Antibiotic Resistance in Bacteria—A Review
Abstract
:1. Introduction
2. Mechanisms of Acquisition of Drug Resistance among Bacteria
3. Mechanisms of Transfer of Resistance Based on Examples of Various Species of Bacteria
3.1. Campylobacter spp.
3.1.1. Resistance to Fluoroquinolones
3.1.2. Resistance to Macrolides
3.1.3. Resistance to Tetracyclines
3.1.4. Resistance to β-Lactams
Resistance to Antimicrobials (Resistance Genes) | Source of Isolates | Percentage of Isolates with Resistance Genes | References |
---|---|---|---|
Fluoroquinolones (gyrA) | Humans | 13.8 (Burkina Faso); 20.1 (Australia); 50.0 (Ethiopia); 55.8–85.7 (BE); 72.2–100 (Lithuania); 77.4 (Peru); 85.2 (PL); 89.4 (China) | Sangaré et al. [53]; Chala et al. [54]; Meistere et al. [49]; Wieczorek et al. [55]; Elhadidy et al. [56]; Zhang et al. [57]; Wallace et al. [58]; Schiaffino et al. [59] |
Animals and food | 0–60.0 (China); 3.7–8.0 (USA); 25.0–100 (Ethiopia); 36.4–100 (Tunisia); 47.6–100 (Lithuania); 60.0–96.1 (Poland); 65.0–95.3 (Germany); 71.0 (Kenya) | Tang et al. [60]; Chala et al. [54]; Béjaoui et al. [61]; Nguyen et al. [62]; Meistere et al. [49]; Tenhagen et al. [50]; Wieczorek and Osek [48]; Andrzejewska et al. [63]; Bailey et al. [64] | |
Macrolides (ermB; efflux pumps) | Humans | 0 (Lithuania); 0.6 (Poland); 1.8 (Australia); 2.0–28.6 (Belgium); 5.3 (Peru); 10.3 (Burkina Faso); 24.0 (China); 80.0 (Ethiopia) | Sangaré et al. [53]; Chala et al. [54]; Meistere et al. [49]; Wieczorek et al. [55]; Elhadidy et al. [56]; Zhang et al. [57]; Wallace et al. [58]; Schiaffino et al. [59] |
Animals and food | 0–1.4 (Lithuania); 0–70.0 (China); 0–74.4 (Poland); 0–64.5 (Germany); 1.5–2.8 (USA); 25.0–100 (Ethiopia); 25.8–51.6 (Kenya); 90.9–100 (Tunisia) | Tang et al. [60]; Chala et al. [54]; Béjaoui et al. [61]; Nguyen et al. [62]; Meistere et al. [49]; Tenhagen et al. [50]; Wieczorek et al. [48]; Andrzejewska et al. [63]; Bailey et al. [64] | |
Tetracyclines (tet(O)) | Humans | 10.3 (Burkina Faso); 15.6 (Australia); 49.7–85.7 (Belgium); 55.5–100 (Lithuania); 55.8 (Peru); 70.0 (Ethiopia); 70.3 (Poland); 93.3 (China) | Sangaré et al. [53]; Chala et al. [54]; Meistere et al. [49]; Wieczorek et al. [55]; Zhang et al. [57]; Wallace et al. [58]; Schiaffino et al. [59] |
Animals and food | 0–64.0 (China); 3.8–77.0 (Poland);14.0–66.7 (Lithuania); 32.5–92.1 (Germany); 55.6–100 (Ethiopia); 57.9–78.1 (Poland); 65.3–81.6 (USA); 71.0 (Kenya); 100 (Tunisia) | Tang et al. [60]; Chala et al. [54]; Béjaoui et al. [61]; Nguyen et al. [62]; Meistere et al. [49]; Tenhagen et al. [50]; Wieczorek et al. [53]; Andrzejewska et al. [63]; Bailey et al. [64] |
3.2. Enterococcus spp.
3.2.1. Resistance to β-Lactam Antibiotics
3.2.2. Resistance to Inhibitors of the Third Step of Peptidoglycan Synthesis—Glycopeptides
3.2.3. Resistance to Aminoglycosides
3.2.4. Resistance to Tetracyclines
3.2.5. Resistance to Macrolides, Lincosamides and Streptogramins
3.2.6. Resistance to Antimetabolites—Sulphonamides and Trimethoprim
3.2.7. Resistance to Fluoroquinolones
3.3. Escherichia coli
3.3.1. Resistance to β-Lactams
AmpC β-Lactamases
3.3.2. Resistance to Fluoroquinolones
3.3.3. Resistance to Aminoglycosides
3.3.4. Resistance to Tetracyclines
3.3.5. Resistance to Sulphonamides and Trimethoprim
3.3.6. Resistance to Phenicols
3.3.7. Resistance to Polymyxins
3.4. Listeria spp.
3.4.1. Resistance to Fluoroquinolones
- PMQR (plasmid-mediated quinolone resistance) mechanisms associated with the presence of Qrn proteins (Qrn A, B, S, and less often C and D), responsible for protecting bacterial DNA and the enzymes gyrase and topoisomerase IV. The bifunctionality of the variant of the enzyme aminoglycoside acetylotransferase (AAC6′)-lb-cr, through modification of the aminoglycoside molecule, leads to the loss of affinity of subunit 16S rRNA to drugs such as tobramycin, kanamycin or amikacin;
- Active removal of fluoroquinolones from the interior of the cell by efflux pump proteins QepA and OqxAB, e.g., through overexpression of the chromosomal genu lde, encoding pump proteins;
- Point mutations in QRDRs (quinolone resistance-determining regions) in the genes gyrA and gyrB encoding subunits of topoisomerase II (gyrase) or in the genes parC and parE, responsible for encoding subunits of topoisomerase IV, the second main target enzyme of fluoroquinolones besides topoisomerase II. It should be noted that both enzymes play a major role during replication, transcription, recombination, and repair of bacterial DNA.
3.4.2. Resistance to Macrolides
3.4.3. Resistance to Tetracyclines
3.5. Resistance to β-Lactams
Antibiotic Resistance Genes | Source of Isolation of the Strains and Percentage (%) of Positive Isolates Showing the Presence of Resistance Genes | References | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Dairy Farms | Environment | Water Environment | Raw Fish | Food Products, Dairy, Poultry and Pigs | Poultry Farm and Slaugterhouses | Humans | ||||
L. monocytogenes | Beta-lactamases | penA | 37 | - | 11.6 | - | - | - | Srinivasan et al. [176]; Jamali et al. [182]; Haubert et al. [183]; Iwu & Okoh [167]; Kayode et al. [177]; Oswaldi et al. [184] | |
ampC | - | 0 | 63 | 14 | - | 0 | 0 | |||
blaTEM | - | 10 | 75 | - | - | - | - | |||
blaz | - | 5 | 10 | - | - | - | - | |||
Tetracyclines | tet(A) | 32 | 0 | 85.2 | 23 | - | 35.7 | 0 | Srinivasan et al. [176]; Kayode et al. [177]; Iwu & Okoh [167]; Oswaldi et al. [184]; Jamali et al. [182]; Davanzo et al. [185]; Bae et al. [186]; Heidarzadeh et al. [187]; Hanes and Huang [175]; Hailu et al. [178] | |
tet(B) | 19 | 38 | 3.3 | |||||||
tet(C) | 17 | 63 | 25 | 7.86 | 72 | |||||
tet(M) | - | 4–18 | 70.37 | 25.6 | 52.6 | 14.3 | 70 | |||
tet(O) | 8 | 8 | ||||||||
tet(S) | 9.1 | |||||||||
Quinolones | strA | 34 | 9 | 0 | - | 0 | - | Srinivasan et al. [176]; Hailu et al. [178]; Kayode et al. [177]; | ||
aadA | 51.9 | 50 | ||||||||
aadB | ||||||||||
Sulphonamides | dfrD | 16 | 11 | - | - | - | - | 27.3 | Kayode et al. [177]; Hanes and Huang [175]; Iwu & Okoh [167]; | |
sul1 | 16 | 3.33 | 38.24 | 0 | 0 | 0 | 13.6 | |||
sul2 | - | 13.33 | 41.18 | - | - | - | - | |||
Aminoglicosides | ant6 | 18.2 | Oswaldi et al. [184]; Iwu & Okoh, [167]; Kayode et al. [177]; | |||||||
aadA | - | 12.5 | 20 | - | - | - | - | |||
strA | - | - | 43.33 | - | - | - | - | |||
Lincosamides | fosX | 100 | 100 | 72–97 | ||||||
vgaD | 100 | 13 | 100 | |||||||
Macrolides | ermB | - | 42 | - | - | 4 | 14.3 | 83.3 | Haubert et al. [183]; Kayode et al. [177]; Davanzo et al. [185]; Heidarzadeh et al. [187]; Hanes and Huang [175]; | |
Glicopeptides | vanA | - | 0 | 0 | 4.65 | 0 | - | - | Jamali et al. [182]; | |
Phenicoles | floR | 66 | 4 | 0 | - | - | - | 0 | Srinivasan et al. [176]; Kayode et al. [177]; | |
catI | - | - | 53.3 | - | - | - | - |
3.6. Salmonella spp.
3.6.1. Resistance to Aminoglycosides
3.6.2. Resistance to β-Lactams
3.6.3. Resistance to Phenicols
3.6.4. Resistance to Tetracyclines
3.6.5. Resistance to Colistin
3.6.6. Resistance to Sulphonamides
3.6.7. Resistance to Quinolones
3.7. Staphylococcus spp.
3.7.1. Resistance to Tetracyclines
3.7.2. Resistance to β-Lactams
3.7.3. Resistance to Methicillin Macrolides Lincosamides and Streptogramin B
3.7.4. Resistance to Fluoroquinolones
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Regulation (EU) 2019/6 of the European Parliament and of The Council of 11 December 2018 on Veterinary Medicinal Products and Repealing Directive 2001/82/EC. Off. J. Eur. Union 2019, 4, 43–167. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32019R0006&from=EN (accessed on 22 November 2021).
