Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso
Abstract
:1. Introduction
2. Results
2.1. Carbapenemase-Producing E. coli and K. pneumoniae Detection
2.2. Antibiotic Resistance Profile
2.3. Carbapenemase Genes in E. coli and K. pneumoniae
3. Discussion
4. Materials and Methods
4.1. Study Design, Sites and Sampling
4.2. Microbial Culturing and Identification
4.3. Antibiotic Susceptibility Testing
4.4. Detection of Carbapenemase Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization Antibiotic Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance (accessed on 5 May 2023).
- Beattie, R.E.; Bakke, E.; Konopek, N.; Thill, R.; Munson, E.; Hristova, K.R. Antimicrobial Resistance Traits of Escherichia coli Isolated from Dairy Manure and Freshwater Ecosystems Are Similar to One Another but Differ from Associated Clinical Isolates. Microorganisms 2020, 8, 747. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) wholist of Critically Important Antimicrobials (CIA). In Report of the 7th Meeting; WHO: Geneva, Switzerland, 2018; ISBN 978-92-4-151552-8. [Google Scholar]
- Dembélé, R.; Soulama, I.; Kaboré, W.A.D.; Konaté, A.; Kagambèga, A.; Coulibaly, D.N.; Traoré, O.; Seck, A.; Traoré, A.S.; Guessennd, N.; et al. Molecular characterization of carbapenemase-producing Enterobacterales in children with diarrhea in rural Burkina Faso. J. Drug Deliv. Therapeutics 2021, 1, 84–92. [Google Scholar] [CrossRef]
- Mariappan, S.; Sekar, U.; Kamalanathan, A. Carbapenemase-producing Enterobacteriaceae: Risk factors for infection and impact of resistance on outcomes. Int. J. Appl. Basic Med. Res. 2018, 7, 32–39. [Google Scholar] [CrossRef]
- Halat, D.H.; Moubareck, C.A. Thecurrent burden of carbapenemases: Review of significant properties and dissemination among gram-negative bacteria. Antibiotica 2020, 9, 186. [Google Scholar]
- Chia, P.Y.; Sengupta, S.; Kukreja, A.; Ponnampalavanar, S.S.; Ng, O.T.; Marimuthu, K. The role of hospital environment in transmissions of multidrug-resistant Gram-negative organisms. Antimicrob. Resist. Infect. Control 2020, 9, 29. [Google Scholar] [CrossRef]
- Suay-García, B.; Pérez-Gracia, M.T. Present and Future of Carbapenem-resistant Enterobacteriaceae (CRE) Infections. Antibiotics 2019, 8, 122. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Vegesana, K.; German-Mesner, I.; Ainsworth, J.; Pannone, A.; Crook, D.W.; Sifri, C.D.; Sheppard, A.; Stoesser, N.; Peto, T.; et al. Risk factors for Klebsiella pneumoniae carbapenemase (KPC) gene acquisition and clinical outcomes across multiple bacterial species. J. Hosp. Infect. 2020, 104, 456–468. [Google Scholar] [CrossRef]
- Choby, J.E.; Howard-Anderson, J.; Weiss, D.S. Hypervirulent Klebsiella pneumoniae–clinical and molecular perspectives. J. Intern. Med. 2020, 287, 283–300. [Google Scholar] [CrossRef]
- Secrétariat général, Direction des laboratoires de biologie médicale, Direction générale de l’accès aux produits de santé. Rapport synthèse de la surveillance de la résistance aux antimicrobiens au laboratoire. In Rapport Année 2018; Ministère de la Santé de Burkina Faso: Ouagadougou, Burkina Faso, 2018; Available online: https://drive.google.com/file/d/1qwqwikowd7frnj5pegtbzue-7_6fz84i/view (accessed on 5 November 2021).
- Secrétariat général, Direction des laboratoires de biologie médicale, Direction générale de l’accès aux produits de santé. Rapport synthèse de la surveillance de la résistance aux antimicrobiens au laboratoire. In Rapport Année 2019; Ministère de la santé de Burkina Faso: Ouagadougou, Burkina Faso, 2019; Available online: https://drive.google.com/file/d/1UT6u9kSDGs1W3cl_td1imlazaq5yuva_/view (accessed on 5 November 2021).
