after 7 d implantation) | [77] |
PEGylated HHC36 conjugated (via click-chemistry) to silanized Ti | Mouse BMMSCs (metabolic dye and confocal microscopy) | Good spreading morphology and negligible cytotoxicity at highest peptide densities after 24 h incubation | - | Same as above (marked CFU decrease and good biocompatibility 7 d after implantation) | [76] |
Fusion peptide: HHC36 with QK angiogenic sequence added at the N-terminus, conjugated via click-chemistry to silanized Ti | Human endothelial (HUVEC) and bone marrow mesenchymal stem cells (gene expression by qRT-PCR; immunofluorescence; metabolic dye) | Improved cell adhesion, spreading and proliferation (both cell types); in vitro angiogenic and osteogenic activity | - | Same as above with >99% killing after 7 d, reduced inflammation and increased vascularization at 14 d, and vascularization and osseointegration at 60 d; vascularization and osseointegration observed also in a non-infection model | [74] |
HHC36 and RGD peptides, mixed in optimized proportions, coupled to Ti by thiol-ene chemistry | Mouse BMMSCs (metabolic dye and confocal microscopy) | Better cell adhesion and spreading on gradient surface with higher RGD density observed by microscopy at 24 h, cell viability on optimized Ti substrate determined by metabolic dye at 1 d and 3 d | - | Rabbit S. aureus infection model (>99% killing after 7 d and remarkably less inflammatory cells by HE staining; remarkably improved osseointegration by histochemistry at 7 d, 30 d and 60 d) | [75] |
BMAP-27(1-18) | Osteoblast-like MG-63 cells (cell viability by metabolic dye, cell adhesion and morphology by cell counts on confocal microscopy images) | Optimal adhesion and viability of osteoblasts to Ti substrates after 4 h, without significant difference between N- and C-oriented AMP | Osteoblast-bacteria co-culture (MG-63 + S. epidermidis) (Remarkably increased surface coverage at 6 h and 24 h also on bacteria-challenged AMP-samples), no significant difference between N- and C-oriented AMP | - | [92,93] |
Histatin 1 and JH8194 bound to Ti via tresyl chloride-activated technique | Mouse MC3T3-E1 preosteoblasts (cell morphology, adhesion and proliferation by cell counts, SEM analysis and metabolic dye; osteogenic differentiation by ALP activity and RT-PCR analysis of specific marker expression) | Cell adhesion and proliferation at 3 d and 7 d significantly increased on both AMPs; specific genes expression and ALP activity increased at 7 d and 14 d, but JH8194 was always less effective than histatin 1 | - | - | [98] |
6. Conclusions and Future Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- The World Health Organization Antibiotic Resistance. Available online: https://www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 18 December 2022).
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 2013, 34, 8533–8554. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Webster, T.J. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J. Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, R.; Speert, D.P. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and impact on treatment. Drug Resist. Updat. 2000, 3, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic Resistance in Pseudomonas Aeruginosa: Mechanisms and Alternative Therapeutic Strategies. Biotechnol. Adv. 2019, 37, 177–192. [Google Scholar] [CrossRef] [PubMed]
- Hitchman, L.H.; Smith, G.E.; Chetter, I.C. Prosthetic infections and high-risk surgical populations. Surgery 2019, 37, 38–44. [Google Scholar] [CrossRef]
- Campoccia, D.; Montanaro, L.; Arciola, C.R. A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces. Biomaterials 2013, 34, 8018–8029. [Google Scholar] [CrossRef]
- Gallo, J.; Holinka, M.; Moucha, C.S. Antibacterial Surface Treatment for Orthopaedic Implants. Int. J. Mol. Sci. 2014, 15, 13849–13880. [Google Scholar] [CrossRef] [Green Version]
- Eltorai, A.E.; Haglin, J.; Perera, S.; Brea, B.A.; Ruttiman, R.; Garcia, D.R.; Born, C.T.; Daniels, A.H. Antimicrobial technology in orthopedic and spinal implants. World J. Orthop. 2016, 7, 361–369. [Google Scholar] [CrossRef]
- Follmann, H.D.M.; Martins, A.F.; Gerola, A.P.; Burgo, T.A.L.; Nakamura, C.V.; Rubira, A.F.; Muniz, E.C. Antiadhesive and Antibacterial Multilayer Films via Layer-by-Layer Assembly of TMC/Heparin Complexes. Biomacromolecules 2012, 13, 3711–3722. [Google Scholar] [CrossRef]