- Ruvalcaba-Gómez, J.M.; Villagrán, Z.; Valdez-Alarcón, J.J.; Martínez-Núñez, M.; Gomez-Godínez, L.J.; Ruesga-Gutiérrez, E.; Anaya-Esparza, L.M.; Arteaga-Garibay, R.I.; Villarruel-López, A. Non-Antibiotics Strategies to Control Salmonella Infection in Poultry. Animals 2022, 12, 102. [Google Scholar] [CrossRef] [PubMed]
- Mourenza, A.; Gil, J.A.; Mateos, L.M.; Letek, M. Alternative Anti-Infective Treatments to Traditional Antibiotherapy against Staphylococcal Veterinary Pathogens. Antibiotics 2020, 9, 702. [Google Scholar] [CrossRef]
- Irving, W.; Boswell, T.; Ala’Aldeen, D. Mikrobiologia Medyczna. Krótkie Wyklady; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2008; pp. 285–287. [Google Scholar]
- Acar, J.; Röstel, B. Antimicrobial resistance: An overview. Rev. Sci. Tech. Off. Int. Epiz. 2001, 20, 797–810. [Google Scholar] [CrossRef]
- Giedraitienė, A.; Vitkauskienė, A.; Naginienė, R.; Pavilonis, A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina 2011, 47, 137–146. [Google Scholar] [CrossRef]
- van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4, 1–37. [Google Scholar] [CrossRef]
- Martinez, J.L. Bottlenecks in the transferability of antibiotic resistance from natural ecosystems to human bacterial pathogens. Front. Microbiol. 2011, 2, 265. [Google Scholar] [CrossRef]
- Smillie, C.S.; Smith, M.B.; Friedman, J.; Cordero, O.X.; David, L.A.; Alm, E.J. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011, 480, 241–244. [Google Scholar] [CrossRef]
- Jutkina, J.; Marathe, N.P.; Flach, C.F.; Larsson, D.G.J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 2018, 616–617, 172–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, A.Z.; He, M.; Li, D.; Chen, J. Subinhibitory concentrations of disinfectants promote the horizontal transfer of multidrug resistance genes within and across genera. Environ. Sci. Technol. 2017, 51, 570–580. [Google Scholar]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, 4. [Google Scholar] [CrossRef]
- Węgleński, P. Podstawowe Koncepcje Genetyczne i Wybrane Metody Analizy Genetycznej u Różnych Grup Organizmów. In Genetyka Molekularna; PWN: Warszawa, Poland, 2008; ISBN 978-83-01-14744-0. [Google Scholar]
- Kaakoush, N.O.; Castaño-Rodríguez, N.; Mitchell, H.M.; Man, S.M. Global Epidemiology of Campylobacter Infection. Clin. Microbiol. Rev. 2015, 28, 687–719. [Google Scholar] [CrossRef]
- Tresse, O.; Alvarez-Ordóñez, A.; Connerton, I.F. Editorial: About the Foodborne Pathogen Campylobacter. Front. Microbiol. 2017, 8, 1908. [Google Scholar] [CrossRef]
- Humphrey, T.; O’Brien, S.; Madsen, M. Campylobacters as Zoonotic Pathogens: A Food Production Perspective. Intern. J. Food Microbiol. 2007, 117, 237–257. [Google Scholar] [CrossRef]
- Gras, L.M.; Smid, J.H.; Wagenaar, J.A.; De Boer, A.G.; Havelaar, A.H.; Friesema, I.; French, N.P.; Busani, L.; van Pelt, W. Risk Factors for Campylobacteriosis of Chicken, Ruminant, and Environmental Origin: A Combined Case-control and Source Attribution Analysis. PLoS ONE 2012, 7, e42599. [Google Scholar] [CrossRef]
- An, J.U.; Ho, H.; Kim, J.; Kim, W.H.; Kim, J.; Lee, S.; Mun, S.H.; Guk, J.H.; Hong, S.; Cho, S. Dairy Cattle, a Potential Reservoir of Human Campylobacteriosis: Epidemiological and Molecular Characterization of Campylobacter jejuni from Cattle Farms. Front. Microbiol. 2018, 9, 3136. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.; Wang, F.; Sjölund-Karlsson, M.; McDermott, P.F. Antimicrobial Resistance in Campylobacter: Susceptibility Testing Methods and Resistance Trends. J. Microbiol. Meth. 2013, 95, 57–67. [Google Scholar] [CrossRef]
- Allos, B.M. Campylobacter jejuni Infections: Update on Emerging Issues and Trends. Clin. Infect. Dis. 2001, 32, 1201–1206. [Google Scholar]
- Dai, L.; Sahin, O.; Grover, M.; Zhang, Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl. Res. 2020, 223, 76–88. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, 7209. [Google Scholar]
- Silva, J.; Leite, D.; Fernandes, M.; Mena, C.; Gibbs, P.A.; Teixeira, P. Campylobacter spp. as a foodborne pathogen: A review. Front. Microbiol. 2011, 2, 200. [Google Scholar] [CrossRef] [PubMed]
- Luangtongkum, T.; Jeon, B.; Han, J.; Plummer, P.; Logue, C.M.; Zhang, Q. Antibiotic resistance in Campylobacter: Emergence, transmission and persistence. Future Microbiol. 2009, 4, 189–200. [Google Scholar] [CrossRef]
- Iovine, N.M. Resistance mechanisms in Campylobacter jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef]
- Tang, Y.; Fang, L.; Xu, C.; Zhang, Q. Antibiotic resistance trends and mechanisms in the foodborne pathogen, Campylobacter. Anim. Health Res. Rev. 2017, 18, 87–98. [Google Scholar] [CrossRef]
- Corcoran, D.; Quinn, T.; Cotter, L.; Fanning, S. An investigation of the molecular mechanisms contributing to high-level erythromycin resistance in Campylobacter. Int. J. Antimicrob. Agents 2006, 27, 40–45. [Google Scholar] [CrossRef]
- Florez-Cuadrado, D.; Ugarte-Ruiz, M.; Meric, G.; Quesada, A.; Porrero, M.C.; Pascoe, B.; Sáez-Llorente, J.L.; Orozco, G.L.; Domínguez, L.; Sheppard, S.K. Genome comparison of erythromycin resistant Campylobacter from turkeys identifies hosts and pathways for horizontal spread of erm(B) genes. Front. Microbiol. 2017, 8, 2240. [Google Scholar] [CrossRef]
- Luo, N.; Pereira, S.; Sahin, O.; Lin, J.; Huang, S.; Michel, L.; Zhang, Q. Enhanced in vivo fitness of fluoroquinolone-resistant Campylobacter jejuni in the absence of antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 2005, 102, 541–546. [Google Scholar] [CrossRef]
- Luo, N.; Sahin, O.; Lin, J.; Michel, L.O.; Zhang, Q. In vivo selection of Campylobacter isolates with high levels of fluoroquinolone associated with gyrA mutations and the function of the CmeABC efflux pump. Antimicrob. Agents Chemother. 2003, 47, 390–394. [Google Scholar] [CrossRef]
- Payot, S.; Bolla, J.M.; Corcoran, D.; Fanning, S.; Mégraud, F.; Zhang, Q. Mechanisms of fluoroquinolone and macrolide resistance in Campylobacter spp. Microbes Infect. 2006, 8, 1967–1971. [Google Scholar] [CrossRef] [PubMed]
- Ge, B.L.; McDermott, P.F.; White, D.G.; Meng, J.H. Role of efflux pumps and topoisomerase mutations in fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 2005, 49, 3347–3354. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Michel, L.O.; Zhang, Q. CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni. Antimicrob. Agents Chemother. 2002, 46, 2124–2131. [Google Scholar] [CrossRef] [PubMed]
- Yao, H.; Zhao, W.; Jiao, D.; Schwarz, S.; Zhang, R.; Li, X.-S.; Du, X.-D. Global distribution, Dissemination and Overexpression of Potent Multidrug Efflux Pump RE-CmeABC in Campylobacter jejuni. J. Antimicrob. Chemother. 2021, 76, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Yan, M.; Sahin, O.; Pereira, S.; Chang, Y.J.; Zhang, Q. Effect of macrolide usage on emergence of erythromycin-resistant Campylobacter isolates in chickens. Antimicrob. Agents Chemother. 2007, 51, 1678–1686. [Google Scholar] [CrossRef] [PubMed]
- Lehtopolku, M.; Kotilainen, P.; Haanperä-Heikkinen, M.; Nakari, U.M.; Hänninen, M.L.; Huovinen, P.; Siitonen, A.; Eerola, E.; Jalava, J.; Hakanen, A.J. Ribosomal mutations as the main cause of macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 2011, 55, 5939–5941. [Google Scholar] [CrossRef] [PubMed]
- Cagliero, C.; Mouline, C.; Cloeckaert, A.; Payot, S. Synergy between efflux pump CmeABC and modifications in ribosomal proteins L4 and L22 in conferring macrolide resistance in Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 2006, 50, 3893–3896. [Google Scholar] [CrossRef]
- Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef]
- Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 1995, 39, 577–585. [Google Scholar] [CrossRef]
- Sharifi, S.; Bakhshi, B.; Najar-Peerayeh, S. Significant contribution of the CmeABC Efflux pump in high-level resistance to ciprofloxacin and tetracycline in Campylobacter jejuni and Campylobacter coli clinical isolates. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 36. [Google Scholar] [CrossRef]
- Taylor, D.E.; Courvalin, P. Mechanisms of antibiotic resistance in Campylobacter species. Antimicrob. Agents Chemother. 1988, 32, 1107–1112. [Google Scholar] [CrossRef]
- Pratt, A.; Korolik, V. Tetracycline resistance of Australian Campylobacter jejuni and Campylobacter coli isolates. J. Antimicrob. Chemother. 2005, 55, 452–460. [Google Scholar] [CrossRef]
- Pumbwe, L.; Randall, L.P.; Woodward, M.J.; Piddock, L.J. Evidence for multiple-antibiotic resistance in Campylobacter jejuni not mediated by CmeB or CmeF. Antimicrob. Agents Chemother. 2005, 49, 1289–1293. [Google Scholar] [CrossRef]
- Zeng, X.; Brown, S.; Gillespie, B.; Lin, J. A single nucleotide in the promoter region modulates the expression of the β-lactamase OXA-61 in Campylobacter jejuni. J. Antimicrob. Chemother. 2014, 69, 1215–1223. [Google Scholar] [CrossRef]
- Rivera-Mendoza, D.; Martínez-Flores, I.; Santamaría, R.I.; Lozano, L.; Bustamante, V.H.; Pérez-Morales, D. Genomic analysis reveals the genetic determinants associated with antibiotic resistance in the zoonotic pathogen Campylobacter spp. Distributed globally. Front. Microbiol. 2020, 11, 513070. [Google Scholar] [CrossRef]
- Wieczorek, K.; Osek, J. A five-year study on prevalence and antimicrobial resistance of Campylobacter from poultry carcasses in Poland. Food Microbiol. 2015, 49, 161–165. [Google Scholar] [CrossRef]
- Meistere, I.; Ķibilds, J.; Eglīte, L.; Alksne, L.; Avsejenko, J.; Cibrovska, A.; Makarova, S.; Streikiša, M.; Grantiņa-Ieviņa, L.; Bērziņš, A. Campylobacter species prevalence, characterisation of antimicrobial resistance and analysis of whole-genome sequence of isolates from livestock and humans, Latvia, 2008 to 2016. Euro Surveill. 2019, 24, 1800357. [Google Scholar] [CrossRef]
- Tenhagen, B.A.; Flor, M.; Alt, K.; Knüver, M.T.; Buhler, C.; Käsbohrer, A.; Stingl, K. Association of antimicrobial resistance in Campylobacter spp. In broilers and turkeys with antimicrobial use. Antibiotics 2021, 10, 673. [Google Scholar] [CrossRef]
- European Medicines Agency (EMA); European Surveillance of Veterinary Antimicrobial Consumption. Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2019 and 2020; EMA/58183/2021; European Medicines Agency: Amsterdam, The Netherlands, 2021. [Google Scholar]
- European Commission. Commission Implementing Decision of 17 November 2020 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria and repealing Implementing Decision 2013/652/EU, 2020/1729/EU. Off. J. Eur. Union 2020, L387, 8–21. [Google Scholar]
- Sangaré, L.; Nikiéma, A.K.; Zimmermann, S.; Sanou, I.; Congo-Ouédraogo, M.; Diabaté, A.; Diandé, S.; Guissou, P.I. Campylobacter spp. Epidemiology and Antimicrobial Susceptibility in a Developing Country, Burkina Faso (West Africa). Afr. J. Clin. Exp. Microbiol. 2012, 13, 110–117. [Google Scholar] [CrossRef]
