In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naas, T.; Dortet, L.; Iorga, B.I. Structural and Functional Aspects of Class A Carbapenemases. Curr. Drug Targets 2016, 17, 1006–1028. [Google Scholar] [CrossRef] [PubMed]
- Mojica, M.F.; Bonomo, R.A.; Fast, W. B1-Metallo-beta-Lactamases: Where Do We Stand? Curr. Drug Targets 2016, 17, 1029–1050. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Potron, A.; Nordmann, P. OXA-48-like carbapenemases: The phantom menace. J. Antimicrob. Chemother. 2012, 67, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Bonnin, R.A.; Emeraud, C.; Jousset, A.B.; Naas, T.; Dortet, L. Comparison of disk diffusion, MIC test strip and broth microdilution methods for cefiderocol susceptibility testing on carbapenem-resistant enterobacterales. Clin. Microbiol. Infect. 2022, 28, 1156.e1–1156.e5. [Google Scholar] [CrossRef]
- Emeraud, C.; Escaut, L.; Boucly, A.; Fortineau, N.; Bonnin, R.A.; Naas, T.; Dortet, L. Aztreonam plus Clavulanate, Tazobactam, or Avibactam for Treatment of Infections Caused by Metallo-beta-Lactamase-Producing Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed]
- Sadek, M.; Juhas, M.; Poirel, L.; Nordmann, P. Genetic Features Leading to Reduced Susceptibility to Aztreonam-Avibactam among Metallo-beta-Lactamase-Producing Escherichia coli Isolates. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagace-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-beta-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Maraki, S.; Mavromanolaki, V.E.; Moraitis, P.; Stafylaki, D.; Kasimati, A.; Magkafouraki, E.; Scoulica, E. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-beta-lactamase-producing Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1755–1759. [Google Scholar] [CrossRef]
- Biagi, M.; Lamm, D.; Meyer, K.; Vialichka, A.; Jurkovic, M.; Patel, S.; Mendes, R.E.; Bulman, Z.P.; Wenzler, E. Activity of Aztreonam in Combination with Avibactam, Clavulanate, Relebactam, and Vaborbactam against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Kang, Y.; Xie, L.; Yang, J.; Cui, J. Optimal treatment of ceftazidime-avibactam and aztreonam-avibactam against bloodstream infections or lower respiratory tract infections caused by extensively drug-resistant or pan drug-resistant (XDR/PDR) Pseudomonas aeruginosa. Front. Cell Infect. Microbiol. 2023, 13, 1023948. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Vickers, A.; Woodford, N. Activity of aztreonam/avibactam against metallo-beta-lactamase-producing Enterobacterales from the UK: Impact of penicillin-binding protein-3 inserts and CMY-42 beta-lactamase in Escherichia coli. Int. J. Antimicrob. Agents 2023, 61, 106776. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; Stone, G.; Kantecki, M.; Arhin, F.F. In vitro activity of aztreonam/avibactam against isolates of Enterobacterales collected globally from ATLAS in 2019. J. Glob. Antimicrob. Resist. 2022, 30, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Castanheira, M.; Kimbrough, J.H.; Kantro, V.; Mendes, R.E. Aztreonam/avibactam activity against a large collection of carbapenem-resistant Enterobacterales (CRE) collected in hospitals from Europe, Asia and Latin America (2019–21). JAC Antimicrob. Resist. 2023, 5, dlad032. [Google Scholar] [CrossRef] [PubMed]