- Muszanska, A.K.; Rochford, E.T.J.; Gruszka, A.; Bastian, A.A.; Busscher, H.J.; Norde, W.; Van Der Mei, H.C.; Herrmann, A. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules 2014, 15, 2019–2026. [Google Scholar] [CrossRef]
- Zhu, H.; Guo, Z.; Liu, W. Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 2013, 50, 3900–3913. [Google Scholar] [CrossRef] [PubMed]
- Poncin-Epaillard, F.; Herry, J.; Marmey, P.; Legeay, G.; Debarnot, D.; Bellon-Fontaine, M. Elaboration of highly hydrophobic polymeric surface—A potential strategy to reduce the adhesion of pathogenic bacteria? Mater. Sci. Eng. C 2013, 33, 1152–1161. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.V.; Vyas, V.; Patil, R.; Sharma, V.; Scopelliti, P.E.; Bongiorno, G.; Podestà, A.; Lenardi, C.; Gade, W.N.; Milani, P. Quantitative Characterization of the Influence of the Nanoscale Morphology of Nanostructured Surfaces on Bacterial Adhesion and Biofilm Formation. PLoS ONE 2011, 6, e25029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Truong, V.K.; Lapovok, R.; Estrin, Y.S.; Rundell, S.; Wang, J.; Fluke, C.; Crawford, R.; Ivanova, E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 2010, 31, 3674–3683. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Li, X.; Li, L.; Cheng, G.; Gong, X.; Zheng, J. Dual Functionality of Antimicrobial and Antifouling of Poly(N-hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir 2013, 29, 1517–1524. [Google Scholar] [CrossRef]
- Drago, L.; Boot, W.; Dimas, K.; Malizos, K.; Hänsch, G.M.; Stuyck, J.; Gawlitta, D.; Romanò, C.L. Does Implant Coating With Antibacterial-Loaded Hydrogel Reduce Bacterial Colonization and Biofilm Formation in Vitro? Clin. Orthop. Relat. Res. 2014, 472, 3311–3323. [Google Scholar] [CrossRef] [Green Version]
- Hoene, A.; Prinz, C.; Walschus, U.; Lucke, S.; Patrzyk, M.; Wilhelm, L.; Neumann, H.-G.; Schlosser, M. In vivo evaluation of copper release and acute local tissue reactions after implantation of copper-coated titanium implants in rats. Biomed. Mater. 2013, 8, 035009. [Google Scholar] [CrossRef]
- Webster, T.J.; Tran, P. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011, 6, 1553–1558. [Google Scholar] [CrossRef] [Green Version]
- Holinka, J.; Pilz, M.; Kubista, B.; Presterl, E.; Windhager, R.; Valentini, M.B.; Farsetti, P.; Martinelli, O.; Laurito, A.; Ippolito, E. Effects of selenium coating of orthopaedic implant surfaces on bacterial adherence and osteoblastic cell growth. Bone Jt. J. 2013, 95, 678–682. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Rodríguez-Hernández, A.G.; Delgado, L.M.; Manero, J.M.; Javier Gil, F.; Rodríguez, D. Silver deposition on titanium surface by electrochemical anodizing process reduces bacterial adhesion of Streptococcus sanguinis and Lactobacillus salivarius. Clin. Oral Impl. Res. 2015, 26, 1170–1179. [Google Scholar] [CrossRef]
- Knetsch, M.L.W.; Koole, L.H. New Strategies in the Development of Antimicrobial Coatings: The Example of Increasing Usage of Silver and Silver Nanoparticles. Polymers 2011, 3, 340–366. [Google Scholar] [CrossRef]
- Elizabeth, E.; Baranwal, G.; Krishnan, A.G.; Menon, D.; Nair, M. ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 2014, 25, 115101. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Zhang, W.; Qiao, Y.; Jiang, X.; Liu, X.; Ding, C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2011, 8, 904–915. [Google Scholar] [CrossRef]
- Antoci, V.; Adams, C.S.; Parvizi, J.; Ducheyne, P.; Shapiro, I.M.; Hickok, N.J. Covalently Attached Vancomycin Provides a Nanoscale Antibacterial Surface. Clin. Orthop. Relat. Res. 2007, 461, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Hickok, N.J.; Shapiro, I.M. Immobilized antibiotics to prevent orthopaedic implant infections. Adv. Drug Deliv. Rev. 2012, 64, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.; Ma, R.; Lin, C.; Liu, Z.; Tang, T. Quaternized Chitosan as an Antimicrobial Agent: Antimicrobial Activity, Mechanism of Action and Biomedical Applications in Orthopedics. Int. J. Mol. Sci. 2013, 14, 1854–1869. [Google Scholar] [CrossRef] [PubMed]
