Urinary Tract Infection and Antimicrobial Susceptibility of Bacterial Isolates in Saint Joseph Kitgum Hospital, Kitgum, Uganda
Abstract
:1. Introduction
2. Results
2.1. On-Site Susceptibility Testing
2.2. Resistance Values for Gram-Negative Bacteria
2.3. Resistance Values for Gram-Positive Bacteria
2.4. Antimicrobial Profile for Main Species of Bacterial Isolates
3. Discussion
4. Materials and Methods
4.1. Location
4.2. Inclusion Criteria
4.3. Sample Collection and Processing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kiguba, R.; Karamagi, C.; Bird, S.M. Extensive antibiotic prescription rate among hospitalized patients in Uganda: But with frequent missed-dose days. J. Antimicrob. Chemother. 2016, 71, 1697–1706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Omulo, S.; Thumbi, S.M.; Njenga, M.K.; Call, D.R. A review of 40 years of enteric antimicrobial resistance research in Eastern Africa: What can be done better? Antimicrob. Resist. Infect. Control 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Geerlings, S.E. Clinical presentations and epidemiology of urinary tract infections. Microbiol. Spectr. 2016, 4, 4–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alemu, A.; Moges, F.; Shiferaw, Y.; Tafess, K.; Kassu, A.; Anagaw, B.; Agegn, A. Bacterial profile and drug susceptibility pattern of urinary tract infection in pregnant women at university of Gondar teaching hospital, Northwest Ethiopia. BMC Res. Notes 2012, 5, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guglietta, A. Recurrent urinary tract infections in women: Risk factors, etiology, pathogenesis and prophylaxis. Future Microbiol. 2017, 12, 239–246. [Google Scholar] [CrossRef]
- Bader, M.S.; Loeb, M.; Brooks, A.A. An update on the management of urinary tract infections in the era of antimicrobial resistance. Postgrad. Med. 2016, 129, 242–258. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Cisneros, J.M.; Cobos-Trigueros, N.; Fresco, G.; Navarro-San Francisco, C.; Gudiol, C.; Horcajada, J.P.; López-Cerero, L.; Martínez, J.A.; José Molina, J.; et al. Executive summary of the diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC). Enferm. Infecc. Y Microbiol. Clínica 2014, 33, 338–341. [Google Scholar] [CrossRef]
- Odongo, C.O.; Anywar, D.A.; Luryamamoi, K.; Odongo, P. Antibiograms from community-acquired uropathogens in Gulu, northern Uganda—A cross-sectional study. BMC Infect. Dis. 2013, 13, 193. [Google Scholar] [CrossRef] [Green Version]
- Sekikubo, M.; Hedman, K.; Mirembe, F.; Brauner, A. Antibiotic Overconsumption in Pregnant Women with Urinary Tract Symptoms in Uganda. Clin. Infect. Dis. 2017, 65, 544. [Google Scholar] [CrossRef] [Green Version]
- Uganda Clinical Guidelines: The Republic of Uganda Ministry of Health National Guidelines for Management of Common Conditions; The Ministry of Health Uganda: Kampala, Uganda, 2016.