- Sonnevend, A.; Ghazawi, A.; Darwish, D.; Barathan, G.; Hashmey, R.; Ashraf, T.; Rizvi, T.A.; Pal, T. In vitro efficacy of ceftazidime-avibactam, aztreonam-avibactam and other rescue antibiotics against carbapenem-resistant Enterobacterales from the Arabian Peninsula. Int. J. Infect. Dis. 2020, 99, 253–259. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Zhao, C.; Wang, Z.; Nichols, W.W.; Testa, R.; Li, H.; Chen, H.; He, W.; Wang, Q.; et al. In vitro activities of ceftazidime-avibactam and aztreonam-avibactam against 372 Gram-negative bacilli collected in 2011 and 2012 from 11 teaching hospitals in China. Antimicrob. Agents Chemother. 2014, 58, 1774–1778. [Google Scholar] [CrossRef]
- Wise, M.G.; Karlowsky, J.A.; Mohamed, N.; Kamat, S.; Sahm, D.F. In vitro activity of aztreonam-avibactam against Enterobacterales isolates collected in Latin America, Africa/Middle East, Asia, and Eurasia for the ATLAS Global Surveillance Program in 2019–2021. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1135–1143. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, Z.; Jia, W.; Qu, F.; Huang, B.; Shan, B.; Yu, H.; Tang, Y.; Chen, L.; Du, H. In vitro activity of aztreonam-avibactam against metallo-beta-lactamase-producing Enterobacteriaceae-A multicenter study in China. Int. J. Infect. Dis. 2020, 97, 11–18. [Google Scholar] [CrossRef]
- Zou, C.; Wei, J.; Shan, B.; Chen, X.; Wang, D.; Niu, S. In vitro Activity of Ceftazidime-Avibactam and Aztreonam-Avibactam Against Carbapenem-resistant Enterobacteriaceae Isolates Collected from Three Secondary Hospitals in Southwest China Between 2018 and 2019. Infect. Drug Resist. 2020, 13, 3563–3568. [Google Scholar] [CrossRef]
- Biagi, M.; Lee, M.; Wu, T.; Shajee, A.; Patel, S.; Deshpande, L.M.; Mendes, R.E.; Wenzler, E. Aztreonam in combination with imipenem-relebactam against clinical and isogenic strains of serine and metallo-beta-lactamase-producing enterobacterales. Diagn. Microbiol. Infect. Dis. 2022, 103, 115674. [Google Scholar] [CrossRef]
- O’Donnell, J.N.; Putra, V.; Belfiore, G.M.; Maring, B.L.; Young, K.; Lodise, T.P. In vitro activity of imipenem/relebactam plus aztreonam against metallo-beta-lactamase-producing, OprD-deficient Pseudomonas aeruginosa with varying levels of Pseudomonas-derived cephalosporinase production. Int. J. Antimicrob. Agents 2022, 59, 106595. [Google Scholar] [CrossRef]
- Vazquez-Ucha, J.C.; Alonso-Garcia, I.; Guijarro-Sanchez, P.; Lasarte-Monterrubio, C.; Alvarez-Fraga, L.; Cendon-Esteve, A.; Outeda, M.; Maceiras, R.; Pena-Escolano, A.; Martinez-Guitian, M.; et al. Activity of aztreonam in combination with novel beta-lactamase inhibitors against metallo-beta-lactamase-producing Enterobacterales from Spain. Int. J. Antimicrob. Agents 2023, 61, 106738. [Google Scholar] [CrossRef] [PubMed]
- Infectious Diseases Society of America. IDSA 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. 2023. Available online: https://www.idsociety.org/globalassets/idsa/practice-guidelines/amr-guidance/1.0/idsa-amr-guidance-v3.0.pdf (accessed on 31 December 2022).