- Renoud, P.; Toury, B.; Benayoun, S.; Attik, G.; Grosgogeat, B. Functionalization of Titanium with Chitosan via Silanation: Evaluation of Biological and Mechanical Performances. PLoS ONE 2012, 7, e39367. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; McKeague, A.L. Emerging Ideas: Interleukin-12 Nanocoatings Prevent Open Fracture-associated Infections. Clin. Orthop. Relat. Res. 2011, 469, 3262–3265. [Google Scholar] [CrossRef] [Green Version]
- Thallinger, B.; Prasetyo, E.N.; Nyanhongo, G.S.; Guebitz, G.M. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnol. J. 2013, 8, 97–109. [Google Scholar] [CrossRef]
- Costa, F.; Carvalho, I.F.; Montelaro, R.C.; Gomes, P.; Martins, M.C.L. Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 2011, 7, 1431–1440. [Google Scholar] [CrossRef]
- Rapsch, K.; Bier, F.F.; Tadros, M.; Von Nickisch-Rosenegk, M. Identification of Antimicrobial Peptides and Immobilization Strategy Suitable for a Covalent Surface Coating with Biocompatible Properties. Bioconjugate Chem. 2014, 25, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.T.Y.; Gellatly, S.L.; Hancock, R.E.W. Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci. 2011, 68, 2161–2176. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Mishra, B.; Lau, K.; Lushnikova, T.; Golla, R.; Wang, X. Antimicrobial Peptides in 2014. Pharmaceuticals 2015, 8, 123–150. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Magana, M.; Pushpanathan, M.; Santos, A.L.; Leanse, L.; Fernandez, M.; Ioannidis, A.; Giulianotti, M.A.; Apidianakis, Y.; Bradfute, S.; Ferguson, A.L.; et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect. Dis. 2020, 20, e216–e230. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mookherjee, N.; Anderson, M.A.; Haagsman, H.P.; Davidson, D.J. Antimicrobial host defence peptides: Functions and clinical potential. Nat. Rev. Drug Discov. 2020, 19, 311–332. [Google Scholar] [CrossRef]
- Bellotti, D.; Remelli, M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022, 27, 4584. [Google Scholar] [CrossRef]
- Ciociola, T.; Giovati, L.; Conti, S.; Magliani, W.; Santinoli, C.; Polonelli, L. Natural and synthetic peptides with antifungal activity. Future Med. Chem. 2016, 8, 1413–1433. [Google Scholar] [CrossRef]
- van der Weerden, N.L.; Bleackley, M.R.; Anderson, M.A. Properties and mechanisms of action of naturally occurring antifungal peptides. Cell. Mol. Life Sci. 2013, 70, 3545–3570. [Google Scholar] [CrossRef]
- Ebbensgaard, A.; Mordhorst, H.; Overgaard, M.T.; Nielsen, C.G.; Aarestrup, F.M.; Hansen, E.B. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. PLoS ONE 2015, 10, e0144611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, M.; Gennaro, R.; Skerlavaj, B.; Tomasinsig, L.; Circo, R. Cathelicidin Peptides as Candidates for a Novel Class of Antimicrobials. Curr. Pharm. Des. 2002, 8, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Strehmel, J.; Overhage, J. Potential Application of Antimicrobial Peptides in the Treatment of Bacterial Biofilm Infections. Curr. Pharm. Des. 2014, 21, 67–84. [Google Scholar] [CrossRef]
- Batoni, G.; Maisetta, G.; Esin, S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim. Biophys. Acta 2016, 1858, 1044–1060. [Google Scholar] [CrossRef] [PubMed]
- Koprivnjak, T.; Peschel, A. Bacterial resistance mechanisms against host defense peptides. Cell. Mol. Life Sci. 2011, 68, 2243–2254. [Google Scholar] [CrossRef]
- Tossi, A.; Skerlavaj, B.; D’Este, F.; Gennaro, R.; Wang, G. Structural and functional diversity of cathelicidins. In Antimicrobial Peptides: Discovery, Design and Novel Therapeutic Strategies; Wang, G., Ed.; CABI: Wallingford, UK, 2017; pp. 20–48. [Google Scholar] [CrossRef]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A New Era of Antibiotics: The Clinical Potential of Antimicrobial Peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Chen, C.H.; Lu, T.K. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef] [Green Version]
- Onaizi, S.A.; Leong, S.S. Tethering antimicrobial peptides: Current status and potential challenges. Biotechnol. Adv. 2011, 29, 67–74. [Google Scholar] [CrossRef]
- Riool, M.; de Breij, A.; Drijfhout, J.W.; Nibbering, P.H.; Zaat, S.A.J. Antimicrobial Peptides in Biomedical Device Manufacturing. Front. Chem. 2017, 5, 63. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2018, 83, 37–54. [Google Scholar] [CrossRef]
