Antimicrobial Polymeric Surfaces Using Embedded Silver Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ag Nanoparticles Deposition
2.2. Thermal Annealing Treatments
2.3. General Characterizations
2.4. Antibacterial Assessment
3. Results and Discussion
3.1. DSC and TG
3.2. Surface Morphology
3.3. Reflectivity
3.4. Adhesion Test
3.5. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Coronavirus Disease (COVID-19) Outbreak. 2021. Available online: https://www.who.int (accessed on 24 December 2022).
- Perlman, S. Another Decade, Another Coronavirus. N. Engl. J. Med. 2020, 382, 760–762. [Google Scholar] [CrossRef]
- Al Safar, M.; Amoodi, H.; Al-Satti, M.; Alsaidi, A. The precautions efficacy taken among health care workers while performing tracheostomies on COVID-19 patients: Systematic Review. Int. J. Otolaryngol. Head Neck Surg. 2020, 11, 283–291. [Google Scholar] [CrossRef]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Perrone, M.G.; Borelli, M.; Palmisani, J.; Di Gilio, A.; Piscitelli, P.; Miani, A. Airborne transmission route of COVID-19: Why 2 meters/6 feet of inter-personal distance could not be enough. Int. J. Environ. Res. Public Health 2020, 17, 2932. [Google Scholar] [CrossRef] [Green Version]
- Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial contamination of inanimate surfaces and equipment in the intensive care unit. J. Intensive Care 2015, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Gerhardts, A.; Henze, S.V.; Bockmühl, D.; Höfer, D. Fabric-skin models to assess infection transfer for impetigo contagiosa in a kindergarten scenario. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1153–1160. [Google Scholar] [CrossRef]
- Flores-López, L.Z.; Espinoza-Gómez, H.; Somanathan, R. Silver nanoparticles: Electron transfer, reactive oxygen species, oxidative stress, beneficial and toxicological effects. Mini Rev. J. Appl. Toxicol. 2019, 39, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, T.P.; Nepomuceno, N.C.; Medeiros, E.L.; Medeiros, E.S.; Sampaio, F.C.; Oliveira, J.E.; Oliveira, M.P.; Galvao, L.S.; Bulhoes, E.O.; Santos, A.S. Antimicrobial coatings based on poly (dimethyl siloxane) and silver nanoparticles by solution blow spraying. Prog. Org. Coat. 2019, 133, 19–26. [Google Scholar] [CrossRef]
- Jo, Y.K.; Seo, J.H.; Choi, B.H.; Kim, B.J.; Shin, H.H.; Hwang, B.H.; Cha, H.J. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl. Mater. Interfaces 2014, 6, 20242–20253. [Google Scholar] [CrossRef] [PubMed]
- Baran, A.; Baran, M.F.; Keskin, C.; Kandemir, S.I.; Valiyeva, M.; Mehraliyeva, S.; Khalilov, R.; Eftekhari, A. Ecofriendly/rapid synthesis of silver nanoparticles using extract of waste parts of artichoke (cynara scolymus l.) and evaluation of their cytotoxic and antibacterial activities. J. Nanomater. 2021, 2021, 110. [Google Scholar] [CrossRef]
- Baran, A.; Keskin, C.; Baran, M.F.; Huseynova, I.; Khalilov, R.; Eftekhari, A.; Irtegun-Kandemir, S.; Kavak, D.E. Ecofriendly synthesis of silver nanoparticles using ananas comosus fruit peels: Anticancer and antimicrobial activities. Bioinorg. Chem. Appl. 2021, 2021, 2058149. [Google Scholar] [CrossRef]