- Paul, M.; Carrara, E.; Retamar, P.; Tangden, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Falcone, M.; Daikos, G.L.; Tiseo, G.; Bassoulis, D.; Giordano, C.; Galfo, V.; Leonildi, A.; Tagliaferri, E.; Barnini, S.; Sani, S.; et al. Efficacy of Ceftazidime-avibactam Plus Aztreonam in Patients With Bloodstream Infections Caused by Metallo-beta-lactamase-Producing Enterobacterales. Clin. Infect. Dis. 2021, 72, 1871–1878. [Google Scholar] [CrossRef]
- Alzayer, M.; Alghoribi, M.F.; Alalwan, B.; Alreheli, A.; Aljohani, S.; Bosaeed, M.; Doumith, M. In vitro activity of cefiderocol against clinically important carbapenem non-susceptible Gram-negative bacteria from Saudi Arabia. J. Glob. Antimicrob. Resist. 2023, 32, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Kohira, N.; Hackel, M.A.; Ishioka, Y.; Kuroiwa, M.; Sahm, D.F.; Sato, T.; Maki, H.; Yamano, Y. Reduced susceptibility mechanism to cefiderocol, a siderophore cephalosporin, among clinical isolates from a global surveillance programme (SIDERO-WT-2014). J. Glob. Antimicrob. Resist. 2020, 22, 738–741. [Google Scholar] [CrossRef]
- Oueslati, S.; Bogaerts, P.; Dortet, L.; Bernabeu, S.; Ben Lakhal, H.; Longshaw, C.; Glupczynski, Y.; Naas, T. In vitro Activity of Cefiderocol and Comparators against Carbapenem-Resistant Gram-Negative Pathogens from France and Belgium. Antibiotics 2022, 11, 1352. [Google Scholar] [CrossRef]
- Poirel, L.; Ortiz de la Rosa, J.M.; Sakaoglu, Z.; Kusaksizoglu, A.; Sadek, M.; Nordmann, P. NDM-35-Producing ST167 Escherichia coli Highly Resistant to beta-Lactams Including Cefiderocol. Antimicrob. Agents Chemother. 2022, 66, e0031122. [Google Scholar] [CrossRef] [PubMed]
- Simner, P.J.; Bergman, Y.; Conzemius, R.; Jacobs, E.; Tekle, T.; Beisken, S.; Tamma, P.D. An NDM-Producing Escherichia coli Clinical Isolate Exhibiting Resistance to Cefiderocol and the Combination of Ceftazidime-Avibactam and Aztreonam: Another Step Toward Pan-beta-Lactam Resistance. Open Forum Infect. Dis. 2023, 10, ofad276. [Google Scholar] [CrossRef]
- Wu, S.; Ma, K.; Feng, Y.; Zong, Z. Resistance to aztreonam-avibactam due to a mutation of SHV-12 in Enterobacter. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 49. [Google Scholar] [CrossRef]
- Satapoomin, N.; Dulyayangkul, P.; Avison, M.B. Klebsiella pneumoniae Mutants Resistant to Ceftazidime-Avibactam Plus Aztreonam, Imipenem-Relebactam, Meropenem-Vaborbactam, and Cefepime-Taniborbactam. Antimicrob. Agents Chemother. 2022, 66, e0217921. [Google Scholar] [CrossRef]
- Karvouniaris, M.; Almyroudi, M.P.; Abdul-Aziz, M.H.; Blot, S.; Paramythiotou, E.; Tsigou, E.; Koulenti, D. Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics 2023, 12, 761. [Google Scholar] [CrossRef] [PubMed]