- Andrea, A.; Molchanova, N.; Jenssen, H. Antibiofilm Peptides and Peptidomimetics with Focus on Surface Immobilization. Biomolecules 2018, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, B.; Martínez-De-Tejada, G.; Gomes, P.A.C.; Martins, M.C.L.; Costa, F. Antimicrobial Peptides in the Battle against Orthopedic Implant-Related Infections: A Review. Pharmaceutics 2021, 13, 1918. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, M.; Beyermann, M.; Dathe, M. Immobilization Reduces the Activity of Surface-Bound Cationic Antimicrobial Peptides with No Influence upon the Activity Spectrum. Antimicrob. Agents Chemother. 2009, 53, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, M.; Beyermann, M.; Dathe, M. Mode of Action of Cationic Antimicrobial Peptides Defines the Tethering Position and the Efficacy of Biocidal Surfaces. Bioconjugate Chem. 2011, 23, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Yasir, M.; Dutta, D.; Kumar, N.; Willcox, M.D.P. Interaction of the surface bound antimicrobial peptides melimine and Mel4 with Staphylococcus aureus. Biofouling 2020, 36, 1019–1030. [Google Scholar] [CrossRef]
- Hilpert, K.; Elliott, M.; Jenssen, H.; Kindrachuk, J.; Fjell, C.D.; Körner, J.; Winkler, D.F.; Weaver, L.L.; Henklein, P.; Ulrich, A.S.; et al. Screening and Characterization of Surface-Tethered Cationic Peptides for Antimicrobial Activity. Chem. Biol. 2009, 16, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, M.; Nazmi, K.; Veerman, E.C.; Amerongen, A.V.N.; Zentner, A. Preparation of LL-37-Grafted Titanium Surfaces with Bactericidal Activity. Bioconjugate Chem. 2006, 17, 548–550. [Google Scholar] [CrossRef]
- Kazemzadeh-Narbat, M.; Cheng, H.; Chabok, R.; Alvarez, M.M.; De La Fuente-Nunez, C.; Phillips, K.S.; Khademhosseini, A. Strategies for antimicrobial peptide coatings on medical devices: A review and regulatory science perspective. Crit. Rev. Biotechnol. 2020, 41, 94–120. [Google Scholar] [CrossRef]
- Nicolas, M.; Beito, B.; Oliveira, M.; Martins, M.T.; Gallas, B.; Salmain, M.; Boujday, S.; Humblot, V. Strategies for Antimicrobial Peptides Immobilization on Surfaces to Prevent Biofilm Growth on Biomedical Devices. Antibiotics 2021, 11, 13. [Google Scholar] [CrossRef]
- Negut, I.; Bita, B.; Groza, A. Polymeric Coatings and Antimicrobial Peptides as Efficient Systems for Treating Implantable Medical Devices Associated-Infections. Polymers 2022, 14, 1611. [Google Scholar] [CrossRef]
- Perrault, D.P.; Sharma, A.; Kim, J.F.; Gurtner, G.C.; Wan, D.C. Surgical Applications of Materials Engineered with Antimicrobial Properties. Bioengineering 2022, 9, 138. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, A.K.; Yang, Y.; Li, W.-W. In Vivo Antibacterial Efficacy of Antimicrobial Peptides Modified Metallic Implants─Systematic Review and Meta-Analysis. ACS Biomater. Sci. Eng. 2022, 8, 1749–1762. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Pinto, S.; Evangelista, M.B.; Gil, H.; Kallip, S.; Ferreira, M.G.; Ferreira, L. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater. 2016, 33, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Willcox, M.D.; Ho, K.K.K.; Smyth, D.; Kumar, N. Antimicrobial peptide melimine coating for titanium and its in vivo antibacterial activity in rodent subcutaneous infection models. Biomaterials 2016, 85, 142–151. [Google Scholar] [CrossRef]
- Chen, C.-P.; Jing, R.-Y.; Wickstrom, E. Covalent Attachment of Daptomycin to Ti6Al4V Alloy Surfaces by a Thioether Linkage to Inhibit Colonization by Staphylococcus aureus. ACS Omega 2017, 2, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Junjian, C.; Chengzhi, C.; Lin, S.; Sa, L.; Li, R.; Yingjun, W. Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility. J. Mater. Chem. B 2014, 3, 30–33. [Google Scholar] [CrossRef]
- Costa, F.M.; Maia, S.R.; Gomes, P.A.; Martins, M.C.L. Dhvar5 antimicrobial peptide (AMP) chemoselective covalent immobilization results on higher antiadherence effect than simple physical adsorption. Biomaterials 2015, 52, 531–538. [Google Scholar] [CrossRef] [Green Version]
- De Zoysa, G.H.; Sarojini, V. Feasibility Study Exploring the Potential of Novel Battacin Lipopeptides as Antimicrobial Coatings. ACS Appl. Mater. Interfaces 2017, 9, 1373–1383. [Google Scholar] [CrossRef]