- Kaboré, B.; Ouédraogo, H.S.; Zongo, O.; Ouédraogo, G.A.; Tapsoba, F.; Bougma, S.; Zongo, K.J.; Zeba, B.; Traoré, Y.; Sanou, I.; et al. Emergence of New Delhi Metallo-β-Lactamase (NDM) Genes Detected from Clinical Strains of Escherichia coli Isolated in Ouagadougou, Burkina Faso. Int. J. Microbiol. 2023, 2023, 4813225. [Google Scholar] [CrossRef]
- Markkanen, M.A.; Haukka, K.; Pärnänen, K.M.M.; Dougnon, V.T.; Bonkoungou, I.J.O.; Garba, Z.; Tinto, H.; Sarekoski, A.; Karkman, A.; Kantele, A.; et al. Metagenomic Analysis of the Abundance and Composition of Antibiotic Resistance Genes in Hospital Wastewater in Benin, Burkina Faso, and Finland. mSphere 2023, 8, e0053822. [Google Scholar] [CrossRef]
- Kanamori, H.; Weber, D.J.; Rutala, W.A. Healthcare Outbreaks Associated with a Water Reservoir and Infection Prevention Strategies. Clin. Infect. Dis. 2016, 62, 1423–1435. [Google Scholar] [CrossRef]
- Kizny Gordon, A.E.; Mathers, A.J.; Cheong, E.Y.; Gottlieb, T.; Kotay, S.; Walker, A.S.; Peto, T.E.; Crook, D.W.; Stoesser, N. The hospital water environment as a reservoir for carbapenem-resistant organisms causing hospital-acquired infections-A systematic review of the literature. Clin. Infect. Diseases 2017, 64, 1435–1444. [Google Scholar] [CrossRef]
- Park, S.C.; Parikh, H.; Vegesana, K.; Stoesser, N.; Barry, K.E.; Kotay, S.M.; Dudley, S.; Peto, T.E.; Crook, D.W.; Walker, A.S.; et al. Risk factors associated with carbapenemase-producing Enterobacterales (CPE) positivity in the hospital wastewater environment. Appl. Environ. Microbiol. 2020, 86, e01715-20. [Google Scholar] [CrossRef]
- Obasi, A.I.; Ugoji, E.O.; Nwachukwu, S.U. Incidence and molecular characterization of multidrug resistance in Gram-negative bacteria of clinical importance from pharmaceutical wastewaters in South-western Nigeria. Environ. DNA 2019, 1, 268–280. [Google Scholar] [CrossRef]
- Galarde-López, M.; Velazquez-Meza, M.E.; Bobadilla-del-Valle, M.; Cornejo-Juárez, P.; Carrillo-Quiroz, B.A.; Ponce-de-León, A.; Sassoé-González, A.; Saturno-Hernández, P.; Alpuche-Aranda, C.M. Antimicrobial Resistance Patterns and Clonal Distribution of E. coli, Enterobacter spp. and Acinetobacter spp. Strains Isolated from Two Hospital Wastewater Plants. Antibiotics 2022, 11, 601. [Google Scholar] [CrossRef]
- Cahill, N.; O’Connor, L.; Mahon, B.; Varley, A.; McGrath, E.; Ryan, P.; Cormican, M.; Brehony, C.; Jolley, K.A.; Maiden, M.C. Hospital effluent: A reservoir for carbapenemase-producing Enterobacterales? Sci. Total Environ. 2019, 672, 618–624. [Google Scholar] [CrossRef]
- Zagui, G.S.; De Andrade, L.N.; Moreira, N.C.; Silva, T.V.; Machado, G.P.; da Costa Darini, A.L.; Segura-Muñoz, S.I. Gram-negative bacteria carrying β-lactamase encoding genes in hospital and urban wastewater in Brazil. Environ. Monit. Assess. 2020, 192, 376. [Google Scholar] [CrossRef] [PubMed]
- Aldali, H.J.; Khan, A.; Alshehri, A.A.; Aldali, J.A.; Meo, S.A.; Hindi, A.; Elsokkary, E.M. Hospital-Acquired Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Observational Study. Microorganisms 2023, 11, 1595. [Google Scholar] [CrossRef] [PubMed]