- Le Terrier, C.; Nordmann, P.; Freret, C.; Seigneur, M.; Poirel, L. Impact of Acquired Broad Spectrum beta-Lactamases on Susceptibility to Novel Combinations Made of beta-Lactams (Aztreonam, Cefepime, Meropenem, and Imipenem) and Novel beta-Lactamase Inhibitors in Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2023, 67, e0033923. [Google Scholar] [CrossRef] [PubMed]
- Le Terrier, C.; Nordmann, P.; Sadek, M.; Poirel, L. In vitro activity of cefepime/zidebactam and cefepime/taniborbactam against aztreonam/avibactam-resistant NDM-like-producing Escherichia coli clinical isolates. J. Antimicrob. Chemother. 2023, 78, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Le Terrier, C.; Gruenig, V.; Fournier, C.; Nordmann, P.; Poirel, L. NDM-9 resistance to taniborbactam. Lancet Infect. Dis. 2023, 23, 401–402. [Google Scholar] [CrossRef] [PubMed]
- Le Terrier, C.; Nordmann, P.; Buchs, C.; Di, D.Y.W.; Rossolini, G.M.; Stephan, R.; Castanheira, M.; Poirel, L. Wide dissemination of Gram-negative bacteria producing the taniborbactam-resistant NDM-9 variant: A One Health concern. J. Antimicrob. Chemother. 2023, 78, 2382–2384. [Google Scholar] [CrossRef]
Species | β-Lactamases | MICs (mg/L) | |||
---|---|---|---|---|---|
ATM | ATM + AVI | AZM+ REL | ATM + VAB | ||
E. coli ATCC 53126 | 0.047 | ND | 0.047 | 0.047 | |
K. pneumoniae ATCC 700603 | 64 | ND | 0.5 | 2 | |
E. coli | KPC | >256 | ND | 0.38 | 2 |
K. pneumoniae | KPC | >256 | ND | 0.125 | 0.25 |
E. coli | NDM-1 + OXA-1 + OXA-10 + CMY-16 + TEM-1 | 32 | 0.125 | 0.125 | 0.5 |
E. coli | NDM-1 + CTX-M-15 + TEM-1 | >256 | 1 | 12 | 24 |
E. coli | NDM-1 + OXA-1 + OXA-2 + CTX-M-15 + TEM-1 | >256 | 2 | 12 | 32 |
E. coli | NDM-1 + CTX-M-15 + TEM-1 | >256 | 6 | 32 | 192 |
E. coli | NDM-4 + CTX-M-15 + OXA-1 | >256 | 6 | 16 | 24 |
E. coli | NDM-4 + CTX-M-15 + CMY-6 | >256 | 6 | 8 | 24 |
E. coli | NDM-5 + TEM-1 + CTX-M-15 | >256 | 8 | 24 | 64 |
E. coli | NDM-6 + CTX-M-15 + OXA-1 | >256 | 1 | 3 | 8 |
E. coli | NDM-7 + CTX-M-15 | >256 | 4 | 12 | 32 |
K. pneumoniae | NDM-1 + CTX-M-15 + SHV-11 + OXA-1 | >256 | 0.125 | 1 | 1.5 |
K. pneumoniae | NDM-1 + CTX-M-15 + CMY-4 + OXA-1 | >256 | 0.75 | 4 | 48 |
K. pneumoniae | NDM-1 + CTX-M-15 + OXA-1 + OXA-9 + TEM-1 + SHV-28 + SHV-11 | >256 | 0.25 | 4 | 12 |
K. pneumoniae | NDM-1 + OXA-1 + SHV-11 | >256 | 0.047 | 0.094 | 0.094 |
K. pneumoniae | NDM-1 + OXA-1 + CTX-M-15 + TEM-1 + SHV-28 + OXA-9 + CMY-6 | >256 | 0.047 | 0.75 | 0.75 |
K. pneumoniae | NDM-1 + TEM-1 + CTX-M-15 + SHV-12 + OXA-9 | >256 | 0.125 | 1.5 | 1.5 |
K. pneumoniae | NDM-1 + TEM-1 + CTX-M-15 + SHV-12 + OXA-9 | >256 | 0.125 | 1.5 | 12 |
K. pneumoniae | NDM-1 + TEM-1 + CTX-M-15 + SHV-11 + OXA-1 | >256 | 0.064 | 0.75 | 0.75 |
P. stuartii | NDM-1 + OXA-1 + CMY-6 + TEM-1 | 8 | 0.032 | 0.016 | 0.032 |