- Gao, G.; Yu, K.; Kindrachuk, J.; Brooks, D.E.; Hancock, R.E.W.; Kizhakkedathu, J.N. Antibacterial Surfaces Based on Polymer Brushes: Investigation on the Influence of Brush Properties on Antimicrobial Peptide Immobilization and Antimicrobial Activity. Biomacromolecules 2011, 12, 3715–3727. [Google Scholar] [CrossRef]
- Nie, B.; Ao, H.; Long, T.; Zhou, J.; Tang, T.; Yue, B. Immobilizing bacitracin on titanium for prophylaxis of infections and for improving osteoinductivity: An in vivo study. Colloids Surf. B Biointerfaces 2017, 150, 183–191. [Google Scholar] [CrossRef]
- Gao, G.; Lange, D.; Hilpert, K.; Kindrachuk, J.; Zou, Y.; Cheng, J.T.J.; Kazemzadeh-Narbat, M.; Yu, K.; Wang, R.; Straus, S.K.; et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 2011, 32, 3899–3909. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hu, G.; Li, T.; Chen, Y.; Gao, M.; Li, Q.; Hao, L.; Jia, Y.; Wang, L.; Wang, Y. Fusion peptide engineered “statically-versatile” titanium implant simultaneously enhancing anti-infection, vascularization and osseointegration. Biomaterials 2020, 264, 120446. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Chen, J.; Zhu, Y.; Hu, G.; Xin, H.; Guo, K.; Li, Q.; Xie, L.; Wang, L.; Shi, X.; et al. High-throughput screening and rational design of biofunctionalized surfaces with optimized biocompatibility and antimicrobial activity. Nat. Commun. 2021, 12, 3757. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, Y.; Xiong, M.; Hu, G.; Zhan, J.; Li, T.; Wang, L.; Wang, Y. Antimicrobial Titanium Surface via Click-Immobilization of Peptide and Its in Vitro/Vivo Activity. ACS Biomater. Sci. Eng. 2018, 5, 1034–1044. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, L.; Zhu, Y.; Gao, H.; Chen, Y.; Chen, J.; Jia, Y.-G.; He, J.; Fang, Z.; Zhu, Y.; et al. Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo. ACS Appl. Mater. Interfaces 2018, 10, 35830–35837. [Google Scholar] [CrossRef]
- Chen, C.-P.; Wickstrom, E. Self-Protecting Bactericidal Titanium Alloy Surface Formed by Covalent Bonding of Daptomycin Bisphosphonates. Bioconjugate Chem. 2010, 21, 1978–1986. [Google Scholar] [CrossRef] [Green Version]
- Yala, J.-F.; Thebault, P.; Héquet, A.; Humblot, V.; Pradier, C.-M.; Berjeaud, J.-M. Elaboration of antibiofilm materials by chemical grafting of an antimicrobial peptide. Appl. Microbiol. Biotechnol. 2010, 89, 623–634. [Google Scholar] [CrossRef]
- Nie, B.; Ao, H.; Zhou, J.; Tang, T.; Yue, B. Biofunctionalization of titanium with bacitracin immobilization shows potential for anti-bacteria, osteogenesis and reduction of macrophage inflammation. Colloids Surf. B Biointerfaces 2016, 145, 728–739. [Google Scholar] [CrossRef]
- Cao, P.; Yang, Y.; Uche, F.I.; Hart, S.R.; Li, W.-W.; Yuan, C. Coupling Plant-Derived Cyclotides to Metal Surfaces: An Antibacterial and Antibiofilm Study. Int. J. Mol. Sci. 2018, 19, 793. [Google Scholar] [CrossRef]
- Mishra, B.; Wang, G. Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling 2017, 33, 544–555. [Google Scholar] [CrossRef]
- Makihira, S.; Shuto, T.; Nikawa, H.; Okamoto, K.; Mine, Y.; Takamoto, Y.; Ohara, M.; Tsuji, K. Titanium Immobilized with an Antimicrobial Peptide Derived from Histatin Accelerates the Differentiation of Osteoblastic Cell Line, MC3T3-E1. Int. J. Mol. Sci. 2010, 11, 1458–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holmberg, K.V.; Abdolhosseini, M.; Li, Y.; Chen, X.; Gorr, S.-U.; Aparicio, C. Bio-inspired stable antimicrobial peptide coatings for dental applications. Acta Biomater. 2013, 9, 8224–8231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Hirt, H.; Li, Y.; Gorr, S.-U.; Aparicio, C. Antimicrobial GL13K Peptide Coatings Killed and Ruptured the Wall of Streptococcus gordonii and Prevented Formation and Growth of Biofilms. PLoS ONE 2014, 9, e111579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Lai, Y.; Huang, W.; Huang, S.; Xu, Z.; Chen, J.; Wu, D. Biofunctionalization of microgroove titanium surfaces with an antimicrobial peptide to enhance their bactericidal activity and cytocompatibility. Colloids Surf. B Biointerfaces 2015, 128, 552–560. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Mas-Moruno, C.; Fernández-Calderón, M.C.; Pérez-Giraldo, C.; Manero, J.M.; Albericio, F.; Gil, F.J.; Rodríguez, D. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bacterial adhesion and biofilm formation. Acta Biomater. 2014, 10, 3522–3534. [Google Scholar] [CrossRef]