- Martak, D. Epidémiologie des Bacilles à Gram Négatif dans la Communauté, L’environnement et la Nourriture. Microbiologie et Parasitologie. Ph.D. Thesis, Université Bourgogne Franche-Comité, Besançon, France, 2021; 234p. [Google Scholar]
- Aggarwal, A.; Bhalla, M.; Fatima, K.H. Detection of New Delhi metallo-beta-lactamase enzyme gene blaNDM-1 associated with the Int-1 gene in Gram-negative bacteria collected from the effluent treatment plant of a tuberculosis care hospital in Delhi, India. Access Microbiol. 2020, 2, acmi000125. [Google Scholar] [CrossRef]
- Petit, F. Antibiotic resistance in aquatic environments: A microbial ecology and public health issue. Environ. Risks Health 2018, 17, 40–46. [Google Scholar]
- Nwafia, I.N.; Ike, A.C.; Orabueze, I.N.; Nwafia, W.C. Carbapenemase producing Enterobacteriaceae: Environmental reservoirs as primary targets for control and prevention strategies. Niger. Postgrad. Med. J. 2022, 29, 183–191. [Google Scholar]
- Nagulapally, S.R.; Ahmad, A.; Henry, A.; Marchin, G.L.; Zurek, L.; Bhandari, A. Occurrence of ciprofloxacin-, trimethoprim-sulfamethoxazole-, and vancomycin-resistant bacteria in a municipal wastewater treatment plant. Water Environ. Res. 2009, 81, 82–90. [Google Scholar] [CrossRef]
- Pereira, A.L.; de Oliveira, P.M.; Faria-Junior, C.; Alves, E.G.; de Castro e Caldo Lima, G.R.; da Costa Lamounier, T.A.; Haddad, R.; de Araujo, W.N. Environmental spreading of clinically relevant carbapenem-resistant gram-negative bacilli: The occurrence of blaKPC-or-NDM strains relates to local hospital activities. BMC Microbiol. 2022, 22, 6. [Google Scholar] [CrossRef] [PubMed]
- Carenco, P. Antibiorésistance et biocides. Bull. Clin. Arlin. 2017, 7, 1–9. [Google Scholar]
- Sakkas, H.; Bozidis, P.; Ilia, A.; Mpekoulis, G.; Papadopoulou, C. Antimicrobial Resistance in Bacterial Pathogens and Detection of Carbapenemases in Klebsiella pneumoniae Isolates from Hospital Wastewater. Antibiotics 2019, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Khan, A.U. Hospital sewage water: A reservoir for variants of New Delhi metallo-β-lactamase (NDM)- and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae. Int. J. Antimicrob. Agents 2018, 51, 82–88. [Google Scholar] [CrossRef]
- Müller, H.; Sib, E.; Gajdiss, M.; Klanke, U.; Lenz-Plet, F.; Barabasch, V.; Albert, C.; Schallenberg, A.; Timm, C.; Zacharias, N.; et al. Dissemination of multi-resistant Gram-negative bacteria into German wastewater and surface waters. FEMS Microbiol. Ecol. 2018, 94, fiy057. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef]
- Tafoukt, R.; Leangapichart, T.; Hadjadj, L.; Bakour, S.; Diene, S.M.; Rolain, J.M.; Touati, A. Characterisation of blaoxa-538, a new variant of blaoxa-48, in Shewanella xiamenensis isolated from river water in Algeria. J. Glob. Antimicrob. Resist. 2018, 13, 70–73. [Google Scholar] [CrossRef]
- Yousfi, K.; Touati, A.; Lefebvre, B.; Philippe, G.; Brahim, S.; Gharout-Sait, A.; Harel, J.; Bekal, S. Characterization of multidrug-resistant Gram-negative bacilli isolated from hospitals effluents: First report of a blaoxa-48-like in Klebsiella oxytoca, Algeria. Braz. J. Microbiol. 2019, 50, 175–183. [Google Scholar] [CrossRef]