Salmonella enterica | NDM-1 + CTX-M-15 + TEM-1 + OXA-1 + OXA-9 + OXA-10 | >256 | 0.125 | 0.75 | 0.75 |
E. coli | VIM-1 + CTX-M-3 | >256 | 0.125 | 1.5 | 12 |
E. coli | VIM-4 + CTX-M15 | 16 | 1.5 | 1.5 | 8 |
K. pneumoniae | VIM-1 + SHV-5 | >256 | 0.25 | 3 | 24 |
K. pneumoniae | VIM-1 + SHV-12 | >256 | 0.125 | 1 | 6 |
K. pneumoniae | VIM-1 + CTX-M-15 | >256 | 0.19 | 0.125 | 0.125 |
K. pneumoniae | VIM-1 + SHV-5 | 16 | 0.19 | 1 | 1 |
K. pneumoniae | VIM-1 + TEM-1 + SHV-5 | >256 | 0.25 | 1 | 6 |
K. pneumoniae | VIM-1 + SHV-5 | >256 | 0.25 | 12 | 32 |
K. pneumoniae | VIM-1 + SHV-5 | >256 | 0.125 | 1.5 | 8 |
K. pneumoniae | VIM-19 + CTX-M-3 + TEM-1 + SHV-1 | 6 | 0.047 | 0.032 | 0.094 |
E. cloacae | VIM-1 + SHV-70 | 256 | 0.094 | 0.5 | 2 |
E. cloacae | VIM-4 + CTX-M-15 + TEM-1 + SHV-31 | 64 | 1 | 0.5 | 4 |
C. freundii | VIM-2 + TEM-1 + CTX-M-15 | 16 | 0.25 | 3 | 1.5 |
C. freundii | VIM-2 + TEM-1 + OXA-9 + OXA-10 | 32 | 1.5 | 1.5 | 4 |
E. coli | IMP-8 + SHV -12 | 128 | 0.19 | 0.75 | 4 |
K. pneumoniae | IMP-1 + TEM-15 | 3 | 0.094 | 0.125 | 0.38 |
K. pneumoniae | IMP-1 + TEM-15 + CTX-M-15 | 2 | 0.094 | 0.125 | 0.38 |
K. pneumoniae | IMP-8 + SHV -12 | >256 | 0.094 | 0.125 | 4 |
E. cloacae | IMP-8 + SHV-12 | 12 | 0.032 | 0.125 | 0.38 |
S. marscecens | IMP-11 | 4 | 0.5 | 0.125 | 0.38 |
E. cloacae | GIM-1 + CTX-M-15 | 12 | 0.5 | 0.19 | 1 |
C. freundii | TMB-1 + overexpressed cephalosporinase | 64 | 0.125 | 0.19 | 0.75 |
K. pneumoniae | NDM-1 + OXA-181 + SHV-11 + TEM-1 + CTX-M-15 + OXA-1 | 64 | 0.094 | 0.5 | 0.5 |
K. pneumoniae | NDM-1 + OXA-181 + SHV-27 + CTX-M-15 + TEM-1 + OXA-1 | 128 | 0.25 | 1 | 1 |
K. pneumoniae | NDM-1 + OXA-181 + SHV-11 + CTX-M-15 + OXA-1 | 256 | 0.19 | 1 | 4 |
K. pneumoniae | NDM-1 + OXA-181 + SHV-11 + TEM-1 + CTX-M-15 + OXA-9 | >256 | 0.19 | 0.75 | 16 |
K. pneumoniae | NDM-1 + OXA-181 + SHV-2 + CTX-M-15 + OXA-1 | >256 | 0.125 | 0.75 | 1 |
C. freundii | NDM-1 + OXA-181 + OXA-1 + OXA-9 + OXA-10 + CTX-M-15 + TEM-1 | >256 | 0.75 | 4 | 32 |
E. coli | NDM-1 + OXA-48 + CTX-M-15 | 32 | 0.094 | 0.5 | 1.5 |
E. coli | NDM-1 + OXA-48 + CTX-M-15 | >256 | 0.75 | 6 | 16 |
K. pneumoniae | NDM-1 + OXA-232 + CTX-M-15 | 64 | 0.094 | 0.5 | 1.5 |
E. coli | NDM-1 + OXA-232 + CTX-M-15 | >256 | 1 | 6 | 1.5 |
E. coli | NDM-5 + OXA-232 + CTX-M-15 | >256 | 1 | 6 | 32 |
Percentage of susceptible strains of Enterobacterales with standard exposure | 0% | 84.6% | 55.8% | 34.6% | |
Percentage of susceptible strains of Enterobacterales with high exposure | 8.1% | 92.3% | 78.9% | 57.7% | |
Percentage of resistant strains of Enterobacterales | 91.9% | 13.5% | 21.1% | 42.3% | |
S. maltophilia | >256 | 0.5 | 1.5 | 1.5 | |
S. maltophilia | >256 | 2 | 3 | 64 | |
S. maltophilia | >256 | 0.5 | 1 | 4 | |
S. maltophilia | >256 | 2 | 3 | 48 | |
S. maltophilia | >256 | 1 | 1 | 32 | |