- Chala, G.; Eguale, T.; Abunna, F.; Asrat, D.; Stringer, A. Identification and Characterization of Campylobacter Species in Livestock, Humans, and Water in Livestock Owning Households of Peri-urban Addis Ababa, Ethiopia: A One Health Approach. Front. Public Health 2021, 9, 750551. [Google Scholar] [CrossRef]
- Wieczorek, K.; Wołkowicz, T.; Osek, J. Antimicrobial resistance and virulence-associated traits of Campylobacter jejuni isolated from poultry food chain and humans with diarrhea. Front. Microbiol. 2018, 9, 1508. [Google Scholar] [CrossRef]
- Elhadidy, M.; Ali, M.M.; El-Shibiny, A.; Miller, W.G.; Elkhatib, W.F.; Botteldoorn, N.; Dierick, K. Antimicrobial resistance patterns and molecular resistance markers of Campylobacter jejuni isolates from human diarrheal cases. PLoS ONE 2020, 15, e0227833. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Shao, Y.; Hu, Y.; Lou, H.; Chen, X.; Wu, Y.; Mei, L.; Zhou, B.; Zhang, X.; et al. Molecular characterization and antibiotic resistant profiles of Campylobacter species isolated from poultry and diarrheal patients in Southeastern China 2017–2019. Front. Microbiol. 2020, 11, 1244. [Google Scholar] [CrossRef] [PubMed]
- Wallace, R.L.; Bulach, D.; McLure, A.; Varrone, L.; Jennison, A.V.; Valcanis, M.; Smith, J.J.; Polkinghorne, B.G.; Glass, K.; Kirk, M.D. Antimicrobial resistance of Campylobacter spp. Causing human infection in Australia: An international comparison. Microb. Drug Resist. 2021, 27, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Schiaffino, F.; Colston, J.M.; Paredes-Olortegui, M.; François, R.; Pisanic, N.; Burga, R.; Peñataro-Yori, P.; Kosek, M.N. Antibiotic resistance of Campylobacter species in a pediatric cohort study. Antimicrob. Agents Chemother. 2019, 63, e01911–e01918. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhou, Q.; Zhang, X.; Zhou, S.; Zhang, J.; Tang, X.; Lu, J.; Gao, Y. Antibiotic Resistance Profiles and Molecular Mechanisms of Campylobacter from Chicken and Pig in China. Front. Microbiol. 2020, 11, 592496. [Google Scholar] [CrossRef] [PubMed]
- Béjaoui, A.; Gharbi, M.; Bitri, S.; Nasraoui, D.; Ben Aziza, W.; Ghedira, K.; Rfaik, M.; Marzougui, L.; Ghram, A.; Maaroufi, A. Virulence Profiling, Multidrug Resistance and Molecular Mechanisms of Campylobacter Strains from Chicken Carcasses in Tunisia. Antibiotics 2022, 11, 830. [Google Scholar] [CrossRef]
- Nguyen, T.N.M.; Hotzel, H.; Njeru, J.; Mwituria, J.; El-Adawy, H.; Tomaso, H.; Neubauer, H.; Hafez, H.M. Antimicrobial Resistance of Campylobacter Isolates from Small Scale and Backyard Chicken in Kenya. Gut Path. 2016, 8, 39. [Google Scholar] [CrossRef]
- Andrzejewska, M.; Szczepańska, B.; Spica, D.; Klawe, J.J. Prevalence, virulence, and antimicrobial resistance of Campylobacter spp. In raw milk, beef, and pork meat in northern Poland. Foods 2019, 8, 420. [Google Scholar] [CrossRef]
- Bailey, M.A.; Taylor, R.M.; Brar, J.S.; Corkran, S.C.; Velásquez, C.; Novoa-Rama, E.; Oliver, H.F.; Singh, M. Prevalence and antimicrobial resistance of Campylobacter from antibiotic-free broilers during organic and conventional processing. Poult. Sci. 2019, 98, 1447–1454. [Google Scholar] [CrossRef]
- Leclercq, R. Enterococci acquire new kinds of resistance. Clin. Infect. Dis. 1997, 24 (Suppl. 1), S80–S84. [Google Scholar] [CrossRef]
- Junior, J.C.; Fuchs, B.B.; Sabino, C.P.; Junqueira, J.C.; Jorge, A.O.C.; Ribeiro, M.S.; Gilmore, M.S.; Rice, L.B.; Tegos, G.P.; Hamblin, M.R.; et al. Photodynamic and Antibiotic Therapy Impair the Pathogenesis of Enterococcus faecium in a Whole Animal Insect Model. PLoS ONE 2013, 8, e55926. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Hauschild, T.; Dec, M.; Marek, A.; Brzeski, M.; Kosikowska, U. Antimicrobial resistance and genetic diversity of Enterococcus faecalis from yolk sac infections in broiler chicks. Poult. Sci. 2021, 100, 101491. [Google Scholar] [CrossRef]
- O’Driscoll, T.; Crank, C.W. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect. Drug. Resist. 2015, 8, 217–230. [Google Scholar]
- Stępień-Pyśniak, D.; Bertelloni, F.; Dec, M.; Cagnoli, G.; Pietras-Ożga, D.; Urban-Chmiel, R.; Ebani, V.V. Characterization and comparison of Enterococcus spp. Isolates from feces of healthy dogs and urines of dogs with UTIs. Animals 2021, 11, 2845. [Google Scholar] [CrossRef]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Sifaoui, F.; Arthur, M.; Rice, L.; Gutmann, L. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. 2001, 45, 2594–2597. [Google Scholar] [CrossRef]
- Ligozzi, M.; Pittaluga, F.; Fontana, R. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J. Bacteriol. 1993, 175, 2046–2051. [Google Scholar] [CrossRef]
- Murray, B.E. Vancomycin-resistant enterococcal infections. N. Engl. J. Med. 2000, 342, 710–721. [Google Scholar] [CrossRef]
- Przybylski, M. Enterokoki oporne na wankomycynę. II. Mechanizmy Oporności, epidemiologia. Postępy Mikrobiol. 2007, 46, 317–334. [Google Scholar]
- Courvalin, P. Vancomycin resistance in gram-positive cocci. Clin. Infect. Dis. 2006, 42 (Suppl. 1), S25–S34. [Google Scholar] [CrossRef] [PubMed]
- Boyd, D.A.; Willey, B.M.; Fawcett, D.; Gillani, N.; Mulvey, M.R. Molecular characterization of Enterococcus faecalis N06-0364 with low-level ancomycin resistance harboring a novel Dala-D-Ser gene cluster, vanL. Antimicrob. Agents Chemother. 2008, 52, 2667–26672. [Google Scholar] [CrossRef] [PubMed]
- Courvalin, P. Genetics of glycopeptide resistance in Gram-positive pathogens. Int. J. Med. Microbiol. 2005, 294, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Kawalec, M.; Kedzierska, J.; Gajda, A.; Sadowy, E.; Wegrzyn, J.; Naser, S.; Skotnicki, A.B.; Gniadkowski, M.; Hryniewicz, W. Hospital outbreak of vancomycin-resistant enterococci caused by a single clone of Enterococcus raffinosus and several clones of Enterococcus faecium. Clin. Microbiol. Infect. 2007, 13, 893–901. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R.; Dutka-Malen, S.; Brisson-Noël, A.; Molinas, C.; Derlot, E.; Arthur, M.; Duval, J.; Courvalin, P. Resistance of enterococci to aminoglycosides and glycopeptides. Clin. Infect. Dis. 1992, 15, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Werner, G.; Coque, T.M.; Hammerum, A.M.; Hope, R.; Hryniewicz, W.; Johnson, A.; Klare, I.; Kristinsson, K.G.; Leclercq, R.; Lester, C.H.; et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill. 2008, 20, 19046. [Google Scholar] [CrossRef]
- Navarro, F.; Courvalin, P. Analysis of genes encoding d-alanine-d-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob. Agents Chemother. 1994, 38, 1788–1793. [Google Scholar] [CrossRef]
- Depardieu, F.; Reynolds, P.E.; Courvalin, P. VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob. Agents Chemother. 2003, 47, 7–18. [Google Scholar] [CrossRef]
- Patino, A.L.; Courvalin, P.; Perichon, B. vanE gene cluster of vancomycin–resistant Enterococcus faecalis BM4405. J. Bacteriol. 2002, 184, 6457–6464. [Google Scholar] [CrossRef]
- McKessar, S.J.; Berry, A.M.; Bell, J.M.; Turnidge, J.D.; Paton, J.C. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob. Agents Chemother. 2000, 44, 3224–3228. [Google Scholar] [CrossRef]
- Ramirez, M.S.; Tolmasky, M.E. Aminoglycoside modifying enzymes. Drug Resist. Updates 2010, 13, 151–171. [Google Scholar] [CrossRef]
- Chow, J.W. Aminoglicoside resistance in enterococci. Clin. Infect. Dis. 2000, 31, 586–589. [Google Scholar] [CrossRef]
- EUCAST 2019. Available online: www.escmid.org/research_projects/eucast/ (accessed on 1 January 2020).
- Bentorcha, F.; De Cespédès, G.; Horaud, T. Tetracycline resistance heterogeneity in Enterococcus faecium. Antimicrob. Agents Chemother. 1991, 35, 808–812. [Google Scholar] [CrossRef]
- Roberts, M.C. Update on macrolide-lincosamide- streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 2008, 282, 147–159. [Google Scholar] [CrossRef]
- Singh, K.V.; Weinstock, G.M.; Murray, B.E. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob. Agents Chemother. 2002, 46, 1845–1850. [Google Scholar] [CrossRef]
- Chenoweth, C.E.; Robinson, K.A.; Schaberg, D.R. Efficacy of ampicillin versus trimethoprim-sulfamethoxazole in a mouse model of lethal enterococcal peritonitis. Antimicrob. Agents Chemother. 1990, 34, 1800–1802. [Google Scholar] [CrossRef]
- Jacoby, G.A. Mechanisms of resistance to quinolones. Clin. Infect. Dis. Soc. Am. 2005, 41 (Suppl. 2), S120–S126. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Hauschild, T.; Nowaczek, A.; Marek, A.; Dec, M. Wild birds as a potential source of known and novel multilocus sequence types of antibiotic-resistant Enterococcus faecalis. J. Wild. Dis. 2018, 54, 219–228. [Google Scholar] [CrossRef]
- Gawryszewska, I.; Malinowska, K.; Kuch, A.; Chrobak-Chmiel, D.; Trokenheim, L.L.; Hryniewicz, W.; Sadowy, E. Distribution of antimicrobial resistance determinants, virulence-associated factors and clustered regularly interspaced palindromic repeats loci in isolates of Enterococcus faecalis from various settings and genetic lineages. Pathog. Dis. 2017, 75, ftx021. [Google Scholar] [CrossRef]
- Boccella, M.; Santella, B.; Pagliano, P.; De Filippis, A.; Casolaro, V.; Galdiero, M.; Borrelli, A.; Capunzo, M.; Boccia, G.; Franci, G. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Retrospective Cohort Study in Italy. Antibiotics 2021, 10, 1552. [Google Scholar] [CrossRef]
- Kotłowski, R.; Grecka, K.; Kot, B.; Szweda, P. New Approaches for Escherichia coli Genotyping. Pathogens 2020, 9, 73. [Google Scholar] [CrossRef]
- Lindstedt, B.A.; Finton, M.D.; Porcellato, D.; Brandal, L.T. High frequency of hybrid Escherichia coli strains with combined Intestinal Pathogenic Escherichia coli (IPEC) and Extraintestinal Pathogenic Escherichia coli (ExPEC) virulence factors isolated from human faecal samples. BMC Infect Dis. 2018, 18, 544. [Google Scholar] [CrossRef]
- Wasiński, B. Extra-intestinal pathogenic Escherichia coli—Threat connected with food-borne infections. Ann. Agric. Environ. Med. 2019, 26, 532–537. [Google Scholar] [CrossRef]
- Shinozuka, Y.; Kawai, K.; Takeda, A.; Yamada, M.; Kayasaki, F.; Kondo, N.; Ssaki, Y.; Kanai, N.; Mukai, T.; Sawaguchi, M.; et al. Influence of oxytetracycline susceptibility as a first-line antibiotic on the clinical outcome in dairy cattle with acute Escherichia colied.stis. J. Vet. Med. Sci. 2019, 81, 863–868. [Google Scholar] [CrossRef]
- Temmerman, R.; Pelligand, L.; Schelstraete, W.; Antonissen, G.; Garmyn, A.; Devreese, M. Enrofloxacin Dose Optimization for the Treatment of Colibacillosis in Broiler Chickens Using a Drinking Behaviour Pharmacokinetic Model. Antibiotics 2021, 10, 604. [Google Scholar] [CrossRef]
- Burow, E.; Rostalski, A.; Harlizius, J.; Gangl, A.; Simoneit, C.; Grobbel, M.; Kollas, C.; Tenhagen, B.A.; Käsbohrer, A. Antibiotic resistance in Escherichia coli from pigs from birth to slaughter and its association with antibiotic treated. Prev. Vet. Med. 2019, 165, 52–62. [Google Scholar] [CrossRef]
- Available online: https://ekolabos.pl/mechanizmy-opornosci-gram-ujemnych-paleczek-na-antibiotyki/ (accessed on 1 January 2021).