- El-Aassar, M.R.; Ibrahim, O.M.; Fouda, M.M.G.; El-Beheri, N.G.; Agwa, M.M. Wound healing of nanofiber comprising polygalacturonic/hyaluronic acid embedded silver nanoparticles: In-vitro and in-vivo studies. Carbohydr. Polym. 2020, 238, 117484. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Lima, M.J.; Nobre, D.; Marques, S.M.; Castro, D.; Leite, T.R.; Henriques, M.; Duarte, F.; Ramalho, A.; Carvalho, S. Silver oxide coatings deposited on leathers to prevent diabetic foot infections. Surf. Coat. Technol. 2022, 442, 128338. [Google Scholar] [CrossRef]
- Kruk, T.; Szczepanowicz, K.; Kręgiel, D.; Szyk-Warszyńska, L.; Warszyński, P. Nanostructured multilayer polyelectrolyte films with silver nanoparticles as antibacterial coatings. Colloids Surf. B Biointerfaces 2016, 137, 158–166. [Google Scholar] [CrossRef]
- Sastri, V.S. Plastic in Medical Devices: Properties, Requirements and Applications; Elsevier: Burlington, MA, USA, 2010. [Google Scholar]
- Kovacs, G.J.; Vincett, P.S. Formation and thermodynamic stability of a novel class of useful materials: Close-packed monolayers of submicron monodisperse spheres just below a polymer surface. J. Colloid Interface Sci. 1982, 90, 335–351. [Google Scholar] [CrossRef]
- Kovacs, G.J.; Vincett, P.S. Subsurface particulate film formation in softenable substrates: Present status and possible new applications. Thin Solid Film. 1983, 100, 341–353. [Google Scholar] [CrossRef]
- Legrand, D.G.; Bendler, J.T. Handbook of Polycarbonate Science and Technology; Marcel Dekker, Inc.: New York, NY, USA, 2000; Volume 3, 374p, ISBN 0-8247-9915-1, 1482273691, 9781482273694. [Google Scholar]
- Kausar, A. A review of filled and pristine polycarbonate blends and their applications. J. Plast. Film Sheeting 2018, 34, 60–97. [Google Scholar] [CrossRef] [Green Version]
- Bonde, H.C.; Fojan, P.; Popok, V.N. Controllable embedding of size-selected copper nanoparticles into polymer films. Plasma Process. Polym. 2020, 17, 1900237. [Google Scholar] [CrossRef]
- Erichsen, J.; Kanzow, J.; Schürmann, U.; Dolgner, K.; Günther-Schade, K.; Strunskus, T.; Zaporojtchenko, V.; Faupel, F. Investigation of the surface glass transition temperature by embedding of noble metal nanoclusters into monodisperse polystyrenes. Macromolecules 2004, 37, 1831–1838. [Google Scholar] [CrossRef]
- Kovacs, G.J.; Vincett, P.S. Subsurface particle monolayer and film formation in softenable substrates: Techniques and thermodynamic criteria. Thin Solid Film. 1984, 111, 65–81. [Google Scholar] [CrossRef]
- Rudoy, V.M.; Dement’eva, O.V.; Yaminskii, I.V.; Sukhov, V.M.; Kartseva, M.E.; Ogarev, V.A. Metal nanoparticles on polymer surfaces: 1. A new method of determining glass transition temperature of the surface layer. Colloid J. 2002, 64, 746–754. [Google Scholar] [CrossRef]
- Muhammad, H.; Juluri, R.R.; Fojan, P.; Popok, V. Polymer films with size-selected silver nanoparticles as plasmon resonance-based transducers for protein sensing. Biointerface Res. Appl. Chem. 2016, 6, 1564–1568. [Google Scholar]
- Zhang, W.; Zhang, Y.H.; Ji, J.H.; Zhao, J.; Yan, Q.; Chu, P.K. Antimicrobial properties of copper plasma-modified polyethylene. Polymer 2006, 47, 7441–7445. [Google Scholar] [CrossRef]
