The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics
Abstract
:1. Introduction
2. Results
2.1. General Characteristics
2.2. Outcomes
2.3. Microbial Identification
3. Discussion
4. Materials and Methods
4.1. Study Design and Ethical Considerations
4.2. Inclusion Criteria and Study Variables
4.3. Materials Used
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Şahin, Ş.; Boado-Penas, M.d.C.; Constantinescu, C.; Eisenberg, J.; Henshaw, K.; Hu, M.; Wang, J.; Zhu, W. First Quarter Chronicle of COVID-19: An Attempt to Measure Governments’ Responses. Risks 2020, 8, 115. [Google Scholar] [CrossRef]
- Karlafti, E.; Anagnostis, A.; Kotzakioulafi, E.; Vittoraki, M.C.; Eufraimidou, A.; Kasarjyan, K.; Eufraimidou, K.; Dimitriadou, G.; Kakanis, C.; Anthopoulos, M.; et al. Does COVID-19 Clinical Status Associate with Outcome Severity? An Unsupervised Machine Learning Approach for Knowledge Ex-traction. J. Pers. Med. 2021, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Marincu, I.; Bratosin, F.; Vidican, I.; Bostanaru, A.-C.; Frent, S.; Cerbu, B.; Turaiche, M.; Tirnea, L.; Timircan, M. Predictive Value of Comorbid Conditions for COVID-19 Mortality. J. Clin. Med. 2021, 10, 2652. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lazo, G.; Silva-Caso, W.; del Valle-Mendoza, J.; Morales-Moreno, A.; Ballena-López, J.; Soto-Febres, F.; Martins-Luna, J.; Carrillo-Ng, H.; del Valle, L.J.; Kym, S.; et al. Identification of Coinfections by Viral and Bacterial Pathogens in COVID-19 Hospitalized Patients in Peru: Molecular Diagnosis and Clinical Characteristics. Antibiotics 2021, 10, 1358. [Google Scholar] [CrossRef]
- Uyeki, T.M.; Bernstein, H.H.; Bradley, J.S.; Englund, J.A.; File, T.M.; Fry, A.M.; Gravenstein, S.; Hayden, F.G.; Harper, S.A.; Hirshon, J.M.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America: 2018 Update on Diagnosis, Treatment, Chemoprophylaxis, and Institutional Outbreak Management of Seasonal Influenzaa. Clin. Infect. Dis. 2019, 68, e1–e47, Erratum in Clin. Infect. Dis. 2019, 68, 1790. [Google Scholar] [CrossRef]
- Klein, E.Y.; Monteforte, B.; Gupta, A.; Jiang, W.; May, L.; Hsieh, Y.; Dugas, A. The frequency of influenza and bacterial coinfection: A systematic review and meta-analysis. Influ. Other Respir. Viruses 2016, 10, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of coinfection between SARS-CoV-2 and other respiratory pathogens. Jama 2020, 323, 2085–2086. [Google Scholar] [CrossRef] [Green Version]
- Alhumaid, S.; Al Mutair, A.; Al Alawi, Z.; Alshawi, A.M.; Alomran, S.A.; Almuhanna, M.S.; Almuslim, A.A.; Bu Shafia, A.H.; Alotaibi, A.M.; Ahmed, G.Y.; et al. Coinfections with Bacteria, Fungi, and Respiratory Viruses in Patients with SARS-CoV-2: A Systematic Review and Meta-Analysis. Pathogens 2021, 10, 809. [Google Scholar] [CrossRef]
- Oliva, J.; Terrier, O. Viral and Bacterial Co-Infections in the Lungs: Dangerous Liaisons. Viruses 2021, 13, 1725. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial coinfection and secondary infection in patients with COVID-19: A living rapid review and meta-analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Cohen, R.; Babushkin, F.; Finn, T.; Geller, K.; Alexander, H.; Datnow, C.; Uda, M.; Shapiro, M.; Paikin, S.; Lellouche, J. High Rates of Bacterial Pulmonary Co-Infections and Superinfections Identified by Multiplex PCR among Critically Ill COVID-19 Patients. Microorganisms 2021, 9, 2483. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Higginson, E.; Pereira-Dias, J.; Curran, M.D.; Parmar, S.; Khokhar, F.; Cuchet-Lourenço, D.; Lux, J.; Sharma-Hajela, S.; Ravenhill, B.; et al. Ventilator-associated pneumonia in critically ill patients with COVID-19. Crit. Care 2021, 25, 25. [Google Scholar] [CrossRef] [PubMed]
