Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm
Abstract
:1. Introduction
2. Results
2.1. ESBL/AmpC-E. coli Isolation and Characterization
2.2. Results of the Questionnaire
2.3. Whole-Genome Sequencing (WGS) and Analysis
2.3.1. Multilocus Sequence Typing (MLST)
2.3.2. Plasmids
2.3.3. ESBL
2.3.4. AMRG
2.4. Antimicrobial Susceptibility Testing (AST)
3. Discussion
3.1. Bacteriological Examination
3.2. Whole-Genome Sequencing
3.3. Antimicrobial Susceptibility Testing
4. Materials and Methods
4.1. Sampling and Transportation
4.2. Questionnaire and Data Collection
4.3. ESBL/AmpC-E. coli Isolation and Characterization
4.4. Whole-Genome Sequencing (WGS) and Analysis
4.5. Antimicrobial Susceptibility Testing (AST)
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christaki, E.; Marcou, M.; Tofarides, A. Antimicrobial Resistance in Bacteria: Mechanisms, Evolution, and Persistence. J. Mol. Evol. 2020, 88, 26–40. [Google Scholar] [CrossRef] [PubMed]
- Hernando-Amado, S.; Coque, T.M.; Baquero, F.; Martínez, J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019, 4, 1432–1442. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Antão, E.M.; Wagner-Ahlfs, C. [Antibiotic resistance: A challenge for society]. Bundesgesundheitsblatt Gesundh. Gesundh. 2018, 61, 499–506. [Google Scholar] [CrossRef]
- Ma, Z.; Lee, S.; Jeong, K.C. Mitigating Antibiotic Resistance at the Livestock-Environment Interface:A Review. J. Microbiol. Biotechnol. 2019, 29, 1683–1692. [Google Scholar] [CrossRef]
- AGISAR. Critically Important Antimicrobials for Human Medicine, 5th revision; World Health Organization: Geneva, Switzerland, 2017; p. 41. [Google Scholar]
- Control European Centre for Disease Prevention. Antimicrobial Resistance Surveillance in Europe 2016. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net); European Centre for Disease Prevention and Control: Stockholm, Sweden, 2017. [Google Scholar]
- Manyi-Loh, C.E.; Mamphweli, S.N.; Meyer, E.L.; Makaka, G.; Simon, M.; Okoh, A.I. An Overview of the Control of Bacterial Pathogens in Cattle Manure. Int. J. Environ. Res. Public Health 2016, 13, 843. [Google Scholar] [CrossRef] [Green Version]
- Schmid, A.; Hörmansdorfer, S.; Messelhäusser, U.; Käsbohrer, A.; Sauter-Louis, C.; Mansfeld, R. Prevalence of Extended-Spectrum β-Lactamase-Producing Escherichia coli on Bavarian Dairy and Beef Cattle Farms. Appl. Environ. Microbiol. 2013, 79, 3027–3032. [Google Scholar] [CrossRef] [Green Version]
- Springer, H.R.; Denagamage, T.N.; Fenton, G.D.; Haley, B.J.; Van Kessel, J.A.S.; Hovingh, E.P. Antimicrobial Resistance in Fecal Escherichia coli and Salmonella enterica from Dairy Calves: A Systematic Review. Foodborne Pathog. Dis. 2019, 16, 23–34. [Google Scholar] [CrossRef]
- Hille, K.; Ruddat, I.; Schmid, A.; Hering, J.; Hartmann, M.; von Münchhausen, C.; Schneider, B.; Messelhäusser, U.; Friese, A.; Mansfeld, R.; et al. Cefotaxime-resistant E. coli in dairy and beef cattle farms-Joint analyses of two cross-sectional investigations in Germany. Prev. Vet. Med. 2017, 142, 39–45. [Google Scholar] [CrossRef]
- Massé, J.; Lardé, H.; Fairbrother, J.M.; Roy, J.-P.; Francoz, D.; Dufour, S.; Archambault, M. Prevalence of Antimicrobial Resistance and Characteristics of Escherichia coli Isolates From Fecal and Manure Pit Samples on Dairy Farms in the Province of Québec, Canada. Front. Vet. Sci. 2021, 8, 4125. [Google Scholar] [CrossRef]
- Weber, L.P.; Dreyer, S.; Heppelmann, M.; Schaufler, K.; Homeier-Bachmann, T.; Bachmann, L. Prevalence and Risk Factors for ESBL/AmpC-E. coli in Pre-Weaned Dairy Calves on Dairy Farms in Germany. Microorganisms 2021, 9, 2135. [Google Scholar] [CrossRef]