- Kenawy, E.R.; Worley, S.D.; Broughton, R. The chemistry and applications of antimicrobial polymers: A state-of-the-art review. Biomacromolecules 2007, 8, 1359–1384. [Google Scholar] [CrossRef]
- Teichroeb, J.H.; Forrest, J.A. Direct imaging of nanoparticle embedding to probe viscoelasticity of polymer surfaces. Phys. Rev. Lett. 2003, 91, 016104. [Google Scholar] [CrossRef] [PubMed]
- Larosa, C.; Patra, N.; Salerno, M.; Mikac, L.; Merijs Meri, R.; Ivanda, M. Preparation and characterization of polycarbonate/multiwalled carbon nanotube nanocomposites. Beilstein J. Nanotechnol. 2017, 8, 2026–2031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniels, P.H.; Cabrera, A. Plasticizer compatibility testing: Dynamic mechanical analysis and glass transition temperatures. J. Vinyl Addit. Technol. 2015, 21, 7–11. [Google Scholar] [CrossRef]
- Ruffino, F.; Torrisi, V.; Marletta, G.; Grimaldi, M.G. Effects of the embedding kinetics on the surface nano-morphology of nano-grained Au and Ag films on PS and PMMA layers annealed above the glass transition temperature. Appl. Phys. A 2012, 107, 669–683. [Google Scholar] [CrossRef]
- Prakash, J.; Pivin, J.C.; Swart, H.C. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications. Adv. Colloid Interface Sci. 2015, 226, 187–202. [Google Scholar] [CrossRef]
- Kreibig, U.; Vollmer, M. Theoretical Considerations. In Optical Properties of Metal Clusters; Springer: Berlin/Heidelberg, Germany, 1995; pp. 13–201. [Google Scholar]
- Figueiredo, N.M.; Cavaleiro, A. Dielectric properties of shape-distributed ellipsoidal particle systems. Plasmonics 2020, 15, 379–397. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Singhal, R.; Vishnoi, R.; Agarwal, D.C.; Banerjee, M.K.; Chand, S.; Kanjilal, D.; Avasthi, D.K. Effect of Ag ion implantation on SPR of Cu-C60 nanocomposite thin film. Plasmonics 2018, 13, 669–679. [Google Scholar] [CrossRef]
- Figueiredo, N.M.; Vaz, F.; Cunha, L.; Cavaleiro, A. Au-WO3 nanocomposite coatings for localized surface plasmon resonance sensing. Materials 2020, 13, 246. [Google Scholar] [CrossRef] [PubMed]
- Ladani, L.; Harvey, E.; Choudhury, S.F.; Taylor, C.R. Effect of varying test parameters on elastic–plastic properties extracted by nanoindentation tests. Exp. Mech. 2013, 53, 1299–1309. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, P.; Fialho, L.; Figueiredo, N.M.; Serra, R.; Cavaleiro, A.; Carvalho, S. Antimicrobial Polymeric Surfaces Using Embedded Silver Nanoparticles. Antibiotics 2023, 12, 207. https://doi.org/10.3390/antibiotics12020207
Sharma P, Fialho L, Figueiredo NM, Serra R, Cavaleiro A, Carvalho S. Antimicrobial Polymeric Surfaces Using Embedded Silver Nanoparticles. Antibiotics. 2023; 12(2):207. https://doi.org/10.3390/antibiotics12020207
Chicago/Turabian StyleSharma, Pooja, Luisa Fialho, Nuno Miguel Figueiredo, Ricardo Serra, Albano Cavaleiro, and Sandra Carvalho. 2023. "Antimicrobial Polymeric Surfaces Using Embedded Silver Nanoparticles" Antibiotics 12, no. 2: 207. https://doi.org/10.3390/antibiotics12020207
APA StyleSharma, P., Fialho, L., Figueiredo, N. M., Serra, R., Cavaleiro, A., & Carvalho, S. (2023). Antimicrobial Polymeric Surfaces Using Embedded Silver Nanoparticles. Antibiotics, 12(2), 207. https://doi.org/10.3390/antibiotics12020207