- Rouyer, M.; Strazzulla, A.; Youbong, T.; Tarteret, P.; Pitsch, A.; de Pontfarcy, A.; Cassard, B.; Vignier, N.; Pourcine, F.; Jochmans, S.; et al. Ven-tilator-Associated Pneumonia in COVID-19 Patients: A Retrospective Cohort Study. Antibiotics 2021, 10, 988. [Google Scholar] [CrossRef] [PubMed]
- Sreenath, K.; Batra, P.; Vinayaraj, E.V.; Bhatia, R.; SaiKiran, K.; Singh, V.; Singh, S.; Verma, N.; Singh, U.B.; Mohan, A.; et al. Coinfections with Other Respiratory Pathogens among Patients with COVID-19. Microbiol Spectr. 2021, 3, 9. [Google Scholar] [CrossRef]
- Feldman, C.; Anderson, R. The role of coinfections and secondary infections in patients with COVID-19. Pneumonia 2021, 13, 5. [Google Scholar] [CrossRef]
- Carvalho-Pereira, J.; Fernandes, F.; Araújo, R.; Springer, J.; Loeffler, J.; Buitrago, M.J.; Pais, C.; Sampaio, P. Multiplex PCR Based Strategy for Detection of Fungal Pathogen DNA in Patients with Suspected Invasive Fungal Infections. J. Fungi 2020, 6, 308. [Google Scholar] [CrossRef]
- Arrivé, F.; Coudroy, R.; Thille, A.W. Early Identification and Diagnostic Approach in Acute Respiratory Distress Syndrome (ARDS). Diagnostics 2021, 11, 2307. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Motos, A.; Menéndez, R.; Gabarrús, A.; González, J.; Fernández-Barat, L.; Ceccato, A.; Pérez-Arnal, R.; García-Gasulla, D.; Ferrer, R.; et al. ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome. J. Clin. Med. 2022, 11, 224. [Google Scholar] [CrossRef]
- Qasem, A.; Shaw, A.M.; Elkamel, E.; Naser, S.A. Coronavirus Disease 2019 (COVID-19) Diagnostic Tools: A Focus on Detection Technologies and Limitations. Curr. Issues Mol. Biol. 2021, 43, 728–748. [Google Scholar] [CrossRef]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Gajdács, M.; Zin, C.S.; Rahman, N.S.B.A.; Ahmed, S.I.; Jamshed, S.Q. Public Awareness and Practices towards Self-Medication with Antibiotics among the Malaysian Population. A Development of Questionnaire and Pilot-Testing. Antibiotics 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Kalam, M.A.; Shano, S.; Afrose, S.; Uddin, M.N.; Rahman, N.; Jalal, F.A.; Akter, S.; Islam, A.; Anam, M.M.; Hassan, M.M. Antibiotics in the Community During the COVID-19 Pandemic: A Qualitative Study to Understand Users’ Perspectives of Antibiotic Seeking and Consumption Behaviors in Bangladesh. Patient Prefer Adher. 2022, 16, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.B.; Russell, L.E.; Preston, P.G.; Marsh, P.; Collins, J.E.; Saunders, J.; Sutton, J.; Fine, D.; Bruce, K.D.; Wright, M. Characterisation of bacteria in ascites–reporting the potential of culture-independent, molecular analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 533–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lardaro, T.; Wang, A.Z.; Bucca, A.; Croft, A.; Glober, N.; Holt, D.B.; Musey, P.I.; Peterson, K.D.; Trigonis, R.A.; Schaffer, J.T.; et al. Characteristics of COVID-19 patients with bacterial coinfection admitted to the hospital from the emergency department in a large regional healthcare system. J. Med. Virol. 2021, 93, 2883–2889. [Google Scholar] [CrossRef]
- Lleo, M.M.; Ghidini, V.; Tafi, M.C.; Castellani, F.; Trento, I.; Boaretti, M. Detecting the presence of bacterial DNA by PCR can be useful in diagnosing culture-negative cases of infection, especially in patients with suspected infection and antibiotic therapy. FEMS Microbiol. Lett. 2014, 354, 153–160. [Google Scholar] [CrossRef] [Green Version]