- Godoy-Gallardo, M.; Mas-Moruno, C.; Yu, K.; Manero, J.M.; Gil, F.J.; Kizhakkedathu, J.N.; Rodriguez, D. Antibacterial Properties of hLf1–11 Peptide onto Titanium Surfaces: A Comparison Study Between Silanization and Surface Initiated Polymerization. Biomacromolecules 2015, 16, 483–496. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Gallardo, M.; Wang, Z.; Shen, Y.; Manero, J.M.; Gil, F.J.; Rodriguez, D.; Haapasalo, M. Antibacterial Coatings on Titanium Surfaces: A Comparison Study Between in Vitro Single-Species and Multispecies Biofilm. ACS Appl. Mater. Interfaces 2015, 7, 5992–6001. [Google Scholar] [CrossRef] [Green Version]
- Hoyos-Nogués, M.; Velasco, F.; Ginebra, M.-P.; Manero, J.M.; Gil, F.J.; Mas-Moruno, C. Regenerating Bone via Multifunctional Coatings: The Blending of Cell Integration and Bacterial Inhibition Properties on the Surface of Biomaterials. ACS Appl. Mater. Interfaces 2017, 9, 21618–21630. [Google Scholar] [CrossRef]
- Nie, B.; Ao, H.; Chen, C.; Xie, K.; Zhou, J.; Long, T.; Tang, T.; Yue, B. Covalent immobilization of KR-12 peptide onto a titanium surface for decreasing infection and promoting osteogenic differentiation. RSC Adv. 2016, 6, 46733–46743. [Google Scholar] [CrossRef]
- Boix-Lemonche, G.; Guillem-Marti, J.; D’Este, F.; Manero, J.M.; Skerlavaj, B. Covalent grafting of titanium with a cathelicidin peptide produces an osteoblast compatible surface with antistaphylococcal activity. Colloids Surf. B Biointerfaces 2019, 185, 110586. [Google Scholar] [CrossRef]
- Boix-Lemonche, G.; Guillem-Marti, J.; Lekka, M.; D’Este, F.; Guida, F.; Manero, J.M.; Skerlavaj, B. Membrane perturbation, altered morphology and killing of Staphylococcus epidermidis upon contact with a cytocompatible peptide-based antibacterial surface. Colloids Surf. B Biointerfaces 2021, 203, 111745. [Google Scholar] [CrossRef] [PubMed]
- Humblot, V.; Yala, J.-F.; Thebault, P.; Boukerma, K.; Héquet, A.; Berjeaud, J.-M.; Pradier, C.-M. The antibacterial activity of Magainin I immobilized onto mixed thiols Self-Assembled Monolayers. Biomaterials 2009, 30, 3503–3512. [Google Scholar] [CrossRef] [PubMed]
- Héquet, A.; Humblot, V.; Berjeaud, J.-M.; Pradier, C.-M. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf. B Biointerfaces 2011, 84, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Oger, P.-C.; Piesse, C.; Ladram, A.; Humblot, V. Engineering of Antimicrobial Surfaces by Using Temporin Analogs to Tune the Biocidal/antiadhesive Effect. Molecules 2019, 24, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oppenheim, F.G.; Xu, T.; McMillian, F.M.; Levitz, S.M.; Diamond, R.D.; Offner, G.D.; Troxler, R.F. Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 1988, 263, 7472–7477. [Google Scholar] [CrossRef]
- Siwakul, P.; Sirinnaphakorn, L.; Suwanprateep, J.; Hayakawa, T.; Pugdee, K. Cellular responses of histatin-derived peptides immobilized titanium surface using a tresyl chloride-activated method. Dent. Mater. J. 2021, 40, 934–941. [Google Scholar] [CrossRef]
- Nikawa, H.; Fukushima, H.; Makihira, S.; Hamada, T.; Samaranayake, L. Fungicidal effect of three new synthetic cationic peptides against Candida albicans. Oral Dis. 2004, 10, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.W.; Lakshminarayanan, R.; Liu, S.P.; Goh, E.; Tan, D.; Beuerman, R.W.; Mehta, J.S. Dual functionalization of titanium with vascular endothelial growth factor and β-defensin analog for potential application in keratoprosthesis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 2090–2100. [Google Scholar] [CrossRef]
- Tan, X.W.; Goh, T.W.; Saraswathi, P.; Nyein, C.L.; Setiawan, M.; Riau, A.; Lakshminarayanan, R.; Liu, S.; Tan, D.; Beuerman, R.W.; et al. Effectiveness of Antimicrobial Peptide Immobilization for Preventing Perioperative Cornea Implant-Associated Bacterial Infection. Antimicrob. Agents Chemother. 2014, 58, 5229–5238. [Google Scholar] [CrossRef]
- Gorr, S.-U.; Abdolhosseini, M.; Shelar, A.; Sotsky, J. Dual host-defence functions of SPLUNC2/PSP and synthetic peptides derived from the protein. Biochem. Soc. Trans. 2011, 39, 1028–1032. [Google Scholar] [CrossRef] [Green Version]