- Watson, E.; Jeckel, S.; Snow, L.; Stubbs, R.; Teale, C.; Wearing, H.; Horton, R.; Toszeghy, M.; Tearne, O.; Ellis-Iversen, J.; et al. Epidemiology of extended spectrum beta-lactamase E. coli (CTX-M-15) on a commercial dairy farm. Vet. Microbiol. 2012, 154, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Afema, J.A.; Ahmed, S.; Besser, T.E.; Jones, L.P.; Sischo, W.M.; Davis, M.A.; Elkins, C.A. Molecular Epidemiology of Dairy Cattle-Associated Escherichia coli Carrying blaCTX-M Genes in Washington State. Appl. Environ. Microbiol. 2018, 84, e02430-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berge, A.C.; Atwill, E.R.; Sischo, W.M. Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev. Vet. Med. 2005, 69, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Snow, L.C.; Warner, R.G.; Cheney, T.; Wearing, H.; Stokes, M.; Harris, K.; Teale, C.J.; Coldham, N.G. Risk factors associated with extended spectrum beta-lactamase Escherichia coli (CTX-M) on dairy farms in North West England and North Wales. Prev. Vet. Med. 2012, 106, 225–234. [Google Scholar] [CrossRef]
- Velasova, M.; Smith, R.P.; Lemma, F.; Horton, R.A.; Duggett, N.A.; Evans, J.; Tongue, S.C.; Anjum, M.F.; Randall, L.P. Detection of extended-spectrum β-lactam, AmpC and carbapenem resistance in Enterobacteriaceae in beef cattle in Great Britain in 2015. J. Appl. Microbiol. 2019, 126, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Adler, A.; Sturlesi, N.; Fallach, N.; Zilberman-Barzilai, D.; Hussein, O.; Blum, S.E.; Klement, E.; Schwaber, M.J.; Carmeli, Y. Prevalence, Risk Factors, and Transmission Dynamics of Extended-Spectrum-beta-Lactamase-Producing Enterobacteriaceae: A National Survey of Cattle Farms in Israel in 2013. J. Clin. Microbiol. 2015, 53, 3515–3521. [Google Scholar] [CrossRef] [Green Version]
- Gonggrijp, M.A.; Santman-Berends, I.; Heuvelink, A.E.; Buter, G.J.; van Schaik, G.; Hage, J.J.; Lam, T. Prevalence and risk factors for extended-spectrum beta-lactamase- and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef]
- Santman-Berends, I.; Gonggrijp, M.A.; Hage, J.J.; Heuvelink, A.E.; Velthuis, A.; Lam, T.; van Schaik, G. Prevalence and risk factors for extended-spectrum β-lactamase or AmpC-producing Escherichia coli in organic dairy herds in the Netherlands. J. Dairy Sci. 2017, 100, 562–571. [Google Scholar] [CrossRef]
- Heinemann, C.; Leubner, C.D.; Hayer, J.J.; Steinhoff-Wagner, J. Hygiene management in newborn individually housed dairy calves focusing on housing and feeding practices. J. Anim. Sci. 2020, 99, skaa391. [Google Scholar] [CrossRef]
- Olson, A.; Sischo, W.M.; Berge, A.C.B.; Adams-Progar, A.; Moore, D.A. A retrospective cohort study comparing dairy calf treatment decisions by farm personnel with veterinary observations of clinical signs. J. Dairy Sci. 2019, 102, 6391–6403. [Google Scholar] [CrossRef] [PubMed]
- Wenge, J.; Steinhofel, I.; Heinrich, C.; Coenen, M.; Bachmann, L. Water and concentrate intake, weight gain and duration of diarrhea in young suckling calves on different diets. Livest. Sci. 2014, 159, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Bartels, C.J.; Holzhauer, M.; Jorritsma, R.; Swart, W.A.; Lam, T.J. Prevalence, prediction and risk factors of enteropathogens in normal and non-normal faeces of young Dutch dairy calves. Prev. Vet. Med. 2010, 93, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Izzo, M.M.; Kirkland, P.D.; Mohler, V.L.; Perkins, N.R.; Gunn, A.A.; House, J.K. Prevalence of major enteric pathogens in Australian dairy calves with diarrhoea. Aust. Vet. J. 2011, 89, 167–173. [Google Scholar] [CrossRef]
- Caffarena, R.D.; Casaux, M.L.; Schild, C.O.; Fraga, M.; Castells, M.; Colina, R.; Maya, L.; Corbellini, L.G.; Riet-Correa, F.; Giannitti, F. Causes of neonatal calf diarrhea and mortality in pasture-based dairy herds in Uruguay: A farm-matched case-control study. Braz. J. Microbiol. 2021, 52, 977–988. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef] [Green Version]
- Falgenhauer, L.; Ghosh, H.; Doijad, S.; Yao, Y.; Bunk, B.; Spröer, C.; Kaase, M.; Hilker, R.; Overmann, J.; Imirzalioglu, C.; et al. Genome Analysis of the Carbapenem- and Colistin-Resistant Escherichia coli Isolate NRZ14408 Reveals Horizontal Gene Transfer Pathways towards Panresistance and Enhanced Virulence. Antimicrob. Agents Chemother. 2017, 61. [Google Scholar] [CrossRef] [Green Version]