- Kong, K.F.; Schneper, L.; Mathee, K. Β-lactam antibiotics: From antibiosis to resistance and bacteriology. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2010, 118, 1–36. [Google Scholar] [CrossRef]
- Canton, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T.M. Prevalence and spread of extender spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14 (Suppl. 1), 144–153. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef] [PubMed]
- Paterson, D.L.; Bonomo, R.A. Extended-spectrum β-lactamases: A clinical update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef]
- Ejaz, H.; Younas, S.; Abosalif, K.; Junaid, K.; Alzahrani, B.; Alsrhani, A.; Abdalla, A.E.; Ullah, M.I.; Qamar, M.U.; Hamam, S. Molecular analysis of blaSHV, blaTEM, and blaCTX-M in extended-spectrum -lactamase producing Enterobacteriaceae recovered from fecal specimens of animals. PLoS ONE 2021, 16, e0245126. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M. β-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995, 8, 557–584. [Google Scholar] [CrossRef]
- Bahramian, A.; Khoshnood, S.; Hashemi, N.; Moradi, M.; Karimi-Yazdi, M.; Jalallou, N.; Saki, M. Identification of metallo–lactamases and AmpC production among Escherichia coli strains isolated from hemodialysis patients with urinary tract infection. Mol. Biol. Rep. 2021, 48, 7883–7892. [Google Scholar] [CrossRef] [PubMed]
- Ejikeugwu, C.; Esimone, C.; Iroha, I.; Igwe, D.O.; Ugwu, M.; Ezeador, C.; Duru, C.; Adikwu, M. Molecular Identification of MBL Genes blaIMP-1 and blaVIM-1 in Escherichia coli Strains Isolated from Abattoir by Multiplex PCR Technique. Res. J. Microbiol. 2017, 12, 266–273. [Google Scholar]
- Barnard, F.M.; Maxwell, A. Interaction between DNA gyrase and quinolones: Effects of alanine mutations at GyrA subunit residues Ser(83) and Asp(87). Antimicrob. Agents Chemother. 2001, 45, 1994–2000. [Google Scholar] [CrossRef]
- de Jong, A.; Muggeo, A.; El Garch, F.; Moyaert, H.; de Champs, C.; Guillard, T. Characterization of quinolone resistance mechanisms in Enterobacteriaceae isolated from companion animals in Europe (ComPath II study). Vet. Microbiol. 2018, 216, 159–167. [Google Scholar] [CrossRef]
- Strahilevitz, J.; Jacoby, G.A.; Hooper, D.C.; Robicsek, A. Plasmid-mediated quinolone resistance: A multifaceted threat. Clin. Microbiol. Rev. 2009, 22, 664–689. [Google Scholar] [CrossRef]
- Pereira, R.V.; Foditsch, C.; Siler, J.D.; Dulièpre, S.C.; Altier, C.; Garzon, A.; Warnick, L.D. Genotypic antimicrobial resistance characterization of E. coli from dairy calves at high risk of respiratory disease administered enrofloxacin or tulathromycin. Sci. Rep. 2020, 10, 19327. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, W.; Pan, W.; Yin, J.; Pan, Z.; Gao, S.; Jiao, X. Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli isolates from humans, animals, and the environment. Antimicrob. Agents Chemother. 2012, 56, 3423–3427. [Google Scholar] [CrossRef]
- Hooper, D.C. Efflux pumps and nosocomial antibiotic resistance: A primer for hospital epidemiologists. Clin. Infect. Dis. 2005, 40, 1811–1817. [Google Scholar]
- Sulavik, M.C.; Houseweart, C.; Cramer, C.; Jiwani, N.; Murgolo, N.; Greene, J.; Di Domenico, B.; Shaw, K.J.; Miller, G.H.; Hare, R.; et al. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 2001, 45, 1126–1136. [Google Scholar] [CrossRef]
- Doi, Y.; Wachino, J.I.; Arakawa, Y. Aminoglycoside Resistance: The Emergence of Acquired 16S Ribosomal RNA Methyltransferases. Infect. Dis. Clin. N. Am. 2016, 30, 523–537. [Google Scholar] [CrossRef]
- Yu, T.; He, T.; Yao, H.; Zhang, J.B.; Li, X.N.; Zhang, R.M.; Wang, G.Q. Prevalence of 16S rRNA Methylase Gene rmtB Among Escherichia coli Isolated from Bovine Mastitis in Ningxia, China. Foodborne Pathog. Dis. 2015, 12, 770–777. [Google Scholar] [CrossRef]
- Xia, J.; Sun, J.; Li, L.; Fang, L.X.; Deng, H.; Yang, R.S.; Li, X.P.; Liao, X.P.; Liu, Y.H. First Report of the IncI1/ST898 Conjugative Plasmid Carrying rmtE2 16S rRNA Methyltransferase Gene in Escherichia coli. Antimicrob. Agents Chemother. 2015, 59, 7921–7922. [Google Scholar] [CrossRef]
- Wachino, J.; Shibayama, K.; Kurokawa, H.; Kimura, K.; Yamane, K.; Suzuki, S.; Shibata, N.; Ike, Y.; Arakawa, Y. Novel plasmid-mediated 16S rRNA m1A1408 methyltransfrase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides. Antimicrob. Agents Chemother. 2007, 51, 4401–4409. [Google Scholar] [CrossRef]
- Pulss, S.; Semmler, T.; Prenger-Berninghoff, E.; Bauerfeind, R.; Ewers, C. First report of an Escherichia coli strain from swine carrying an OXA-181 carbapenemase and the colistin resistance determinant MCR-1. Int. J. Antimicrob. Agents 2017, 50, 232–236. [Google Scholar] [CrossRef]
- Cirit, O.S.; Fernández-Martínez, M.; Yayla, B.; Martínez-Martínez, L. Aminoglycoside resistance determinants in multiresistant Escherichia coli and Klebsiella pneumoniae clinical isolates from Turkish and Syrian patients. Acta Microbiol. Immunol. Hung. 2019, 66, 327–335. [Google Scholar] [CrossRef]
- Haldorsen, B.C.; Simonsen, G.S.; Sundsfjord, A.; Samuelsen, O. Norwegian Study Group on Aminoglycoside Resistance. Increased prevalence of aminoglycoside resistance in clinical isolates of Escherichia coli and Klebsiella spp. In Norway is associated with the acquisition of AAC(3)-II and AAC(6′)-Ib. Diagn. Microbiol. Infect. Dis. 2014, 78, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Marchant, M.; Vinué, L.; Torres, C.; Moreno, M.A. Change of integrons over time in Escherichia coli isolates recovered from healthy pigs and chickens. Vet. Microbiol. 2013, 163, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005, 245, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Seifi, S.; Khoshbakht, R. Prevalence of tetracycline resistance determinants in broiler isolated Escherichia coli in Iran. Br. Poult. Sci. 2016, 57, 729–733. [Google Scholar] [CrossRef]
- Sheikh, A.A.; Checkley, S.; Avery, B.; Chalmers, G.; Bohaychuk, V.; Boerlin, P.; Reid-Smith, R.; Aslam, M. Antimicrobial resistance and resistance genes in Escherichia coli isolated from retail meat purchased in Alberta, Canada. Foodborne Pathog. Dis. 2012, 9, 625–631. [Google Scholar] [CrossRef]
- Jahantigh, M.; Samadi, K.; Dizaji, R.E.; Salari, S. Antimicrobial resistance and prevalence of tetracycline resistance genes in Escherichia coli isolated from lesions of colibacillosis in broiler chickens in Sistan, Iran. BMC Vet. Res. 2020, 16, 267. [Google Scholar] [CrossRef]
- Li, Q.; Li, Z.; Wang, Y.; Chen, Y.; Sun, J.; Yang, Y.; Si, H. Antimicrobial Resistance and Transconjugants Characteristics of sul3 Positive Escherichia coli Isolated from Animals in Nanning, Guangxi Province. Animals 2022, 12, 976. [Google Scholar] [CrossRef]
- Wu, S.; Dalsgaard, A.; Hammerum, A.M.; Porsbo, L.J.; Jensen, L.B. Prevalence and characterization of plasmids carrying sulfonamide resistance genes among Escherichia coli from pigs, pig carcasses and human. Acta Vet. Scand. 2010, 52, 47. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, H.; Liang, Y.; Yu, S.; Yu, T.; Fang, J.; Zhu, C. Diverse Mobile Genetic Elements and Conjugal Transferability of Sulfonamide Resistance Genes (sul1, sul2, and sul3) in Escherichia coli Isolates From Penaeus vannamei and Pork From Large Markets in Zhejiang, China. Front. Microbiol. 2019, 10, 1787. [Google Scholar] [CrossRef]
- Nowaczek, A.; Dec, M.; Stępień-Pyśniak, D.; Urban-Chmiel, R.; Marek, A.; Różański, P. Antibiotic Resistance and Virulence Profiles of Escherichia coli Strains Isolated from Wild Birds in Poland. Pathogens 2021, 10, 1059. [Google Scholar] [CrossRef]
- Faridah, H.D.; Dewi, E.K.; Effendi, M.H.; Plumeriastuti, H. A Review of Antimicrobial Resistance (AMR) of Escherichia coli on Livestock and Animal Products: Public Health Importance. Sys. Rev. Pharm. 2020, 11, 1210–1218. [Google Scholar]
- Ahmed, M.O.; Clegg, P.D.; Williams, N.J.; Baptiste, K.E.; Bennett, M. Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 12. [Google Scholar] [CrossRef]
- Denis, O.; Rodriguez-Villalobos, H.; Struelens, M.J. CHAPTER 3—The problem of resistance. In Antibiotic and Chemotherapy, 9th ed.; Finch, R.G., Greenwood, D., Norrby, S.R., Whitley, R.J., Eds.; W.B. Saunders: London, UK, 2010; pp. 24–48. ISBN 978-0-7020-064-1. [Google Scholar]
- Schwarz, S.; Kehrenberg, C.; Doublet, B.; Cloeckaert, A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004, 28, 519–542. [Google Scholar] [CrossRef]
- Shaheen, B.W.; Oyarzabal, O.A.; Boothe, D.M. The role of class 1 and 2 integrons in mediating antimicrobial resistance among canine and feline clinical E. coli isolates from the US. Vet. Microbiol. 2010, 144, 363–370. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Xavier, B.B.; Lammens, C.; Ruhal, R.; Kumar-Singh, S.; Butaye, P.; Goossens, H.; Malhotra-Kumar, S. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance 2016, 21, 30280. [Google Scholar] [CrossRef]
- Khine, N.O.; Lugsomya, K.; Kaewgun, B.; Honhanrob, L.; Pairojrit, P.; Jermprasert, S.; Prapasarakul, N. Multidrug Resistance and Virulence Factors of Escherichia coli Harboring Plasmid-Mediated Colistin Resistance: mcr-1 and mcr-3 Genes in Contracted Pig Farms in Thailand. Front. Vet. Sci. 2020, 7, 582899. [Google Scholar] [CrossRef]
- García-Meniño, I.; Díaz-Jiménez, D.; García, V.; de Toro, M.; Flament-Simon, S.C.; Blanco, J.; Mora, A. Genomic Characterization of Prevalent mcr-1, mcr-4, and mcr-5 Escherichia coli Within Swine Enteric Colibacillosis in Spain. Front. Microbiol. 2019, 10, 2469. [Google Scholar] [CrossRef]
- Pormohammad, A.; Nasiri, M.J.; Azimi, T. Prevalence of antibiotic resistance in Escherichia coli strains simultaneously isolated from humans, animals, food, and the environment: A systematic review and meta-analysis. Infect. Drug Resist. 2019, 12, 1181–1197. [Google Scholar] [CrossRef]
- Racewicz, P.; Majewski, M.; Biesiada, H.; Nowaczewski, S.; Wilczyński, J.; Wystalska, D.; Kubiak, M.; Pszczoła, M.; Madeja, Z.E. Prevalence and characterization of antimicrobial resistance genes and class 1 and 2 integrons in multiresistant Escherichia coli isolated from poultry production. Sci. Rep. 2022, 12, 6062. [Google Scholar] [CrossRef] [PubMed]
- Maynard, C.; Fairbrother, J.M.; Bekal, S.; Sanschagrin, F.; Levesque, R.C.; Brousseau, R.; Masson, L.; Larivière, S.; Harel, J. Antimicrobial resistance genes in enterotoxigenic Escherichia coli O149:K9 isolates obtained over a 23-year period from pigs. Antimicrob. Agents Chemother. 2003, 47, 3214–3221. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zheng, X.; Sun, Y.; Fang, R.; Zhang, S.; Zhang, X.; Lin, J.; Cao, J.; Zhou, T. Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Escherichiacoli Isolated from Chinese Patients Durng 2002-2017. Infect. Drug Res. 2020, 13, 501–512. [Google Scholar] [CrossRef] [PubMed]
- Cormier, A.C.; Chalmers, G.; McAllister, T.A.; Cook, S.; Zaheer, R.; Scott, H.M.; Booker, C.; Read, R.; Boerlin, P. Extended-Spectrum-Cephalosporin Resistance Genes in Escherichia coli from Beef Cattle. Antimicrob. Agents Chemother. 2016, 60, 1162–1163. [Google Scholar] [CrossRef]