- Masurier, N.; Tissot, J.-B.; Boukhriss, D.; Jebors, S.; Pinese, C.; Verdié, P.; Amblard, M.; Mehdi, A.; Martinez, J.; Humblot, V.; et al. Site-specific grafting on titanium surfaces with hybrid temporin antibacterial peptides. J. Mater. Chem. B 2018, 6, 1782–1790. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, R.B.; Juvvadi, P.; Andreu, D.; Ubach, J.; Boman, A.; Boman, H.G. Retro and retroenantio analogs of cecropin-melittin hybrids. Proc. Natl. Acad. Sci. USA 1995, 92, 3449–3453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, M.; Gatehouse, J.A.; Fitches, E.C. A Systematic Study of RNAi Effects and dsRNA Stability in Tribolium castaneum and Acyrthosiphon pisum, Following Injection and Ingestion of Analogous dsRNAs. Int. J. Mol. Sci. 2018, 19, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelkar, D.A.; Chattopadhyay, A. The gramicidin ion channel: A model membrane protein. Biochim. Biophys. Acta (BBA) Biomembr. 2007, 1768, 2011–2025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares, J.W.; Kirby, R.; Doherty, L.A.; Meehan, A.; Arcidiacono, S. Immobilization and orientation-dependent activity of a naturally occurring antimicrobial peptide. J. Pept. Sci. 2015, 21, 669–679. [Google Scholar] [CrossRef]
- Haynie, S.L.; Crum, G.A.; Doele, B.A. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrob. Agents Chemother. 1995, 39, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Cheng, J.T.; Kindrachuk, J.; Hancock, R.E.; Straus, S.K.; Kizhakkedathu, J.N. Biomembrane Interactions Reveal the Mechanism of Action of Surface-Immobilized Host Defense IDR-1010 Peptide. Chem. Biol. 2012, 19, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Cole, M.A.; Scott, T.F.; Mello, C.M. Bactericidal Hydrogels via Surface Functionalization with Cecropin A. ACS Biomater. Sci. Eng. 2016, 2, 1894–1904. [Google Scholar] [CrossRef]
- North, S.H.; Taitt, C.R. Application of Circular Dichroism for Structural Analysis of Surface-Immobilized Cecropin A Interacting with Lipoteichoic Acid. Langmuir 2015, 31, 10791–10798. [Google Scholar] [CrossRef]
- Han, X.; Zheng, J.; Lin, F.; Kuroda, K.; Chen, Z. Interactions between Surface-Immobilized Antimicrobial Peptides and Model Bacterial Cell Membranes. Langmuir 2017, 34, 512–520. [Google Scholar] [CrossRef]
- Costa, F.; Maia, S.; Gomes, J.; Gomes, P.; Martins, M.C.L. Characterization of hLF1–11 immobilization onto chitosan ultrathin films, and its effects on antimicrobial activity. Acta Biomater. 2014, 10, 3513–3521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasir, M.; Dutta, D.; Hossain, K.R.; Chen, R.; Ho, K.K.K.; Kuppusamy, R.; Clarke, R.J.; Kumar, N.; Willcox, M.D.P. Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosa. Front. Microbiol. 2020, 10, 3053. [Google Scholar] [CrossRef]
- Comune, M.; Rai, A.; Palma, P.; TondaTuro, C.; Ferreira, L. Antimicrobial and pro-angiogenic properties of soluble and nanoparticle-immobilized LL37 peptides. Biomater. Sci. 2021, 9, 8153–8159. [Google Scholar] [CrossRef]
- Yasir, M.; Dutta, D.; Willcox, M.D.P. Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Sci. Rep. 2019, 9, 7063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasir, M.; Dutta, D.; Willcox, M.D.P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS ONE 2019, 14, e0215703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechinger, B. Structure and Functions of Channel-Forming Peptides: Magainins, Cecropins, Melittin and Alamethicin. J. Membr. Biol. 1997, 156, 197–211. [Google Scholar] [CrossRef]
- Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37—A pore-forming antibacterial peptide and host-cell modulator. Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 546–566. [Google Scholar] [CrossRef]
- Hilpert, K.; Elliott, M.R.; Volkmer-Engert, R.; Henklein, P.; Donini, O.; Zhou, Q.; Winkler, D.F.; Hancock, R.E. Sequence Requirements and an Optimization Strategy for Short Antimicrobial Peptides. Chem. Biol. 2006, 13, 1101–1107. [Google Scholar] [CrossRef] [Green Version]
- Balhara, V.; Schmidt, R.; Gorr, S.-U.; DeWolf, C. Membrane selectivity and biophysical studies of the antimicrobial peptide GL13K. Biochim. Biophys. Acta (BBA)-Biomembr. 2013, 1828, 2193–2203. [Google Scholar] [CrossRef]