- Odongo, I.; Ssemambo, R.; Kungu, J.M. Prevalence of Escherichia Coli and Its Antimicrobial Susceptibility Profiles among Patients with UTI at Mulago Hospital, Kampala, Uganda. Interdiscip. Perspect. Infect. Dis. 2020, 2020, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Odoki, M.; Aliero, A.A.; Tibyangye, J.; Maniga, J.N.; Eilu, E.; Ntulume, I.; Wampande, E.; Kato, C.D.; Agwu, E.; Bazira, J. Fluoroquinolone resistant bacterial isolates from the urinary tract among patients attending hospitals in Bushenyi District, Uganda. Pan Afr. Med. J. 2020, 36, 60. [Google Scholar] [CrossRef] [PubMed]
- Michels, T.C.; Sands, J.E. Dysuria: Evaluation and Differential Diagnosis in Adults. Am. Fam. Physician 2015, 92, 778–786. [Google Scholar] [PubMed]
- Tamadonfar, K.O.; Omattage, N.S.; Spaulding, C.N.; Hultgren, S.J. Reaching the End of the Line: Urinary Tract Infections. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Sorlózano-Puerto, A.; Gómez-Luque, J.M.; Luna-del-Castillo, J.d.D.; Navarro-Marí, J.M.; Gutiérrez-Fernández, J. Etiological and Resistance Profile of Bacteria Involved in Urinary Tract Infections in Young Children. BioMed. Res. Int. 2017, 2017, 4909452. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Sohail, M.; Abbas, Z. Prevalence of Enterococcus faecalis mediated UTI and its current antimicrobial susceptibility pattern in Lahore, Pakistan. J. Pak. Med. Assoc. 2016, 66, 1232–1236. [Google Scholar]
- Banla, I.L.; Kommineni, S.; Hayward, M.; Rodrigues, M.; Palmer, K.L.; Salzman, N.H.; Kristich, C.J. Modulators of Enterococcus faecalis Cell Envelope Integrity and Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal Tract. Infect. Immun. 2018, 86, e00381-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belete, M.A.; Saravanan, M. A Systematic Review on Drug Resistant Urinary Tract Infection among Pregnant Women in Developing Countries in Africa and Asia; 2005–2016. Infect. Drug Resist. 2020, 13, 1465–1477. [Google Scholar] [CrossRef]
- Kabugo, D.; Kizito, S.; Ashok, D.D.; Graham, K.A.; Nabimba, R.; Namunana, S.; Kabaka, M.R.; Achan, B.; Najjuka, F.C. Factors associated with community-acquired urinary tract infections among adults attending assessment centre, Mulago Hospital Uganda. Afr. Health Sci. 2016, 16, 1131–1142. [Google Scholar] [CrossRef] [Green Version]
- Huttner, A.; Wijma, R.A.; Stewardson, A.J.; Olearo, F.; Dach, E.V.; Harbarth, S.; Brüggemann, R.J.M.; Mouton, J.W.; Muller, A.E. The pharmacokinetics of nitrofurantoin in healthy female volunteers: A randomized crossover study. J. Antimicrob. Chemother. 2019, 74, 1656–1661. [Google Scholar] [CrossRef]
- Sánchez-Romero, M.I.; García-Lechuz Moya, J.M.; González López, J.J.; Orta Mira, N. Recogida, transporte y procesamiento general de las muestras en el laboratorio de Microbiología. Enferm. Infecc. Y Microbiol. Clínica 2019, 37, 127–134. [Google Scholar] [CrossRef]
- Kahlmeter, G.; Brown, D.F.J.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Odenholt, I.; Rodloff, A.; Soussy, C.-J.; Steinbakk, M.; Soriano, F.; et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clin. Microbiol. Infect. 2006, 12, 501–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Men (6) | Women (83) | |||