- Gundran, R.S.; Cardenio, P.A.; Villanueva, M.A.; Sison, F.B.; Benigno, C.C.; Kreausukon, K.; Pichpol, D.; Punyapornwithaya, V. Prevalence and distribution of blaCTX-M, blaSHV, blaTEM gene in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet. Res. 2019, 15, 227. [Google Scholar] [CrossRef]
- Wang, M.G.; Yu, Y.; Wang, D.; Yang, R.S.; Jia, L.; Cai, D.T.; Zheng, S.L.; Fang, L.X.; Sun, J.; Liu, Y.H.; et al. The Emergence and Molecular Characteristics of New Delhi Metallo β-Lactamase-Producing Escherichia coli From Ducks in Guangdong, China. Front. Microbiol. 2021, 12, 677633. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Z.; Zhang, Y.; Zhang, Z.; Lei, L.; Xia, Z. Increasing Prevalence of ESBL-Producing Multidrug Resistance Escherichia coli from Diseased Pets in Beijing, China From 2012 to 2017. Front. Microbiol. 2019, 10, 2852. [Google Scholar] [CrossRef]
- Ilyas, S.; Rasool, M.H.; Arshed, M.J.; Qamar, M.U.; Aslam, B.; Almatroudi, A.; Khurshid, M. The Escherichia coli Sequence Type 131 Harboring Extended-Spectrum Beta-Lactamases and Carbapenemases Genes from Poultry Birds. Infect. Drug Res. 2021, 14, 805–813. [Google Scholar] [CrossRef]
- Ombarak, R.A.; Hinenoya, A.; Elbagory, A.M.; Yamasaki, S. Prevalence and Molecular Characterization of Antimicrobial Resistance in Escherichia coli Isolated from Raw Milk and Raw Milk Cheese in Egypt. J. Food Protect. 2018, 81, 226–232. [Google Scholar] [CrossRef]
- Mahmoud, N.E.; Altayb, H.N.; Gurashi, R.M. Detection of Carbapenem-Resistant Genes in Escherichia coli Isolated from Drinking Water in Khartoum, Sudan. J. Environ. Public Health 2020, 2020, 2571293. [Google Scholar] [CrossRef]
- Belaynehe, K.M.; Shin, S.W.; Yoo, H.S. Interrelationship between tetracycline resistance determinants, phylogenetic group affiliation and carriage of class 1 integrons in commensal Escherichia coli isolates from cattle farms. BMC Vet. Res. 2018, 14, 340. [Google Scholar] [CrossRef]
- Schwaiger, K.; Hölzel, C.; Bauer, J. Resistance gene patterns of tetracycline resistant Escherichia coli of human and porcine origin. Vet. Microbiol. 2010, 142, 329–336. [Google Scholar] [CrossRef]
- Gholami-Ahangaran, M.; Karimi-Dehkordi, M.; Miranzadeh-Mahabadi, E.; Ahmadi-Dastgerdi, A. The frequency of tetracycline resistance genes in Escherichia coli strains isolated from healthy and diarrheic pet birds. Iran. J. Vet. 2021, 22, 337–341. [Google Scholar]
- Abo-Amer, A.E.; Shobrak, M.Y.; Altalhi, A.D. Isolation and antimicrobial resistance of Escherichia coli isolated from farm chickens in Taif, Saudi Arabia. J. Glob. Antimicrob. Res. 2018, 15, 65–68. [Google Scholar] [CrossRef]
- Belaynehe, K.M.; Won, H.G.; Yoon, I.J.; Yoo, H.S. Prevalence and molecular characteristics of 16s rRNA methylase gene rmtB in amikacin resistant Escherichia coli isolated from South Korea. Korean J. Vet. Res. 2019, 59, 157–160. [Google Scholar] [CrossRef]
- Usui, M.; Kajino, A.; Kon, M.; Fukuda, A.; Sato, T.; Shirakawa, T.; Kawanishi, M.; Harada, K.; Nakajima, C.; Suzuki, Y.; et al. Prevalence of 16S rRNA methylases in Gram-negative bacteria derived from companion animals and livestock in Japan. J. Vet. Med. Sci. 2019, 81, 874–878. [Google Scholar] [CrossRef]
- Sigirci, B.D.; Celik, B.; Halac, B.; Adiguzel, M.C.; Kekec, I.; Metiner, K.; Ikiz, S.; Bagcigil, A.F.; Ozgur, N.Y.; Ak, S.; et al. Antimicrobial resistance profiles of Escherichia coli isolated from companion birds. J. King Saud Univ. Sci. 2020, 32, 1069–1073. [Google Scholar] [CrossRef]
- Ibrahim, T.; Ngwai, Y.B.; Pennap, G.I.; Ishaleku, D.; Tsaku, P.A.; Abimiku, R.H.; Nkene, I.H.; Bassey, E.B. Antimicrobial Resistance Profile of Salmonella Typhimurium Isolated from Commercial Poultry and Poultry Farm Handlers in Nasarawa State, Nigeria. Microbiol. Res. J. Int. 2019, 28, 1–12. [Google Scholar] [CrossRef]
- Derakhshandeh, A.; Eraghi, V.; Boroojeni, A.M.; Niaki, M.A.; Zare, S.; Naziri, Z. Virulence factors, antibiotic resistance genes and genetic relatedness of commensal Escherichia coli isolates from dogs and their owners. Microb. Pathog. 2018, 116, 241–245. [Google Scholar] [CrossRef]
- Luque-Sastre, L.; Arroyo, C.; Fox, E.M.; McMahon, B.J.; Bai, L.; Séamus, L.F. Antimicrobial Resistance in Listeria Species. ASM J. Microbiol. Spectr. 2018, 6, 4. [Google Scholar]
- Iwu, C.D.; Okoh, A.I. Characterization of antibiogram fingerprints in Listeria monocytogenes recovered from irrigation water and agricultural soil samples. PLoS ONE 2020, 15, e0228956. [Google Scholar] [CrossRef]
- Charpentier, E.; Courvalin, P. Antibiotic resistance in Listeria spp. Antimicrob. Agents Chemother. 1999, 43, 2103–2108. [Google Scholar] [CrossRef] [PubMed]
- Piekarska, K. Mechanizmy oporności na fluorochinolony kodowane plazmidowo–PMQR. Post. Mikrobiol. 2018, 57, 47–57. [Google Scholar]
- Kwiatkowska, B.; Maślińska, M. Macrolide therapy in chronic inflammatory diseases. Mediat. Inflamm. 2012, 2012, 636157. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, S.G.; Huys, M.; Yde, K.; D’Haene, F.; Tardy, M.; Vrints, J.; Swing, J.-M.; Collard, J.M. Detection and characterization of tet(M) in tetracycline-resistant Listeria strains from human and food-processing origins in Belgium and France. J. Med. Microbiol. 2005, 54, 1151–1156. [Google Scholar] [CrossRef] [PubMed]
- Korsak, D.A.; Borek, S.; Daniluk, A.; Grabowska, K.; Pappelbaum, K. Antimicrobial susceptibilities of Listeria monocytogenes strains isolated from food and food processing environment in Poland. Int. J. Food Microbiol. 2012, 158, 203–208. [Google Scholar] [CrossRef]
- Yan, H.; Neogi, S.B.; Mo, Z.; Guan, W.; Shen, Z.; Zhang, S.; Li, L.; Yamasaki, S.; Shi, L.; Zhong, N. Prevalence and characterization of antimicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005-2007. Int. J. Food Microbiol. 2010, 144, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Skarżyńska, M.; Zając, M.; Wasyl, D. Antibiotics and Bacteria: Mechanisms of Action and Resistance Strategies. Adv. Microbiol. 2020, 59, 49–62. [Google Scholar] [CrossRef]
- Hanes, R.M.; Huang, Z. Investigation of Antimicrobial Resistance Genes in Listeria monocytogenes from 2010 through to 2021. Int. J. Environ. Res. Public Health 2022, 19, 5506. [Google Scholar] [CrossRef]
- Srinivasan, S.; Nam, H.M.; Nguyen, L.T.; Tamilselvam, B.; Murinda, S.E.; Oliver, S.P. Prevalence of Antimicrobial Resistance Genes in Listeriamonocytogenes Isolated from Dairy Farms. Foodborne Pathog. Dis. 2005, 2, 201–211. [Google Scholar] [CrossRef]
- Kayode, A.; Semerjian, L.; Osaili, T.; Olapade, O.; Okoh, A. Occurrence of multidrug-resistant Listeria monocytogenes in environmental waters: A menace of environmental and public health concern. Front. Environ. Sci. 2021, 12, 373. [Google Scholar] [CrossRef]
- Hailu, W.; Helmy, Y.A.; Carney-Knisely, G.; Kauffman, M.; Fraga, D.; Rajashekara, G. Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics 2021, 10, 1450. [Google Scholar] [CrossRef]
- Moreno, L.Z.; Paixão, R.; Gobbi, D.D.S.; Raimundo, D.C.; Ferreira, T.P.; Moreno, A.M.; Hofer, E.; Reis, C.M.F.; Matté, G.R.; Matté, M.H. Characterization of antibiotic resistance in Listeria spp. Isolated from slaughterhouse environments, pork and human infections. J. Infect. Dev. Ctries. 2014, 8, 416–423. [Google Scholar] [CrossRef]
- Skowron, K.; Wałecka-Zacharska, E.; Wiktorczyk-Kapischke, N.; Skowron, K.J.; Grudlewska-Buda, K.; Bauza-Kaszewska, J.; Bernaciak, Z.; Borkowski, M.; Gospodarek-Komkowska, E. Assessment of the Prevalence and Drug Susceptibility of Listeria monocytogenes Strains Isolated from Various Types of Meat. Foods 2020, 9, 1293. [Google Scholar] [CrossRef]
- Noll, M.; Kleta, S.; Al Dahouk, S. Antibiotic susceptibility of 259 Listeria monocytogenes strains isolated from food, food-processing plants and human samples in Germany. J. Infect. Public Health 2018, 11, 572–577. [Google Scholar] [CrossRef]
- Jamali, H.; Paydar, M.; Ismail, S.; Looi, C.Y.; Wong, W.F.; Radmehr, B.; Abedini, A. Prevalence, antimicrobial susceptibility and virulotyping of Listeria species and Listeria monocytogenes isolated from open-air fish markets. BMC Microbiol. 2015, 15, 144. [Google Scholar] [CrossRef]
- Haubert, L.; Mendonc, M.; Lopes, G.V.; de Itapema Cardoso, M.R.; da Silva, W.P. Listeria monocytogenes isolates from food and food environment harbouring tetM and ermB resistance genes. Lett. Appl. Microbiol. 2016, 62, 23–29. [Google Scholar] [CrossRef]
- Oswaldi, V.; Lüth, S.; Dzierzon, J.; Meemken, D.; Schwarz, S.; Feßler, A.T.; Félix, B.; Langforth, S. Distribution and Characteristics of Listeria spp. In Pigs and Pork Production Chains in Germany. Microorganisms 2022, 10, 512. [Google Scholar] [CrossRef]
- Davanzo, E.F.A.; dos Santos, R.L.; Castro, V.H.D.; Palma, J.M.; Pribul, B.R.; Dallago, B.S.L.; Fuga, B.; Medeiros, M.; Titze de Almeida, S.S.; da Costa, H.M.B.; et al. Molecular characterization of Salmonella spp. And Listeria monocytogenes strains from biofilms in cattle and poultry slaughterhouses located in the federal District and State of Goia’s, Brazil. PLoS ONE 2021, 16, e0259687. [Google Scholar]
- Bae, D.; Smiley, R.D.; Mezal, E.H.; Khan, A.A. Characterization and Antimicrobial Resistance of Listeria monocytogenes Isolated from Food-related Environments. Food Protect. Trends 2016, 36, 357–361. [Google Scholar]
- Heidarzadeh, S.; Pourmand, M.R.; Hasanvand, S.; Pirjani, R.; Afshar, D.; Noori, M.; Dallal, M.M.S. Antimicrobial Susceptibility, Serotyping, and Molecular Characterization of Antibiotic Resistance Genes in Listeria monocytogenes Isolated from Pregnant Women with a History of Abortion. Iran. J. Public Health 2020, 50, 170–179. [Google Scholar] [CrossRef] [PubMed]
- EFSA. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, 5598. [Google Scholar]
- EFSA; ECDC. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2014. EFSA J. 2015, 13, 4329. [Google Scholar]
- Crump, J.A.; Sjölund-Karlsson, M.; Gordon, M.A.; Parry, C.M. Epidemiology, Clinical Presentation, Laboratory Diagnosis, Antimicrobial Resistance, and Antimicrobial Management of Invasive Salmonella Infections. Clin. Microbiol. Rev. 2015, 4, 901–937. [Google Scholar] [CrossRef] [PubMed]
- Grünberg, W. Salmonellosis in Animals. 2020. Available online: https://www.msdvetmanual.com/digestive-system/salmonellosis/salmonellosis-in-animals (accessed on 21 July 2021).
- Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 10 Lutego 2022 r. w Sprawie Wprowadzenia “Krajowego Programu Zwalczania Niektórych Serotypów Salmonella w Stadach kur Niosek Gatunku Gallus Gallus” na 2022 r. (Dz. U. z 2020 r. poz. 1421). Available online: https://www.infor.pl/akt-prawny/DZU.2022.048.0000413,rozporzadzenie-ministra-rolnictwa-i-rozwoju-wsi-w-sprawie-wprowadzenia-krajowego-programu-zwalczania-niektorych-serotypow-salmonella-w-stadach-kur-niosek-gatunku-gallus-gallus-na-2022-r.html (accessed on 10 February 2022).