- Nasri, E.; Subirats, J.; Sànchez-Melsió, A.; Mansour, H.B.; Borrego, C.M.; Balcázar, J.L. Abundance of carbapenemase genes (blaKPC, blaNDM and blaOXA-48) in wastewater effluents from Tunisian hospitals. Environ. Pollut. 2017, 229, 371–374. [Google Scholar] [CrossRef]
- Subirats, J.; Royo, E.; Balcázar, J.L.; Borrego, C.M. Real-time PCR assays for the detection and quantification of carbapenemase genes (bla KPC, bla NDM, and bla OXA-48) in environmental samples. Environ. Sci. Pollut. Res. Int. 2017, 24, 6710–6714. [Google Scholar] [CrossRef] [PubMed]
- Voigt, A.M.; Zacharias, N.; Timm, C.; Wasser, F.; Sib, E.; Skutlarek, D.; Parcina, M.; Schmithausen, R.M.; Schwartz, T.; Hembach, N.; et al. Association between antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in anthropogenic wastewater—An evaluation of clinical influences. Chemosphere 2020, 241, 125032. [Google Scholar] [CrossRef] [PubMed]
- Marathe, N.P.; Berglund, F.; Razavi, M.; Pal, C.; Dröge, J.; Samant, S.; Kristiansson, E.; Larsson, D.G.J. Sewage effluent from an Indian hospital harbors novel carbapenemases and integron-borne antibiotic resistance genes. Microbiome 2019, 7, 97. [Google Scholar] [CrossRef]
- Lübbert, C.; Baars, C.; Dayakar, A.; Lippmann, N.; Rodloff, A.C.; Kinzig, M.; Sörgel, F. Environmental pollution with antimicrobial agents from bulk drug manufacturing industries in Hyderabad, South India, is associated with dissemination of extended-spectrum beta-lactamase and carbapenemase-producing pathogens. Infection 2017, 45, 479–491. [Google Scholar] [CrossRef]
- Sanchez, D.G.; de Melo, F.M.; Savazzi, E.A.; Stehling, E.G. Detection of different β-lactamases encoding genes, including blaNDM, and plasmid-mediated quinolone resistance genes in different water sources from Brazil. Environ. Monit. Assess. 2018, 190, 407. [Google Scholar] [CrossRef] [PubMed]
- Bartley, P.S.; Domitrovic, T.N.; Moretto, V.T.; Santos, C.S.; Ponce-Terashima, R.; Reis, M.G.; Barbosa, L.M.; Blanton, R.E.; Bonomo, R.A.; Perez, F. Antibiotic Resistance in Enterobacteriaceae from Surface Waters in Urban Brazil Highlights the Risks of Poor Sanitation. Am. J. Trop. Med. Hyg. 2019, 100, 1369–1377. [Google Scholar] [CrossRef]
- Tanner, W.D.; VanDerslice, J.A.; Goel, R.K.; Leecaster, M.K.; Fisher, M.A.; Olstadt, J.; Gurley, C.M.; Morris, A.G.; Seely, K.A.; Chapman, L.; et al. Multi-state study of Enterobacteriaceae harboring extended-spectrum beta-lactamase and carbapenemase genes in U.S. drinking water. Sci. Rep. 2019, 9, 3938. [Google Scholar] [CrossRef]
- Schages, L.; Wichern, F.; Kalscheuer, R.; Bockmühl, D. Winter is coming—Impact of temperature on the variation of beta-lactamase and mcr genes in a wastewater treatment plant. Sci. Total Environ. 2020, 712, 136499. [Google Scholar] [CrossRef]
- Hoelle, J.; Johnson, J.R.; Johnsto, B.D.; Kinkle, B.; Boczek, L.; Ryu, H.; Hayes, S. Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. J. Water Health 2019, 17, 219–226. [Google Scholar] [CrossRef]
- Awoke, T.; Teka, B.; Aseffa, A.; Sebre, S.; Seman, A.; Yeshitela, B.; Abebe, T.; Mihret, A. Detection of blaKPC and blaNDM carbapenemase genes among Klebsiella pneumoniae isolates in Addis Ababa, Ethiopia: Dominance of blaNDM. PLoS ONE 2022, 17, e0267657. [Google Scholar] [CrossRef]