---|---|---|---|---|
Age (median, IQR) | 26 (20–30) | 24 (21–30) | ||
Pregnant during infection | - | - | 39 | 47% |
Antibiotic (n) | Resistance Determined by Disk-Plate Method (%) | Resistance Determined by BD-Phoenix M50 (%) | Difference |
---|---|---|---|
Amoxicillin-clavulanic acid (18) | 7 (38.9) | 10 (56) | 16.7% |
Ampicillin (28) | 14 (50) | 12 (43) | 7.1% |
Oxacillin (22) | 21 (95) | 21 (95) | 0% |
Ciprofloxacin (28) | 23 (82.1) | 10 (35.7) | 46.5% |
Levofloxacin (30) | 17 (57) | 8 (27) | 30% |
Gentamycin (29) | 17 (58.2) | 21 (72) | 13.8% |
Vancomycin (21) | 2 (9.5) | 1 (4.7) | 4.8% |
Sulfamethoxazole-trimethoprim (49) | 47 (96) | 46 (94) | 2% |
Nitrofurantoin (24) | 3 (12.5) | 4 (17) | 4.5% |
Gram-Negative Bacteria (n, Uganda) | R (%) | I (%) | S (%) |
---|---|---|---|
Amoxicillin/clavulanic acid (34) | 22 (64.7) | 0 (0) | 12 (35.3) |
Ampicillin (32) | 29 (90.60) | 0 (0) | 3 (9.4) |
Piperacillin (32) | 28 (87.5) | 0 (0) | 4 (12.5) |
Piperacillin-tazobactam (32) | 8 (25) | 2 (6.25) | 22 (68.75) |
Mecillinam (31) | 14 (45.20) | 1 (3.2) | 16 (51.6) |
Cefepime (33) | 24 (72.7) | 0 (0) | 9 (27.3) |
Cefixime (33) | 23 (69.7) | 1 (3) | 9 (27.3) |
Ceftazidime (31) | 22 (71) | 0 (0) | 9 (29) |
Ceftazidime-avibactam (32) | 21 (65.6) | 2 (6.25) | 9 (28.15) |
Ceftriaxone (31) | 2 (6.5) | 0 (0) | 29 (93.5) |
Cefuroxime (31) | 21 (67.7) | 0 (0) | 10 (32.3) |
Cefalexin (34) | 25 (73.5) | 0 (0) | 9 (26.5) |
Ertapenem (31) | 2 (6.5) | 0 (0) | 29 (93.5) |
Imipenem (34) | 1 (2.9) | 1 (2.9) | 32 (94.2) |
Meropenem (33) | 2 (6.1) | 1 (3) | 30 (90.9) |
Aztreonam (34) | 23 (67.6) | 0 (0) | 11 (32.4) |
Ciprofloxacin (34) | 20 (58.8) | 3 (8.8) | 11 (32.4) |
Levofloxacin (34) | 19 (55.9) | 0 (0) | 15 (44.1) |
Gentamicin (33) | 11 (33.3) | 0 (0) | 22 (66.7) |
Tobramycin (34) | 15 (44.1) | 0 (0) | 19 (55.9) |
Tigecycline (31) | 1 (3.2) | 1 (3.2) | 29 (93.6) |
Fosfomycin (32) | 3 (9.4) | 0 (0) | 29 (90.6) |
Nitrofurantoin (31) | 4 (12.9) | 0 (0) | 27 (87.1) |
Trimethoprim/sulfamethoxazole (33) | 30 (90.9) | 0 (0) | 3 (9.1) |
Gram-Positive Bacteria (n) | R (%) | I (%) | S (%) |
---|---|---|---|
Penicillin G (39) | 39 (100) | 0 (0) | 0 (0) |
Ampicillin (60) | 17 (28.3) | 0 (0) | 43 (71.3) |
Oxacillin (66) | 64 (97) | 0 (0) | 2 (3) |
Ceftaroline (51) | 49 (96.1) | 0 (0) | 2 (3.9) |
Cefoxitin (47) | 47 (100) | 0 (0) | 0 (0) |
Imipenem (55) | 14 (25.5) | 0 (0) | 41 (74.5) |
Ciprofloxacin (55) | 15 (27.3) | 0 (0) | 40 (72.7) |
Levofloxacin (55) | 15 (27.3) | 0 (0) | 40 (72.7) |
Gentamycin (60) | 52 (86.7) | 0 (0) | 8 (13.3) |
High concentration gentamycin (54) | 8 (14.8) | 0 (0) | 46 (85.2) |
Tobramycin (55) | 52 (94.5) | 0 (0) | 3 (5.5) |
Kanamycin (51) | 51 (100) | 0 (0) | 0 (0) |
Teicoplanin (60) | 2 (3.3) | 0 (0) | 58 (96.7) |
Vancomycin (60) | 1 (1.7) | 0 (0) | 59 (98.3) |
Clindamycin (25) | 25 (100) | 0 (0) | 0 (0) |
Erythromycin (55) | 55 (100) | 0 (0) | 0 (0) |
Quinupristin/dalfopristin (55) | 26 (47.3) | 15 (27.3) | 14 (25.4) |
Tigecycline (26) | 2 (7.7) | 0 (0) | 24 (92.3) |
Linezolid (60) | 1 (1.7) | 0 (0) | 59 (98.3) |
Fusidic acid (55) | 49 (89.1) | 0 (0) | 6 (10.9) |