- Rasul, R.; Cole, N.; Balasubramanian, D.; Chen, R.; Kumar, N.; Willcox, M. Interaction of the antimicrobial peptide melimine with bacterial membranes. Int. J. Antimicrob. Agents 2010, 35, 566–572. [Google Scholar] [CrossRef]
- Skerlavaj, B.; Gennaro, R.; Bagella, L.; Merluzzi, L.; Risso, A.; Zanetti, M. Biological Characterization of Two Novel Cathelicidin-derived Peptides and Identification of Structural Requirements for Their Antimicrobial and Cell Lytic Activities. J. Biol. Chem. 1996, 271, 28375–28381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Xi, Y.; Bai, J.; Jiang, Z.; Wang, S.; Zhang, H.; Dai, W.; Chen, C.; Gou, Z.; Yang, G.; et al. Covalent grafting of hyperbranched poly-L-lysine on Ti-based implants achieves dual functions of antibacteria and promoted osteointegration in vivo. Biomaterials 2020, 269, 120534. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Koh, J.-J.; Liu, S.; Lakshminarayanan, R.; Verma, C.S.; Beuerman, R.W. Membrane Active Antimicrobial Peptides: Translating Mechanistic Insights to Design. Front. Neurosci. 2017, 11, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gristina, A.G. Biomaterial-Centered Infection: Microbial Adhesion Versus Tissue Integration. Science 1987, 237, 1588–1595. [Google Scholar] [CrossRef]
- Pham, V.T.H.; Truong, V.K.; Orlowska, A.; Ghanaati, S.; Barbeck, M.; Booms, P.; Fulcher, A.J.; Bhadra, C.M.; Buividas, R.; Baulin, V.; et al. “Race for the Surface”: Eukaryotic Cells Can Win. ACS Appl. Mater. Interfaces 2016, 8, 22025–22031. [Google Scholar] [CrossRef] [Green Version]
- The Royal Swedish Academy of Sciences The Nobel Prize in Chemistry 2022. Available online: https://www.nobelprize.org/prizes/chemistry/2022/press-release/ (accessed on 18 December 2022).
- Ayoade, F.; Li, D.D.; Mabrouk, A.; Todd, J.R. Prosthetic Joint Infection. Available online: https://www.ncbi.nlm.nih.gov/books/NBK448131/ (accessed on 18 December 2022).
- Yucesoy, D.T.; Hnilova, M.; Boone, K.; Arnold, P.M.; Snead, M.L.; Tamerler, C. Chimeric Peptides as Implant Functionalization Agents for Titanium Alloy Implants with Antimicrobial Properties. JOM 2015, 67, 754–766. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhu, Y.; Song, Y.; Wang, L.; Zhan, J.; He, J.; Zheng, J.; Zhong, C.; Shi, X.; Liu, S.; et al. Preparation of an antimicrobial surface by direct assembly of antimicrobial peptide with its surface binding activity. J. Mater. Chem. B 2017, 5, 2407–2415. [Google Scholar] [CrossRef]
- Hwang, Y.E.; Im, S.; Kim, H.; Sohn, J.-H.; Cho, B.-K.; Cho, J.H.; Sung, B.H.; Kim, S.C. Adhesive Antimicrobial Peptides Containing 3,4-Dihydroxy-L-Phenylalanine Residues for Direct One-Step Surface Coating. Int. J. Mol. Sci. 2021, 22, 11915. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Gao, T.; Zhang, N.; He, J.; Wu, F. Covalent immobilization of DJK-5 peptide on porous titanium for enhanced antibacterial effects and restrained inflammatory osteoclastogenesis. Colloids Surf. B Biointerfaces 2021, 202, 111697. [Google Scholar] [CrossRef]
- Willcox, M.; Hume, E.; Aliwarga, Y.; Kumar, N.; Cole, N. A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol. 2008, 105, 1817–1825. [Google Scholar] [CrossRef]
- Wadhwani, P.; Heidenreich, N.; Podeyn, B.; Bürck, J.; Ulrich, A.S. Antibiotic gold: Tethering of antimicrobial peptides to gold nanoparticles maintains conformational flexibility of peptides and improves trypsin susceptibility. Biomater. Sci. 2017, 5, 817–827. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skerlavaj, B.; Boix-Lemonche, G. The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review. Antibiotics 2023, 12, 211. https://doi.org/10.3390/antibiotics12020211
Skerlavaj B, Boix-Lemonche G. The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review. Antibiotics. 2023; 12(2):211. https://doi.org/10.3390/antibiotics12020211
Chicago/Turabian StyleSkerlavaj, Barbara, and Gerard Boix-Lemonche. 2023. "The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review" Antibiotics 12, no. 2: 211. https://doi.org/10.3390/antibiotics12020211
APA StyleSkerlavaj, B., & Boix-Lemonche, G. (2023). The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review. Antibiotics, 12(2), 211. https://doi.org/10.3390/antibiotics12020211