- Edokpayi, J.N.; Odiyo, J.O.; Durowoju, O.S. Impact of Wastewater on Surface Water Quality in Developing Countries: A Case Study of South Africa. In Water Quality; Tutu, H., Ed.; Intech Open Science: London, UK, 2017; pp. 401–416. ISBN 978-953-51-5466-2. [Google Scholar] [CrossRef]
- Aubin, G.; Caron, F.; Cattoir, V.; Dubreuil, L.; Goutelle, S.; Jeannot, K.; Lepeule, R.; Lina, G.; Marchandin, H.; Merens, A.; et al. Comite de l’antibiogramme de la Societe Francaise de Microbiologie. Soc. Fr. Microbiol. 2021, 1, 188. [Google Scholar]
- Krumperman, P.H. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl. Environ. Microbiol. 1983, 46, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Dubois, V.; De Barbeyrac, B.; Rogues, A.M.; Arpin, C.; Coulange, L.; Andre, C.; M’zali, F.; Megraud, F.; Quentin, C. CTX-M-producing Escherichia coli in a maternity ward: A likely community importation and evidence of mother-to-neonate transmission. J. Antimicrob. Chemother. 2010, 65, 1368–1371. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Belotti, P.T.; Thabet, L.; Laffargue, A.; André, C.; Coulange-Mayonnove, L.; Arpin, C.; Messadi, A.; M’Zali, F.; Quentin, C.; Dubois, V. Description of an original integron encompassing blaVIM-2, qnrVC1 and genes encoding bacterial group II intron. J. Antimicrob. Chemother. 2015, 70, 2237–2240. [Google Scholar] [CrossRef] [PubMed]
Sampling Sites | Wastewater Type | E. coli n (%) | K. pneumoniae n (%) | Total Number n (%) |
---|---|---|---|---|
CHU-YO | Raw | 9/28 (32.14) | 6/31 (19.35) | 15/59 (25.42) |
CHU-B | Raw | 2/37 (5.41) | 7/29 (24.14) | 9/66 (13.64) |
Treated | 3/38 (7.89) | 6/46 (13.04) | 9/84 (10.71) | |
Total number n (%) | 14/103 (13.59) | 19/106 (17.92) | 33/209 (15.79) |
AMC | AMP | PIP | PTZ | FOX | CRO | CAZ | FEP | ATM | ETP | IMP | AN | CIP | SXT | GM | AK | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NCPEc | 39.33 | 100 | 98.88 | 5.62 | 12.36 | 83.15 | 79.78 | 75.53 | 79.78 | 3.4 | 0 | 58.43 | 51.69 | 69.66 | 28.09 | 2.25 |
CPEc | 100 | 100 | 100 | 78.57 | 92.86 | 100 | 100 | 100 | 100 | 100 | 0 | 71.43 | 85.71 | 85.71 | 28.57 | 7.14 |
NCPKp | 31.03 | 100 | 95.51 | 4.6 | 16.09 | 74.71 | 73.56 | 66.67 | 67.82 | 14 | 0 | 21.84 | 63.22 | 79.31 | 44.83 | 1.15 |
CPKp | 100 | 100 | 100 | 73.68 | 78.95 | 100 | 100 | 100 | 100 | 100 | 0 | 31.58 | 100 | 94.74 | 68.42 | 5.26 |
Sampling Sites | Wastewater Type | Antibiotics | AMP | PIP | SXT | FOX | GM | PTZ | FEP | ETP | AK | ATM | AMC | CAZ | AN | CIP | CRO | IMP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolates | ||||||||||||||||||
CHU-YO | Raw | CPEc | 100 | 100 | 88.88 | 100 | 44.44 | 77.77 | 100 | 100 | 0 | 100 | 100 | 100 | 77.77 | 88.88 | 100 | 0 |
CPKp | 100 | 100 | 85.71 | 83.33 | 50 | 50 | 100 | 100 | 0 | 100 | 100 | 100 | 0 | 100 | 100 | 0 | ||
CHU-B | Raw | CPEc | 100 | 100 | 50 | 50 | 0 | 50 | 100 | 100 | 50 | 100 | 100 | 100 | 50 | 100 | 100 | 0 |
CPKp | 100 | 100 | 100 | 100 | 85.71 | 100 | 100 | 85.71 | 0 | 100 | 100 | 100 | 28.57 | 100 | 100 | 0 | ||
Treated | CPEc | 100 | 100 | 100 | 100 | 0 | 1006 | 100 | 100 | 0 | 100 | 100 | 100 | 66.67 | 66.68 | 100 | 0 | |
CPKp | 100 | 100 | 83.33 | 50 | 83.33 | 66.67 | 100 | 100 | 0 | 100 | 100 | 100 | 66.67 | 100 | 100 | 0 |