- Vieille, T.; Winiszewski, H.; Chirouze, C.; Bertrand, X.; Fournier, D. Escherichia coli endocarditis in an hemodialysis patient. Med. Et Mal. Infect. 2019, 49, 478–479. [Google Scholar] [CrossRef]
- Zhuge, X.; Zhou, Z.; Jiang, M.; Wang, Z.; Sun, Y.; Tang, F.; Xue, F.; Ren, J.; Dai, J. Chicken-source Escherichia coli within phylogroup F shares virulence genotypes and is closely related to extraintestinal pathogenic E. coli causing human infections. Transbound. Emerg. Dis. 2021, 68, 880–895. [Google Scholar] [CrossRef]
- Sharma, G.; Sharma, S.; Sharma, P.; Chandola, D.; Dang, S.; Gupta, S.; Gabrani, R. Escherichia coli biofilm: Development and therapeutic strategies. J. Appl. Microbiol. 2016, 121, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.W.; Karns, J.S.; Van Kessel, J.A.S.; Haley, B.J. Genome Sequences of Five Multidrug-Resistant Escherichia coli Sequence Type 117 Isolates Recovered from Dairy Calves. Genome Announc. 2017, 5, e00732-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Ali, Q.; Ali, R.; Mohsin, M. Draft genome sequence of an extended-spectrum β-lactamase-producing Escherichia coli ST58 isolate from cattle in Pakistan. J. Glob. Antimicrob. Resist. 2020, 21, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Barlow, R.; McMillan, K.; Mellor, G.; Duffy, L.; Jordan, D.; Abraham, R.; O’Dea, M.; Sahibzada, S.; Abraham, S. Phenotypic and genotypic assessment of antimicrobial resistance in Escherichia coli from Australian cattle populations at slaughter. J. Food Prot. 2022, 35, 563–570. [Google Scholar] [CrossRef] [PubMed]
- McKinnon, J.; Roy Chowdhury, P.; Djordjevic, S.P. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int. J. Antimicrob. Agents 2018, 52, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Dahmen, S.; Métayer, V.; Gay, E.; Madec, J.Y.; Haenni, M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol. 2013, 162, 793–799. [Google Scholar] [CrossRef]
- Nüesch-Inderbinen, M.; Käppeli, N.; Morach, M.; Eicher, C.; Corti, S.; Stephan, R. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet. Rec. Open 2019, 6, e000369. [Google Scholar] [CrossRef] [Green Version]
- Reid, C.J.; Cummins, M.L.; Börjesson, S.; Brouwer, M.S.M.; Hasman, H.; Hammerum, A.M.; Roer, L.; Hess, S.; Berendonk, T.; Nešporová, K.; et al. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat. Commun. 2022, 13, 683. [Google Scholar] [CrossRef]
- Hammerl, J.A.; Irrgang, A.; Grobbel, M.; Tenhagen, B.A.; Käsbohrer, A. Complete Genome Sequence of a bla(CTX-M-1)-Harboring Escherichia coli Isolate Recovered from Cattle in Germany. Genome Announc. 2018, 6, e01476-17. [Google Scholar] [CrossRef] [Green Version]
- Mshana, S.E.; Fritzenwanker, M.; Falgenhauer, L.; Domann, E.; Hain, T.; Chakraborty, T.; Imirzalioglu, C. Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla(CTX-M-15) at a German University-Hospital. BMC Microbiol. 2015, 15, 122. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, I.; Thomas, K.; Van Essen, A.; Schink, A.K.; Day, M.; Chattaway, M.; Wu, G.; Mevius, D.; Helmuth, R.; Guerra, B. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany, The Netherlands and the UK. Int. J. Antimicrob. Agents 2014, 43, 553–557. [Google Scholar] [CrossRef]
- Shawa, M.; Furuta, Y.; Mulenga, G.; Mubanga, M.; Mulenga, E.; Zorigt, T.; Kaile, C.; Simbotwe, M.; Paudel, A.; Hang’ombe, B.; et al. Novel chromosomal insertions of ISEcp1-bla(CTX-M-15) and diverse antimicrobial resistance genes in Zambian clinical isolates of Enterobacter cloacae and Escherichia coli. Antimicrob. Resist. Infect. Control. 2021, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef] [Green Version]
- Yamaji, R.; Friedman, C.R.; Rubin, J.; Suh, J.; Thys, E.; McDermott, P.; Hung-Fan, M.; Riley, L.W. A Population-Based Surveillance Study of Shared Genotypes of Escherichia coli Isolates from Retail Meat and Suspected Cases of Urinary Tract Infections. mSphere 2018, 3, e00179-18. [Google Scholar] [CrossRef] [Green Version]