P. aeruginosa | VIM-2 + overexpressed Cephalosporinase | 32 | 8 | 32 | 24 |
P. aeruginosa | IMP-2 + overexpressed Cephalosporinase | 6 | 1.5 | 2 | 2 |
P. aeruginosa | IMP-1 + overexpressed Cephalosporinase | 24 | 3 | 4 | 16 |
P. aeruginosa | IMP-1 + overexpressed Cephalosporinase | 96 | 32 | 128 | 96 |
P. aeruginosa | IMP-1 + overexpressed Cephalosporinase | 12 | 3 | 8 | 6 |
Percentage of susceptible strains with standard exposure of aztreonam in the combination (total) | 0% | 66.1% | 45.2% | 29.0% | |
Percentage of susceptible strains with high exposure of aztreonam in the combination (total) | 4.8% | 87.1% | 79.1% | 56.4% | |
Percentage of resistant strains (total) | 95.2% | 12.9% | 21.0% | 43.6% | |
Percentage of strains with aztreonam MIC reduction ≥ 4-fold dilution | 100% | 93.5% | 90.3% |
MICs (mg/L) | ||
---|---|---|
Enterobacterales | P. aeruginosa | |
Susceptible with standard exposure | ≤1 | ≤0.001 |
Susceptible with high exposure | ≤4 | ≤16 |
Resistant | >4 | >16 |
MICs | |||||
---|---|---|---|---|---|
IMP+ REL Etest® | IMP+ REL Agar Method a | MEM+VAB Etest® | MEM+VAB Agar Method b | ||
E. coli | NDM-1 + OXA-1 + OXA-2 + CTX-M-15 + TEM-1 | 4 | 8 | 6 | 8 |
E. coli | NDM-4 + CTX-M-15 + OXA-1 | 16 | >32 | 32 | >32 |
E. coli | NDM-5 + TEM-1 + CTX-M-15 | >32 | >32 | >32 | >32 |
K. pneumoniae | NDM-1 + TEM-1 + CTX-M-15 + SHV-12 + OXA-9 | 2 | 1 | 2 | 4 |
P. stuartii | NDM-1 + OXA-1 + CMY-6 + TEM-1 | 4 | 8 | 2 | 2 |
E. coli | VIM-4 + ESBL | 6 | 4 | 3 | 1 |
K. pneumoniae | VIM-1 + SHV-5 | 3 | 4 | 1.5 | 2 |
K. pneumoniae | VIM-19 + CTX-M-3 + TEM-1 + SHV-1 | 1 | 2 | 0.75 | 1 |
K. pneumoniae | NDM-1 + OXA-181 + SHV-11 + CTX-M-15 + OXA-1 | 4 | 8 | 12 | 12 |
E. coli | NDM-1 + OXA-48 + ESBL | 2 | 4 | 2 | 2 |
E. coli | NDM-5 + OXA-232 + ESBL | 2 | 2 | 16 | 8 |
S. maltophilia | >32 | >32 | >32 | >32 | |
P. aeruginosa | IMP-1 + overexpressed Cephalosporinase | >32 | 16 | >32 | >32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emeraud, C.; Bernabeu, S.; Dortet, L. In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antibiotics 2023, 12, 1493. https://doi.org/10.3390/antibiotics12101493
Emeraud C, Bernabeu S, Dortet L. In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antibiotics. 2023; 12(10):1493. https://doi.org/10.3390/antibiotics12101493
Chicago/Turabian StyleEmeraud, Cécile, Sandrine Bernabeu, and Laurent Dortet. 2023. "In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria" Antibiotics 12, no. 10: 1493. https://doi.org/10.3390/antibiotics12101493
APA StyleEmeraud, C., Bernabeu, S., & Dortet, L. (2023). In Vitro Susceptibility of Aztreonam-Vaborbactam, Aztreonam-Relebactam and Aztreonam-Avibactam Associations against Metallo-β-Lactamase-Producing Gram-Negative Bacteria. Antibiotics, 12(10), 1493. https://doi.org/10.3390/antibiotics12101493