Nitrofurantoin (49) | 8 (16.3) | 0 (0) | 41 (83.7) |
Trimethoprim/sulfamethoxazole (60) | 58 (96.7) | 0 (0) | 2 (3.3) |
Trimethoprim (60) | 60 (100) | 0 (0) | 0 (0) |
Antibiotic | E. coli (n = 25) | E. faecium (33) | E. faecalis (19) |
---|---|---|---|
Amoxicillin/clavulanic acid | 15 * (60.0%) | - | - |
Ampicillin | 22 (88.0%) | 10 (30.3%) | 0 (0%) |
Penicillin G | - | 30 (90.9%) | - |
Piperacillin | 25 (100%) | - | - |
Piperacillin-tazobactam | 5 (20.0%) | - | - |
Mecillinam | 11 (44.0%) | - | - |
Cefepime | 18 (72.0%) | - | - |
Cefixime | 17 (68.0%) | - | - |
Ceftazidime | 18 (72.0%) | - | - |
Ceftazidime-avibactam | 16 (64.0%) | - | - |
Ceftriaxone | 2 (8.0%) | - | - |
Cefuroxime | 17 (68.0%) | - | - |
Ceftarolyne | - | 30 (90.9%) | 19 (100%) |
Cefoxitin | - | 29 (87.9%) | 19 (100%) |
Cefalexin | 18 (72.0%) | - | - |
Ertapenem | 2 (8.0%) | - | - |
Imipenem | 0 (0%) | 10 (30.3%) | 0 (0%) |
Meropenem | 1 (4.0%) | - | - |
Aztreonam | 16 (64.0%) | - | - |
Ciprofloxacin | 14 (56.0%) | 9 (27.3%) | 4 (21.1%) |
Levofloxacin | 14 (56.0%) | 8 (24.4%) | 4 (21.1%) |
Gentamicin | 6 (24.0%) | 30 (90.9%) | 19 (100%) |
High concentration Gentamycin | - | 2 (6%) | 5 (26.3%) |
Kanamycin | - | 30 (90.9%) | 19 (100%) |
Teicoplanin | - | 1 (3%) | 1 (5%) |
Vancomycin | - | 0 (0%) | 1 (5%) |
Clindamycin | - | - | 19 (100%) |
Erythromycin | - | 30 (90.9%) | 19 (100%) |
Quinupristine/Dalfopirstine | - | 7 (21.2%) | 19 (100%) |
Linezolid | - | 0 (0%) | 1 (5%) |
Fusidic acid | - | 29 (87.9%) | 19 (100%) |
Trimetoprim | - | 29 87.9%) | 19 (100%) |
Tobramycin | 11 (44.0%) | 30 (90.9%) | 19 (100%) |
Tigecycline | 1 (4.0%) | - | 0 (0%) |
Fosfomycin | 2 (8%) | - | 0 (0%) |
Nitrofurantoin | 1 (4%) | 8 (24.2%) | 0 (0%) |
Trimethoprim/sulfamethoxazole | 23 (92%) | 30 (90.9%) | 19 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrasco Calzada, F.; Aguilera-Correa, J.J.; Cuadros González, J.; Esteban Moreno, J.; Roca Biosca, D.; Pérez-Tanoira, R. Urinary Tract Infection and Antimicrobial Susceptibility of Bacterial Isolates in Saint Joseph Kitgum Hospital, Kitgum, Uganda. Antibiotics 2022, 11, 504. https://doi.org/10.3390/antibiotics11040504
Carrasco Calzada F, Aguilera-Correa JJ, Cuadros González J, Esteban Moreno J, Roca Biosca D, Pérez-Tanoira R. Urinary Tract Infection and Antimicrobial Susceptibility of Bacterial Isolates in Saint Joseph Kitgum Hospital, Kitgum, Uganda. Antibiotics. 2022; 11(4):504. https://doi.org/10.3390/antibiotics11040504
Chicago/Turabian StyleCarrasco Calzada, Félix, John Jairo Aguilera-Correa, Juan Cuadros González, Jaime Esteban Moreno, David Roca Biosca, and Ramón Pérez-Tanoira. 2022. "Urinary Tract Infection and Antimicrobial Susceptibility of Bacterial Isolates in Saint Joseph Kitgum Hospital, Kitgum, Uganda" Antibiotics 11, no. 4: 504. https://doi.org/10.3390/antibiotics11040504
APA StyleCarrasco Calzada, F., Aguilera-Correa, J. J., Cuadros González, J., Esteban Moreno, J., Roca Biosca, D., & Pérez-Tanoira, R. (2022). Urinary Tract Infection and Antimicrobial Susceptibility of Bacterial Isolates in Saint Joseph Kitgum Hospital, Kitgum, Uganda. Antibiotics, 11(4), 504. https://doi.org/10.3390/antibiotics11040504