- Muggeo, A.; Cambau, E.; Amara, M.; Micaëlo, M.; Pangon, B.; Bajolet, O.; Benmansour, H.; de Champs, C.; Guillard, T. Phenotypic and genotypic quinolone resistance in Escherichia coli underlining GyrA83/87 mutations as a target to detect ciprofloxacin resistance. J. Antimicrob. Chemother. 2020, 75, 2466–2470. [Google Scholar] [CrossRef]
- Kock, R.; Daniels-Haardt, I.; Becker, K.; Mellmann, A.; Friedrich, A.W.; Mevius, D.; Schwarz, S.; Jurke, A. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: A systematic review. Clin. Microbiol. Infec. 2018, 24, 1241–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C. Occurrence and Characteristics of Mobile Colistin Resistance (mcr) Gene-Containing Isolates from the Environment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Catry, B.; Cavaleri, M.; Baptiste, K.; Grave, K.; Grein, K.; Holm, A.; Jukes, H.; Liebana, E.; Lopez Navas, A.; Mackay, D.; et al. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): Development of resistance in animals and possible impact on human and animal health. Int. J. Antimicrob. Agents 2015, 46, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef] [PubMed]
- Duse, A.; Waller, K.P.; Emanuelson, U.; Unnerstad, H.E.; Persson, Y.; Bengtsson, B. Risk factors for antimicrobial resistance in fecal Escherichia coli from preweaned dairy calves. J. Dairy Sci. 2015, 98, 500–516. [Google Scholar] [CrossRef] [Green Version]
- Homeier-Bachmann, T.; Heiden, S.E.; Lübcke, P.K.; Bachmann, L.; Bohnert, J.A.; Zimmermann, D.; Schaufler, K. Antibiotic-Resistant Enterobacteriaceae in Wastewater of Abattoirs. Antibiotics 2021, 10, 568. [Google Scholar] [CrossRef]
- Homeier-Bachmann, T.; Schütz, A.K.; Dreyer, S.; Glanz, J.; Schaufler, K.; Conraths, F.J. Genomic Analysis of ESBL-Producing E. coli in Wildlife from North-Eastern Germany. Antibiotics 2022, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, B.J.; Abeel, T.; Shea, T.; Priest, M.; Abouelliel, A.; Sakthikumar, S.; Cuomo, C.A.; Zeng, Q.D.; Wortman, J.; Young, S.K.; et al. Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement. PLoS ONE 2014, 9, e112963. [Google Scholar]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications [version 1; peer review: 2 approved]. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.D.; Jin, Q.; Chen, L.H.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic. Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Pal, C.; Bengtsson-Palme, J.; Rensing, C.; Kristiansson, E.; Larsson, D.G.J. BacMet: Antibacterial biocide and metal resistance genes database. Nucleic. Acids Res. 2014, 42, D737–D743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Padmanabhan, B.R.; Diene, S.M.; Lopez-Rojas, R.; Kempf, M.; Landraud, L.; Rolain, J.M. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob. Agents Chemother. 2014, 58, 212–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Designation | 1623 | 1624 | 1625 | 1626 | 1627 | 1628 | 1629 | 1630 | 1631 | 1632 | 1633 | 1634 | 1635 | 1636 | 1637 | 1638 | 1639 | 1640 | 1641 | 1642 | 1643 | 1644 | 1645 | 1646 | 1647 | 1648 | 1649 |
Origin | Calf | Calf | Calf | Calf | Calf | Calf | Heifer | Calf | Young stock | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Calf | Young stock | Slurry | Young stock | Slurry | Slurry |
Sequence Type | ST362 | ST117 | ST362 | ST362 | ST117 | ST88 | new * | ST362 | ST967 | ST362 | ST362 | ST362 | ST362 | ST362 | ST362 | ST362 | ST362 | ST362 | ST362 | ST362 | ST117 | ST362 | ST967 | ST117 | ST967 | new * | new ** |
Rearing Farm | + | + | + | + | + | + | |||||||||||||||||||||
IncB/O/K/Z 1 | |||||||||||||||||||||||||||
IncI 1 | |||||||||||||||||||||||||||
IncFIA 1 | |||||||||||||||||||||||||||
IncFIB 1 | |||||||||||||||||||||||||||
IncFII 1 | |||||||||||||||||||||||||||
IncH1 | |||||||||||||||||||||||||||
IncR 1 | |||||||||||||||||||||||||||
ColRNAI 1 | |||||||||||||||||||||||||||
Col156 1 | |||||||||||||||||||||||||||
Col(MG828) 1 | |||||||||||||||||||||||||||