Sampling Sites | MALDI Identification | Antibiotic Resistance Phenotype | Resistance Genes |
---|---|---|---|
K. pneumoniae | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | IMP-KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-GM-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC- | |
K. pneumoniae | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
CHU-YO | E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-NDM |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-NDM | |
E. coli | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | IMP-NDM | |
E. coli | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
E. coli | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | IMP-OXA48 | |
E. coli | AMP-PIP-FOX-FEP-ETP-ATM-AMC-CAZ-CRO | IMP | |
E. coli | AMP-PIP-SXT-FOX-GM-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | IMP | |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-NDM | |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | KPC | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | VIM-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-OXA48 | |
K. pneumoniae | AMP-PIP-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | NDM | |
CHU-B | K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | NDM |
K. pneumoniae | AMP-PIP-SXT-GM-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC | |
K. pneumoniae | AMP-PIP-SXT-GM-PTZ-FEP-ETP-AK-ATM-AMC-CAZ-AN-CIP-CRO | IMP | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | KPC-NDM | |
K. pneumoniae | AMP-PIP-SXT-FOX-GM-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | KPC | |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-CIP-CRO | NDM | |
E. coli | AMP-PIP-FEP-ETP-AK-ATM-AMC-CAZ-AN-CIP-CRO | KPC-NDM | |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-NDM | |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-AN-CIP-CRO | VIM-OXA48 | |
E. coli | AMP-PIP-SXT-FOX-PTZ-FEP-ETP-ATM-AMC-CAZ-CRO | NDM |
Sampling Sites | Wastewater Type | Number of Isolates | N. Antibiotics | MAR Index |
---|---|---|---|---|
CHU-YO | Raw | 15 | 185 | 0.77 |
CHU-B | Raw | 9 | 114 | 0.84 |
Treated | 9 | 112 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kagambèga, A.B.; Dembélé, R.; Bientz, L.; M’Zali, F.; Mayonnove, L.; Mohamed, A.H.; Coulibaly, H.; Barro, N.; Dubois, V. Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso. Antibiotics 2023, 12, 1494. https://doi.org/10.3390/antibiotics12101494
Kagambèga AB, Dembélé R, Bientz L, M’Zali F, Mayonnove L, Mohamed AH, Coulibaly H, Barro N, Dubois V. Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso. Antibiotics. 2023; 12(10):1494. https://doi.org/10.3390/antibiotics12101494
Chicago/Turabian StyleKagambèga, Alix Bénédicte, René Dembélé, Léa Bientz, Fatima M’Zali, Laure Mayonnove, Alassane Halawen Mohamed, Hiliassa Coulibaly, Nicolas Barro, and Véronique Dubois. 2023. "Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso" Antibiotics 12, no. 10: 1494. https://doi.org/10.3390/antibiotics12101494
APA StyleKagambèga, A. B., Dembélé, R., Bientz, L., M’Zali, F., Mayonnove, L., Mohamed, A. H., Coulibaly, H., Barro, N., & Dubois, V. (2023). Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso. Antibiotics, 12(10), 1494. https://doi.org/10.3390/antibiotics12101494