- Li, Y.A.; Chen, Y.; Du, Y.Z.; Guo, W.; Chu, D.; Fan, J.; Wang, X.; Bellefleur, M.; Wang, S.; Shi, H. Live-attenuated Salmonella enterica serotype Choleraesuis vaccine with regulated delayed fur mutation confer protection against Streptococcus suis in mice. BMC Vet. Res. 2020, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Nishino, K.; Nikaido, E.; Yamaguchi, A. Regulation and physiological function of multidrug efflux pumps in Escherichia coli and Salmonella. Biochim. Biophys. Acta 2009, 794, 834–843. [Google Scholar] [CrossRef] [PubMed]
- Cloeckaert, A. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Antimicrob. Agents Chemother. 2004, 48, 3729–3735. [Google Scholar]
- Burmølle, M.; Webb, J.S.; Rao, D.; Hansen, L.H.; Sørensen, S.J.; Kjelleberg, S. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms. Appl. Environ. Microbiol. 2006, 72, 3916–3923. [Google Scholar] [CrossRef]
- Michael, G.B.; Schwarz, S. Antimicrobial resistance in zoonotic nontyphoidal Salmonella: An alarming trend? Clin. Microbiol. Infect. 2016, 22, 968–974. [Google Scholar] [CrossRef]
- Yoneyama, H.; Katsumata, R. Antibiotic resistance in bacteria and its future for novel antibiotic development. Biosci. Biotechnol. Biochem. 2006, 70, 1060–1075. [Google Scholar] [CrossRef]
- Gonzalez, L.S.; Spencer, J.P. Aminoglycosides: A practical review. Am. Fam. Physician 1998, 58, 1811–1820. [Google Scholar]
- Shaw, K.J.; Rather, P.N.; Hare, R.S.; Miller, G.H. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol. Rev. 1993, 57, 138–163. [Google Scholar] [CrossRef]
- Gebreyes, W.A.; Altier, C. Molecular characterization of multidrug-resistant Salmonella enterica subsp. Enterica serovar Typhimurium isolates from swine. J. Clin. Microbiol. 2002, 40, 2813–2822. [Google Scholar] [CrossRef]
- Savic, M.; Lovric, J.; Tomic, T.I.; Vasiljevic, B.; Conn, G.L. Determination of the target nucleosides for members of two families of 16S rRNA methyltransferases that confer resistance to partially overlapping groups of aminoglycoside antibiotics. Nucleic Acids Res. 2009, 37, 5420–5431. [Google Scholar] [CrossRef]
- Sun, S.; Selmer, M.; Andersson, D.I. Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS ONE 2014, 9, e97202. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ahn, J. Characterization of β-lactamase- and efflux pump-mediated multiple antibiotic resistance in Salmonella Typhimurium. Food Sci. Biotechnol. 2018, 27, 921–928. [Google Scholar] [CrossRef]
- Souza, A.I.S.; Saraiva, M.M.S.; Casas, M.R.T.; Monique, R.T.; Casas, G.M.; Oliveira, M.V.; Cardozo, V.P.; Benevides, F.O.; Barbosa, O.C.; Freitas Neto, A.M.; et al. High occurrence of β-lactamase-producing Salmonella Heidelberg from poultry origin. PLoS ONE 2020, 15, e0230676. [Google Scholar]
- Leverstein-van Hall, M.A.; Dierikx, C.M.; Stuart, J.C.; Voets, G.M.; van den Munckhof, M.P.; van Essen-Zandbergen, A.; Platteel, T.; Fluit, A.C.; van de Sande-Bruinsma, N.; Scharinga, J.; et al. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains. Clin. Microbiol. Infect. 2011, 17, 873–880. [Google Scholar] [CrossRef]
- Smith, A.L.; Weber, A. Pharmacology of chloramphenicol. Pediatr. Clin. N. Am. 1983, 30, 209–236. [Google Scholar] [CrossRef]
- Guerra, B.; Soto, S.; Cal, S.; Mendoza, M.C. Antimicrobial resistance and spread of class 1 integrons among Salmonella serotypes. Antimicrob. Agents Chemother. 2000, 44, 2166–2169. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, S.H.; White, D.G.; Schroeder, C.M.; Lu, R.; Yang, H.C.; McDermott, P.F.; Ayers, S.; Meng, J. Characterization of multiple-antimicrobial-resistant Salmonella serovars isolated from retail meats. Appl. Environ. Microbiol. 2004, 70, 1–7. [Google Scholar] [CrossRef]
- White, D.G.; Zhao, S.; Sudler, R.; Ayers, S.; Friedman, S.; Chen, S.; Meng, J. The isolation of antibiotic-resistant Salmonella from retail ground meats. N. Engl. J. Med. 2001, 345, 1147–1154. [Google Scholar] [CrossRef]
- Alcaine, S.D.; Sukhnanand, S.S.; Warnick, L.D.; Su, W.L.; McGann, P.; McDonough, P.; Wiedmann, M. Ceftiofur-resistant Salmonella strains isolated from dairy farms represent multiple widely distributed subtypes that evolved by independent horizontal gene transfer. Antimicrob. Agents Chemother. 2005, 49, 4061–4067. [Google Scholar] [CrossRef]
- Cabrera, R.; Ruiz, J.; Marco, F.; Oliveira, I.; Arroyo, M.; Aladuena, A.; Usera, M.A.; Jimenez De Anta, M.T.; Gascon, J.; Vila, J. Mechanism of resistance to several antimicrobial agents in Salmonella Clinical isolates causing traveler’s diarrhea. Antimicrob. Agents Chemother. 2004, 48, 3934–3939. [Google Scholar] [CrossRef]
- Mascaretti, O.A. Bacteria versus Antimicrobial Agents: An Integrated Approach; ASM Press: Washington, DC, USA, 2003. [Google Scholar]
- Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 2001, 65, 232–260. [Google Scholar] [CrossRef] [PubMed]
- Pezzella, C.; Ricci, A.; DiGiannatale, E.; Luzzi, I.; Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 2004, 48, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Villa, L.; Feudi, C.; Curcio, L.; Orsini, S.; Luppi, A.; Pezzotti, G.; Magistrali, C.F. Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance 2017, 22, 30589. [Google Scholar] [CrossRef] [PubMed]
- El Garch, F.; Sauget, M.; Hocquet, D.; LeChaudee, D.; Woehrle, F.; Bertrand, X. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clin. Microbiol. Infect. 2017, 23, 51.e1–51.e4. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.J.; Machado, J.C.; Sousa, P.L. Dissemination ofsulfonamide resistance genes (sul1, sul2, and sul3) in Portuguese Salmonella enterica strains and relation with integrons. Antimicrob. Agents Chemother. 2005, 49, 836–839. [Google Scholar] [CrossRef]
- Chen, S.; Cui, S.; McDermott, P.F.; Zhao, S.; White, D.G.; Paulsen, I.; Meng, J. Contribution of target gene mutations and efflux to decreased susceptibility of Salmonella enterica serovar Typhimurium to fluoroquinolones and other antimicrobials. Antimicrob. Agents Chemother. 2007, 51, 535–542. [Google Scholar] [CrossRef]
- Gast, R.K.; Guraya, R.; Jones, D.R.; Anderson, K.E. Persistence of fecal shedding of Salmonella Enteritidis by experimentally infected laying hens housed in conventional or enriched cages. Poult. Sci. 2015, 94, 1650–1656. [Google Scholar] [CrossRef]
- Xie, T.; Wu, G.; He, X.; Lai, Z.; Zhang, H.; Zhao, J. Antimicrobial resistance and genetic diversity of Salmonella enterica from eggs. Food Sci. Nutr. 2019, 7, 2847–2853. [Google Scholar] [CrossRef]
- Tadesse, G.; Mitiku, H.; Teklemariam, Z.; Marami, D. Salmonella and Shigella among Asymptomatic Street Food Vendors in the Dire Dawa city, Eastern Ethiopia: Prevalence, Antimicrobial Susceptibility Pattern, and Associated Factors. Environ. Health Insights 2019, 13, 1–8. [Google Scholar] [CrossRef]
- Shukla, P.; Bansode, F.W.; Singh, R.K. Chloramphenicol Toxicity: A Review. J. Med. Med. Sci. 2011, 2, 1313–1316. [Google Scholar]
- Ibrahim, R.A.; Cryer, T.L.; Lafi, S.Q.; Basha, E.A.; Good, L.; Tarazi, Y.H. Identification of Escherichia coli from broiler chickens in Jordan, their antimicrobial resistance, gene characterization and the associated risk factors. BMC Vet. Res. 2019, 15, 159. [Google Scholar] [CrossRef]
- Castro-Vargas, R.; Fandiño-de-Rubio, L.C.; Vega, A.; Rondón-Barragán, I. Phenotypic and Genotypic Resistance of Salmonella Heidelberg Isolated from One of the Largest Poultry Production Region from Colombia. Int. J. Poult. Sci. 2019, 18, 610–617. [Google Scholar] [CrossRef]
- Rodney, S.; Umakanth, S.; Chowdhury, G.; Saha, R.N.; Mukhopadhyay, A.K.; Ballal, M. Poultry: A receptacle for non-typhoidal Salmonellae and antimicrobial resistance. Iran. J. Microbiol. 2019, 11, 31–38. [Google Scholar]
- Yang, J.; Gao, S.; Chang, Y.; Su, M.; Xie, Y.; Sun, S. Occurrence and Characterization of Salmonella Isolated from Large-Scale Breeder Farms in Shandong Province, China. Biomed. Res. Int. 2019, 2019, 8159567. [Google Scholar] [CrossRef]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The application of antibiotics in broiler production and the resulting antibiotic resistance in Escherichia coli: A global overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef]
- John, J., Jr. The treatment of resistant staphylococcal infections. F1000 Res. 2020, 9, 150. [Google Scholar] [CrossRef]
- Shariati, A.; Dadashi, M.; Moghadam, M.T.; van Belkum, A.; Yaslianifard, S.; Darban-Sarokhalil, D. Global prevalence and distribution of vancomycin resistant, vancomycin intermediate and heterogeneously vancomycin intermediate Staphylococcus aureus clinical isolates: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 12689. [Google Scholar] [CrossRef] [PubMed]
- Szymanek-Majchrzak, K.; Mlynarczyk, A.; Mlynarczyk, G. Characteristics of glycopeptide-resistant Staphylococcus aureus strains isolated from inpatients of three teaching hospitals in Warsaw, Poland. Antimicrob. Resist. Infect. Control 2021, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.P.; Keefe, G. Systematic review: What is the best antibiotic treatment for Staphylococcus aureus intramammary infection of lactating cows in North America? Vet. Clin. N. Am. Food Anim. Pract. 2012, 28, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Apley, M.D.; Coetzee, J.F. Antimicrobial Therapy in Veterinary Medicine, 5th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; pp. 495–518. [Google Scholar]
- Mala, L.; Lalouckova, K.; Skrivanova, E. Bacterial Skin Infections in Livestock and Plant-Based Alternatives to Their Antibiotic Treatment. Animals 2021, 11, 2473. [Google Scholar] [CrossRef]
- Rafailidis, P.I.; Kofteridis, D. Proposed amendments regarding the definitions of multidrug-resistant and extensively drug-resistant bacteria. Expert Rev. Anti-Infect. Ther. 2022, 20, 139–146. [Google Scholar] [CrossRef]
- Emaneini, M.; Bigverdi, R.; Kalantar, D.; Soroush, S.; Jabalameli, F.; Khoshgnab, B.N.; Asadollahi, P.; Taherikalani, M. Distribution of genes encoding tetracycline resistance and aminoglycoside modifying enzymes in Staphylococcus aureus strains isolated from a burn center. Ann. Burn. Fire Disasters 2013, 26, 76–80. [Google Scholar]
- Lyon, B.R.; Skurray, R.A. Antimicrobial resistance of Staphylococcus aureus: Genetic basis. Microbiol. Rev. 1987, 51, 88–134. [Google Scholar] [CrossRef]
- Gómez, P.; Lozano, C.; Camacho, M.C.; Lima-Barberov, J.F.; Hernández, J.M.; Zarazaga, M.; Höfle, U.; Torres, C. Detection of MRSA ST3061-t843-mecC and ST398-t011-mecA in white stork nestlings exposed to human residues. J. Antimicrob. Chemother. 2016, 71, 53–57. [Google Scholar] [CrossRef]
- Podkowik, M.; Bystroń, J.; Bania, J. Prevalence of antibiotic resistance genes in staphylococci isolated from ready-to-eat meat products. Pol. J. Vet. Sci. 2012, 15, 233–237. [Google Scholar] [CrossRef]
- Schwarz, S.; Loeffler, A.; Kadlec, K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet. Dermatol. 2017, 28, 82-e19. [Google Scholar]
- Wendlandt, S.; Shen, J.; Kadlec, K.; Wang, Y.; Li, B.; Zhang, W.J.; Feßler, A.T.; Wu, C.; Schwarz, S. Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends Microbiol. 2015, 23, 44–54. [Google Scholar] [CrossRef]
- Lüthje, P.; Schwarz, S. Molecular basis of resistance to macrolides and lincosamides among staphylococci and streptococci from various animal sources collected in the resistance monitoring program BfT-GermVet. Int. J. Antimicrob. Agents 2007, 29, 528–535. [Google Scholar] [CrossRef]
- Sudagidan, M.; Aydin, A. Virulence properties of Staphylococcus delphini strains isolated from domestic pigeons. Med. Weter. 2012, 68, 231–236. [Google Scholar]
- Kizerwetter-Świda, M.; Chrobak-Chmiel, D.; Rzewuska, M.; Binek, M. Resistance of canine methicillin-resistant Staphylococcus pseudintermedius strains to pradooxacin. J. Vet. Diagn. Investig. 2016, 28, 514–518. [Google Scholar] [CrossRef]
- Perumal, N.S.; Murugesan, P.; Krishnan, P. Distribution of genes encoding aminoglycoside-modifying enzymes among clinical isolates of methicillin-resistant staphylococci. Indian J. Med. Microbiol. 2016, 34, 350. [Google Scholar] [CrossRef]
- Klingenberg, C.; Sundsfjord, A.; Rønnestad, A.; Mikalsen, J.; Gaustad, P.; Flægstad, T. Phenotypic and genotypic aminoglycoside resistance in blood culture isolates of coagulase-negative staphylococci from a single neonatal intensive care unit, 1989–2000. J. Antimicrob. Chemother. 2004, 54, 889–896. [Google Scholar] [CrossRef]
- Yoshida, H.; Bogaki, M.; Nakamura, M.; Nakamura, S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob. Agents Chemother. 1990, 34, 1271–1272. [Google Scholar] [CrossRef]
- Jacoby, G.A.; Strahilevitz, J.; Hooper, D.C. Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2014, 2, 1–24. [Google Scholar] [CrossRef]
- Truong-Bolduc, Q.C.; Strahilevitz, J.; Hooper, D.C. NorC, a new efflux pump regulated by MgrA of Staphylococcus aureus. Antimicrob. Agents Chemother. 2006, 50, 1104–1107. [Google Scholar] [CrossRef]
- Wendlandt, S.; Feßler, A.T.; Monecke, S.; Ehricht, R.; Schwarz, S.; Kadlec, K. The diversity of antimicrobial resistance genes among staphylococci of animal origin. Int. J. Med. Microbiol. 2013, 303, 338–349. [Google Scholar] [CrossRef]
- Schwarz, S.; Werckenthin, C.; Kehrenberg, C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 2000, 44, 2530–2533. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, N.; Ke, Y.; Feßler, A.T.; Wang, Y.; Schwarz, S.; Wu, C. Characterization of pig-associated methicillin-resistant Staphylococcus aureus. Vet. Microbiol. 2017, 201, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Country%20summaries-AER-EARS-Net%20202019.pdf (accessed on 1 June 2022).