Col(pHAD28) 1 | |||||||||||||||||||||||||||
aadA2 | |||||||||||||||||||||||||||
aph3 2 | |||||||||||||||||||||||||||
strA2 | |||||||||||||||||||||||||||
strB2 | |||||||||||||||||||||||||||
blaCTX-M-13 | |||||||||||||||||||||||||||
blaCTX-M-153 | |||||||||||||||||||||||||||
ampH3 | |||||||||||||||||||||||||||
AmpC1_E. coli 3 | |||||||||||||||||||||||||||
AmpC2_E. coli 3 | |||||||||||||||||||||||||||
blaTEM-1053 | |||||||||||||||||||||||||||
floR4 | |||||||||||||||||||||||||||
catA4 | |||||||||||||||||||||||||||
sul15 | |||||||||||||||||||||||||||
sul25 | |||||||||||||||||||||||||||
dfrA5 | |||||||||||||||||||||||||||
tetA6 | |||||||||||||||||||||||||||
tetB6 | |||||||||||||||||||||||||||
tetR6 | |||||||||||||||||||||||||||
tetY6 | |||||||||||||||||||||||||||
mph(A)7 |
Designation | Amoxicillin | Amoxicillin/ Clavulanic Acid | Ampicillin | Cefalexin | Cefotaxim | Ceftazidim | Ceftolozan/ Tazobactam | Cefepim | Colistin | Imipenem | Meropenem | Gentamicin | Tobramycin | Ciprofloxacin | Amikacin | Fosfomycin | Tigecycline | Trimethoprim/ Sulfamethoxazole | ESBL | MDR |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1623 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1624 | R | R | R | R | R | R | S | R | S | S | S | S | S | R | S | S | S | S | + | + |
1625 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1626 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1627 | R | R | R | R | R | R | S | R | S | S | S | S | S | R | S | S | S | S | + | + |
1628 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1629 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1630 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1631 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | S | + | − |
1632 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1633 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1634 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1635 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1636 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1637 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1638 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1639 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1640 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1641 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1642 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1643 | R | R | R | R | R | R | S | R | S | S | S | S | S | R | S | S | S | S | + | + |
1644 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1645 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | S | + | − |
1646 | R | R | R | R | R | R | S | R | S | S | S | S | S | R | S | S | S | S | + | + |
1647 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | S | + | − |
1648 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | R | + | + |
1649 | R | R | R | R | R | R | S | R | S | S | S | S | S | S | S | S | S | S | + | − |
Animal Group | Number of Samples |
---|---|
Calves | 20 |
Young stock * | 20 |
Breeding heifers * | 20 |
Dry cows | 20 |
High-lactating cows | 15 |
Late-lactating cows | 15 |
Slurry ** | 10 |
Total | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Homeier-Bachmann, T.; Kleist, J.F.; Schütz, A.K.; Bachmann, L. Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm. Antibiotics 2022, 11, 940. https://doi.org/10.3390/antibiotics11070940
Homeier-Bachmann T, Kleist JF, Schütz AK, Bachmann L. Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm. Antibiotics. 2022; 11(7):940. https://doi.org/10.3390/antibiotics11070940
Chicago/Turabian StyleHomeier-Bachmann, Timo, Jette F. Kleist, Anne K. Schütz, and Lisa Bachmann. 2022. "Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm" Antibiotics 11, no. 7: 940. https://doi.org/10.3390/antibiotics11070940
APA StyleHomeier-Bachmann, T., Kleist, J. F., Schütz, A. K., & Bachmann, L. (2022). Distribution of ESBL/AmpC-Escherichia coli on a Dairy Farm. Antibiotics, 11(7), 940. https://doi.org/10.3390/antibiotics11070940