- Pexara, A.; Solomakos, N.; Govaris, A. Occurrence, antibiotic resistance and enteroxigenicity of Staphylococcus spp. in tonsils of slaughtered pigs in Greece. Lett. Appl. Microbiol. 2020, 71, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Mourabit, N.; Arakrak, A.; Bakkali, M.; Zian, Z.; Bakkach, J.; Laglaoui, A. Antimicrobial Resistance Trends In Staphylococcus Aureus Strains Carried by Poultry In North of Morocco: A Preliminary Analysis. J. Food Qual. 2021, 2021, 8856004. [Google Scholar] [CrossRef]
- Syed, M.A.; Ullah, H.; Tabassum, S.; Fatima, B.; Woodley, T.A.; Ramadan, H.; Jackson, C.R. Staphylococci in poultry intestines: A comparison between farmed and household chickens. Poult. Sci. 2020, 99, 4549–4557. [Google Scholar] [CrossRef]
- Aarestrup, F.; Engberg, J. Antimicrobial resistance of thermophilic Campylobacter. Vet. Res. 2001, 32, 311–321. [Google Scholar] [CrossRef]
- Engberg, J.; Aarestrup, F.M.; Taylor, D.E.; Gerner-Smidt, P.; Nachamkin, I. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: Resistance mechanisms and trends in human isolates. Emerg. Infect. Dis. 2001, 7, 24–34. [Google Scholar] [CrossRef]
- Piddok, L.J.V. Quinolone resistance and Campylobacter spp. J. Antimicrob. Chemother. 1995, 36, 891–898. [Google Scholar] [CrossRef]
- Taylor, D.E.; Garner, R.S.; Allan, B.J. Characterization of tetracycline resistance plasmids from Campylobacter jejuni and Campylobacter coli. Antimicrob. Agents Chemother. 1983, 24, 930–935. [Google Scholar] [CrossRef]
- Burridge, R.; Warren, C.; Phillips, I. Macrolide, lincosamide and streptogramin resistance in Campylobacter jejuni/coli. J. Antimicrob. Chemother. 1986, 17, 315–321. [Google Scholar] [CrossRef]
- Rautelin, H.; Renkonen, O.V.; Kosunen, T.U. Emergence of fluoroquinolone resistance in Campylobacter jejuni and Campylobacter coli in subjects from Finland. Antimicrob. Agents Chemother. 1991, 35, 2065–2069. [Google Scholar] [CrossRef]
- Endtz, H.P.; Ruijs, G.J.; van Klingeren, B.; Jansen, W.H.; van der Reyden, T.; Mouton, R.P. Quinolone resistance in Campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. J. Antimicrob. Chemother. 1991, 27, 199–208. [Google Scholar] [CrossRef]
- Nachamkin, I.; Ung, H.; Li, M. Increasing fluoroquinolone resistance in Campylobacter jejuni, Pennsylvania, USA, 1982–2001. Emerg. Infect. Dis. 2002, 8, 1501–1503. [Google Scholar] [CrossRef]
- Gurung, S.; Kafle, S.; Dhungel, B.; Adhikari, N.; Shrestha, U.T.; Adhikari, B.; Banjara, M.R.; Rijal, K.R.; Ghimire, P. Detection of oxa-48 gene in carbapenem-resistant escherichia coli and klebsiella pneumoniae from urine samples. Infect. Drug Resist. 2020, 13, 2311–2321. [Google Scholar] [CrossRef]
- Pärnänen, K.M.M.; Narciso-Da-Rocha, C.; Kneis, D.; Berendonk, T.U.; Cacace, D.; Do, T.T.; Elpers, C.; Fatta-Kassinos, D.; Henriques, I.; Jaeger, T.; et al. Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalence. Sci. Adv. 2019, 5, eaau9124. [Google Scholar] [CrossRef]
- D’Andrea, M.M.; Venturelli, C.; Giani, T.; Arena, F.; Conte, V.; Bresciani, P.; Rumpianesi, F.; Pantosti, A.; Narni, F.; Rossolini, G.M. Persistent carriage and infection by multidrug-resistant Escherichia coli ST405 producing NDM-1 carbapenemase: Report on the first Italian cases. J. Clin. Microbiol. 2011, 49, 2755–2758. [Google Scholar] [CrossRef]
- Sidjabat, H.E.; Townsend, K.M.; Hanson, N.D.; Bell, J.M.; Stokes, H.W.; Gobius, K.S.; Moss, S.M.; Trott, D.J. Identification of blaCMY-7 and associated plasmid-mediated resistance genes in multidrug-resistant Escherichia coli isolated from dogs at a veterinary teaching hospital in Australia. J. Antimicrob. Chemother. 2006, 57, 840–848. [Google Scholar] [CrossRef]
- Hassan, I.Z.; Wandrag, B.; Gouws, J.J.; Qekwana, D.N.; Naidoo, V. Antimicrobial resistance and mcr-1 gene in Escherichia coli isolated from poultry samples submitted to a bacteriology laboratory in South Africa. Vet. World 2021, 14, 2662–2669. [Google Scholar] [CrossRef]
- Li, X.S.; Wang, G.Q.; Du, X.D.; Cui, B.A.; Zhang, S.M.; Shen, J.Z. Antimicrobial susceptibility and molecular detection of chloramphenicol and florfenicol resistance among Escherichia coli isolates from diseased chickens. J. Vet. Sci. 2007, 8, 243–247. [Google Scholar] [CrossRef]
- Fioriti, S.; Morroni, G.; Coccitto, S.N.; Brenciani, A.; Antonelli, A.; Di Pilato, V.; Baccani, I.; Pollini, S.; Cucco, L.; Morelli, A.; et al. Detection of oxazolidinone resistance genes and characterization of genetic environments in enterococci of Swine origin, Italy. Microorganisms 2020, 8, 2021. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Shang, X.; Wang, X.; Yan, Z.; Li, H.; Li, J. Short communication: Antimicrobial resistance and virulence genes of Enterococcus faecalis isolated from subclinical bovine mastitis cases in China. J. Dairy Sci. 2019, 102, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Farman, M.; Yasir, M.; Al-Hindi, R.R.; Farraj, S.A.; Jiman-Fatani, A.A.; Alawi, M.; Azhar, E.I. Genomic analysis of multidrug-resistant clinical Enterococcus faecalis isolates for antimicrobial resistance genes and virulence factors from the western region of Saudi Arabia. Antimicrob. Resist. Infect. Control 2019, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mirnejad, R.; Sajjadi, N.; Zavaryani, S.M.; Piranfar, V.; Hajihosseini, M.; Roshanfekr, M. Identification of aminoglycoside resistance genes by Triplex PCR in Enterococcus spp. isolated from ICUs. Infez. Med. 2016, 24, 222–229. [Google Scholar] [PubMed]
- Sekyere, J.O.; Mensah, E. Molecular epidemiology and mechanisms of antibiotic resistance in Enterococcus spp., Staphylococcus spp., and Streptococcus spp. in Africa: A systematic review from a One Health perspective. Ann. N. Y. Acad. Sci. 2020, 1465, 29–58. [Google Scholar] [CrossRef] [PubMed]
- Výrostková, J.; Regecová, I.; Dudriková, E.; Marcinčák, S.; Vargová, M.; Kováčová, M.; Maľová, J. Antimicrobial Resistance of Enterococcus sp. Isolated from Sheep and Goat Cheeses. Foods 2021, 10, 1844. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Klima, C.L.; Gzyl, K.E.; Zaheer, R.; Service, C.; Jones, T.H.; McAllister, T.A. Antimicrobial Resistance in Enterococcus spp. Isolated from a Beef Processing Plant and Retail Ground Beef. Microbiol. Spectr. 2021, 9, e01980-21. [Google Scholar] [CrossRef] [PubMed]
- El-Zamkan, M.A.; Mohamed, H.M.A. Antimicrobial resistance, virulence genes and biofilm formation in Enterococcus species isolated from milk of sheep and goat with subclinical mastitis. PLoS ONE 2021, 16, 1–19. [Google Scholar] [CrossRef]
- Zaheer, R.; Cook, S.R.; Barbieri, R.; Goji, N.; Cameron, A.; Petkau, A.; Polo, R.O.; Tymensen, L.; Stamm, C.; Song, J.; et al. Surveillance of Enterococcus spp. reveals distinct species and antimicrobial resistance diversity across a One-Health continuum. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Filiousis, G.; Johansson, A.; Frey, J.; Perreten, V. Prevalence, genetic diversity and antimicrobial susceptibility of Listeria monocytogenes isolated from open-air food markets in Greece. Food Control 2009, 20, 314–317. [Google Scholar] [CrossRef]
- Mpondo, L.; Ebomah, K.E.; Okoh, A.I. Multidrug-resistant listeria species shows abundance in environmental waters of a key district municipality in South Africa. Int. J. Environ. Res. Public Health 2021, 18, 481. [Google Scholar] [CrossRef]
- Chen, B.Y.; Pyla, R.; Kim, T.J.; Silva, J.L.; Jung, Y.S. Antibiotic resistance in Listeria species isolated from catfish fillets and processing environment. Lett. Appl. Microbiol. 2010, 50, 626–632. [Google Scholar] [CrossRef]
- Escolar, C.; Gómez, D.; García, M.D.C.R.; Conchello, P.; Herrera, A. Antimicrobial Resistance Profiles of Listeria monocytogenes and Listeria innocua Isolated from Ready-to-Eat Products of Animal Origin in Spain. Foodborne Pathog. Dis. 2017, 14, 357–363. [Google Scholar] [CrossRef]
- Roberts, M.C.; Facinelli, B.; Giovanetti, E.; Varaldo, P.E. Transferable erythromycin resistance in Listeria spp. isolated from food. Appl. Environ. Microbiol. 1996, 62, 269–270. [Google Scholar] [CrossRef]
- Onohuean, H.; Igere, B.E. Occurrence, Antibiotic Susceptibility and Genes Encoding Antibacterial Resistance of Salmonella spp. and Escherichia coli From Milk and Meat Sold in Markets of Bushenyi District, Uganda. Microbiol. Insights 2022, 15, 11786361221088992. [Google Scholar] [CrossRef]
- Zishiri, O.T.; Mkhize, N.; Mukaratirwa, S. Prevalence of virulence and antimicrobial resistance genes in Salmonella spp. isolated from commercial chickens and human clinical isolates from south Africa and Brazil. Onderstepoort J. Vet. Res. 2016, 83, 1–11. [Google Scholar] [CrossRef]
- Ferreira, A.; Pavelquesi, S.; Monteiro, E.; Rodrigues, L.; Silva, C.; Silva, I.; Orsi, D. Prevalence and Antimicrobial Resistance of Salmonella spp. in Aquacultured Nile Tilapia (Oreochromis niloticus) Commercialized in Federal District, Brazil. Foodborne Pathog. Dis. 2021, 18, 778–783. [Google Scholar] [CrossRef]
- Pławińska-Czarnak, J.; Wódz, K.; Kizerwetter-Świda, M.; Bogdan, J.; Kwieciński, P.; Nowak, T.; Strzałkowska, Z.; Anusz, K. Multi-Drug Resistance to Salmonella spp. When Isolated from Raw Meat Products. Antibiotics 2022, 11, 876. [Google Scholar] [CrossRef]
- Lynne, A.M.; Rhodes-Clark, B.S.; Bliven, K.; Zhao, S.; Foley, S.L. Antimicrobial resistance genes associated with Salmonella enterica serovar newport isolates from food animals. Antimicrob. Agents Chemother. 2008, 52, 353–356. [Google Scholar] [CrossRef]
- Lauteri, C.; Festino, A.R.; Conter, M.; Vergara, A. Prevalence and antimicrobial resistance profile in Salmonella spp. isolates from swine food chain. Ital. J. Food Saf. 2022, 11, 9980. [Google Scholar] [CrossRef]
- Arkali, A.; Çetinkaya, B. Molecular identification and antibiotic resistance profiling of Salmonella species isolated from chickens in eastern Turkey. BMC Vet. Res. 2020, 16, 1–8. [Google Scholar] [CrossRef]
- Ranjbar, R.; Dehkordi, F.S.; Heiat, M. The frequency of resistance genes in salmonella enteritidis strains isolated from cattle. Iran. J. Public Health 2020, 49, 968–974. [Google Scholar] [CrossRef]
- Sisak, F.; Havlickova, H.; Hradecka, H.; Rychlik, I.; Kolackova, I.; Karpiskova, R. Antibiotic resistance of Salmonella spp. isolates from pigs in the Czech Republic. Vet. Med. 2006, 51, 303–310. [Google Scholar] [CrossRef]
- Marek, A.; Pyzik, E.; Stępień-Pyśniak, D.; Urban-Chmiel, R.; Jarosz, Ł.S. Association Between the Methicillin Resistance of Staphylococcus aureus Isolated from Slaughter Poultry, Their Toxin Gene Profiles and Prophage Patterns. Curr. Microbiol. 2018, 75, 1256–1266. [Google Scholar] [CrossRef]
- Osada, M.; Aung, M.S.; Urushibara, N.; Kawaguchiya, M.; Ohashi, N.; Hirose, M.; Kobayashi, N. Prevalence and Antimicrobial Resistance of Staphylococcus aureus and Coagulase-Negative Staphylococcus/Mammaliicoccus from Retail Ground Meat: Identification of Broad Genetic Diversity in Fosfomycin Resistance Gene fosB. Pathogens 2022, 11, 469. [Google Scholar] [CrossRef]
- Duran, N.; Ozer, B.; Duran, G.G.; Onlen, Y.; Demir, C. Antibiotic resistance genes & susceptibility patterns in staphylococci. Indian J. Med. Res. 2012, 135, 389–396. [Google Scholar]
- Yigrem, C.; Eribo, B.; Sangre, K. Incidence of Antibiotic Resistant Staphylococcus aureus in Leafy Greens and Clinical Sources. J. Microbiol. Res. 2022, 12, 13–23. [Google Scholar] [CrossRef]
- Manoharan, M.; Sistla, S.; Ray, P. Prevalence and Molecular Determinants of Antimicrobial Resistance in Clinical Isolates of Staphylococcus haemolyticus from India. Microb. Drug Resist. 2021, 27, 501–508. [Google Scholar] [CrossRef]
- Mesbah, A.; Mashak, Z.; Abdolmaleki, Z. A survey of prevalence and phenotypic and genotypic assessment of antibiotic resistance in Staphylococcus aureus bacteria isolated from ready-to-eat food samples collected from Tehran Province, Iran. Trop. Med. Health 2021, 49, 1–12. [Google Scholar] [CrossRef]
- Schlegelova, J.; Vlkova, H.; Babak, V.; Holasova, M.; Jaglic, Z.; Stosova, T.; Sauer, P. Resistance to erythromycin of Staphylococcus spp. isolates from the food chain. Vet. Med. 2008, 53, 307–314. [Google Scholar] [CrossRef]
- Osman, K.; Badr, J.; Al-Maary, K.S.; Moussa, I.M.I.; Hessain, A.M.; Girah, Z.M.S.A.; Abo-shama, U.H.; Orabi, A.; Saad, A. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-staphylococcus in chicken meat retailed to consumers. Front. Microbiol. 2016, 7, 1846. [Google Scholar] [CrossRef] [PubMed]
- França, C.A.; Peixoto, R.M.; Cavalcante, M.B.; Melo, N.F.; Oliveira, C.J.B.; Veschi, J.L.A.; Mota, R.A.; Costa, M.M. Antimicrobial resistance of Staphylococcus spp. from small ruminant mastitis in Brazil. Pesq. Vet. Bras. 2012, 32, 747–753. [Google Scholar] [CrossRef]
Antibiotic Resistance Genes | Source of Isolation of the Strains and Percentage (%) of Positive Isolates Showing the Presence of Resistance Genes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Humans | Ruminants | Pigs | Poultry, Wild Birds | Companion Animals (Cats, Dogs, Horses, Pet Birds) | Food | Environment (Surface Soil, Sewage, Drinking and Pond Water) | References | |||
Escherichia coli | Beta-lactamases | blaCTX-M | 96.6 | 46.5 | - | 34.65–48.9 | 10.1 | - | Bahramian et al. [111]; Maynard et al. [148]; Sheikh et al. [130]; Tian et al. [149]; Cormier et al. [150]; Gundran et al. [151]; Wang et al. [152]; Chen et al. [153]; Ilyas et al. [154]; Ejikeugwu et al. [112]; Ombarak et al. [155]; Mahmoud et al. [156]; Nowaczek et al. [135] | |
blaTEM | 58.6 | 56.5–97.1 | 86 | 24–57.97 | 17–95.28 | 0.8–18 | - | |||
blaSHV | - | 16.0 | 21 | 27.5 | 16.55 | 1.2–2.0 | - | |||
blaOXA | - | - | 5 | - | 7.09–14.02 | - | 15.5 | |||
blaCMY | 72.4 | 88.4 | - | - | 35.9–9.45 | 2.6–14.7 | - | |||
blaDHA | 20.7 | - | - | - | ||||||
blaACC | 37.9 | - | - | - | - | - | - | |||
blaIMP | 72 | 16.7 | - | 10.2 | - | - | - | |||
blaVIM | 28 | - | - | 23.7 | - | - | - | |||
blaNDM | 4–51.7 | - | - | 31.8–19.8 | 2.36 | - | - | |||
blaKPC | 22.4 | - | - | - | - | - | 4.4 | |||
Tetracyclines | tet(A) | 32.2 | 76.7–51.1 | 25–57.7 | 12.5–52.4 | 38.8–18 | 26.8–23.8 | - | Jahantigh et al. [131]; Maynard et al. [148]; Belaynehe et al. [157]; Ombarak et al. [155]; Schwaiger et al. [158]; Gholami-Ahangaran et al. [159]; Ahmed et al. [137]; Nowaczek et al. [135] | |
tet(B) | 55.9 | 23.3–44.6 | 80–38.7 | 41.3 | 61.1–71 | 23.2–4.05 | - | |||
tet(C) | 7.2 | 5.4 | 25–5.1 | 1.7 | - | 4.3 | - | |||
tet(D) | 1.3 | - | 2.9 | 0.8 | - | 0.4 | - | |||
tet(E) | - | - | - | - | - | - | ||||
tet(G) | 6.5 | - | - | - | - | - | ||||
tet(M) | 6.6 | 2.9 | - | - | - | - | ||||
Quinolones | qnrA | - | - | 2.0 | - | 17.32 | - | 0.4 | Chen et al. [117,153] | |
qnrB | 0.3 | - | - | 1.3 | 93.70 | - | 1.1 | |||
qnrS | 2.6 | - | 8.6 | 1.3 | 8.66 | - | 4.2 | |||
qepA | 3.6 | - | 4.5 | 1.3 | - | - | 2.6 | |||
oqxAB | 5.2 | - | 51.0 | 19.8 | 20.2 | |||||
aac(3)-IIa | 70.7 | 80 | - | - | 1 | - | - | Cirit et al. [125]; Maynard et al. [148]; Sheikh et al. [130]; Yu et al. [121]; Ombarak et al. [155]; Abo-Amer et al. [160]; Schwaiger et al. [158]; Belaynehe et al. [161]; Usui et al. [162]; Sigirci et al. [163]; Nowaczek et al. [135] | ||
aac(3)-IV | 13.3 | 75 | 20 | - | 0.7 | |||||
aac(6)-Ib | 76.9 | - | - | - | - | - | - | |||
rmtB | - | 5.3 | 2.6 | - | 0.9 | - | - | |||
strA/B | 61.2/63.8 | 76.7 | 52.6/54.7 | - | 2/3 | 18.4 | 28 | |||
aadA | 59.2 | 71.7 | - | 20 | 1 | 4.95 | 10.4 | |||
aadB | 3.1 | - | - | - | 1 | - | 0.5 | |||
aphA1 | 7.6 | - | 79 | 18.7 | 2 | 4.05 | 6.6 | |||
aphA2 | - | - | 19 | - | 1 | - | 1.7 | |||
sulII | 61.8 | 63.3 | 17.4–40.1 | 31.1–70.6 | 25.8 | 9.4–12.3 | - | |||
sulIII | 3.3 | - | 7.6–2.2 | - | - | 0.9–1.35 | - | |||
dhfrI | - | 76.3 | 20 | - | 40.3 | - | - | |||
dhfrV | - | 15.8 | 47 | - | - | - | - | |||
dhfrXIII | - | - | 30 | - | - | - | - | |||
dhfrIX | - | - | - | - | 0.3 | - | - | |||
Polymyxins | mcr-1 | - | 11.5 | 4.45–20.6 | 25.0 | 2.36 | 14.9 | - | Khine et.al. [144]; Liu et al. [142]; Wang et al. [152]; Chen et al. [153] | |
mcr-2 | - | - | 20.8 | - | - | - | - | |||
mcr-3 | - | - | 0.43 | - | - | - | - | |||
Phenicoles | catI | 79 | 85.1–47.4 | - | 61.7 | 73.5 | - | - | Maynard et al. [148]; Belaynehe et al. [157]; Abo-Amer et al. [160]; Ibrahim et al. [164]; Derakhshandeh et al. [165]; Ahmed et al. [137] | |
floR | 11.4 | 1.5–50 | - | - | 9.7 | - | - | |||
cmlA | - | 10.4–18.4 | - | 72 | 4.8 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. https://doi.org/10.3390/antibiotics11081079
Urban-Chmiel R, Marek A, Stępień-Pyśniak D, Wieczorek K, Dec M, Nowaczek A, Osek J. Antibiotic Resistance in Bacteria—A Review. Antibiotics. 2022; 11(8):1079. https://doi.org/10.3390/antibiotics11081079
Chicago/Turabian StyleUrban-Chmiel, Renata, Agnieszka Marek, Dagmara Stępień-Pyśniak, Kinga Wieczorek, Marta Dec, Anna Nowaczek, and Jacek Osek. 2022. "Antibiotic Resistance in Bacteria—A Review" Antibiotics 11, no. 8: 1079. https://doi.org/10.3390/antibiotics11081079
APA StyleUrban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic Resistance in Bacteria—A Review. Antibiotics, 11(8), 1079. https://doi.org/10.3390/antibiotics11081079