- Cohen, R.; Finn, T.; Babushkin, F.; Geller, K.; Alexander, H.; Shapiro, M.; Uda, M.; Mostrchy, A.R.; Amash, R.; Shimoni, Z.; et al. High rate of bacterial respiratory tract coinfections upon admission amongst moderate to severe COVID-19 patients. Infect. Dis. 2022, 54, 134–144. [Google Scholar] [CrossRef]
- Collins, M.E.; Popowitch, E.B.; Miller, M.B. Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, e02013-19. [Google Scholar] [CrossRef] [PubMed]
- Tkadlec, J.; Peckova, M.; Sramkova, L.; Rohn, V.; Jahoda, D.; Raszka, D.; Berousek, J.; Mosna, F.; Vymazal, T.; Kvapil, M.; et al. The use of broad-range bacterial PCR in the diagnosis of infectious diseases: A prospective cohort study. Clin. Microbiol. Infect. 2019, 25, 747–752. [Google Scholar] [CrossRef] [PubMed]
- Baccolini, V.; Migliara, G.; Isonne, C.; Dorelli, B.; Barone, L.; Giannini, D.; Marotta, D.; Marte, M.; Mazzalai, E.; Alessandri, F.; et al. The impact of the COVID-19 pandemic on healthcare-associated infections in intensive care unit patients: A retrospective cohort study. Antimicrob. Resist. Infect. Control 2021, 10, 87. [Google Scholar] [CrossRef]
- Rothe, K.; Feihl, S.; Schneider, J.; Wallnöfer, F.; Wurst, M.; Lukas, M.; Treiber, M.; Lahmer, T.; Heim, M.; Dommasch, M.; et al. Rates of bacterial coinfections and an-timicrobial use in COVID-19 patients: A retrospective cohort study in light of antibiotic stewardship. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 859–869. [Google Scholar] [CrossRef]
- Ahmed, N.; Khan, M.; Saleem, W.; Karobari, M.I.; Mohamed, R.N.; Heboyan, A.; Rabaan, A.A.; Mutair, A.A.; Alhumaid, S.; Alsadiq, S.A.; et al. Evaluation of Bi-Lateral Co-Infections and Antibiotic Resistance Rates among COVID-19 Patients. Antibiotics 2022, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Hobman, E.V.; De Barro, P.; Young, A.; Carter, D.J.; Byrne, M. Self-Medication with Antibiotics for Protection against COVID-19: The Role of Psychological Distress, Knowledge of, and Experiences with Antibiotics. Antibiotics 2021, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Quincho-Lopez, A.; Benites-Ibarra, C.A.; Hilario-Gomez, M.M.; Quijano-Escate, R.; Taype-Rondan, A. Self-medication practices to prevent or manage COVID-19: A systematic review. PLoS ONE 2021, 16, e0259317. [Google Scholar] [CrossRef]
- Karah, N.; Rafei, R.; Elamin, W.; Ghazy, A.; Abbara, A.; Hamze, M.; Uhlin, B.E. Guideline for Urine Culture and Biochemical Identification of Bacterial Urinary Pathogens in Low-Resource Settings. Diagnostics 2020, 10, 832. [Google Scholar] [CrossRef]
- Igere, B.E.; Okoh, A.I.; Nwodo, U.U. Antibiotic Susceptibility Testing (AST) Reports: A Basis for Environmental/Epidemiological Surveillance and Infection Control Amongst Environmental Vibrio cholerae. Int. J. Environ. Res. Public Health 2020, 17, 5685. [Google Scholar] [CrossRef]
- Dhaliwal, A. DNA extraction and purification. Mater. Methods 2013, 3, 191. [Google Scholar] [CrossRef]
Variables * | Antibiotic Takers (n = 198) | Non-Antibiotic Takers (n = 291) | p-Value |
---|---|---|---|
Age | 0.632 | ||
18–40 years | 28 (14.2%) | 49 (16.8%) | |
40–65 years | 95 (47.9%) | 129 (44.3%) | |
>65 years | 75 (37.9%) | 113 (38.8%) | |
Sex | 0.177 | ||
Men | 117 (49.1%) | 154 (52.9%) | |
Women | 81 (40.9%) | 137 (47.1%) | |
BMI | |||
Underweight (<18.5 kg/m2) | 14 (7.1%) | 23 (7.9%) | 0.923 |
Normal weight (18.5–25.0 kg/m2) | 106 (53.5%) | 157 (53.9%) | |
Overweight (>25.0 kg/m2) | 78 (39.4%) | 111 (38.2%) | |
Antibiotic consumption behavior | - | ||
By prescription | 65 (32.8%) | - | |
Over-the-counter | 133 (67.2%) | - | |
Smoking status | 0.292 | ||
Yes | 63 (31.8%) | 106 (36.4%) | |
No | 135 (68.2%) | 185 (63.6%) | |
Pulmonary disease | |||
Chronic bronchitis | 47 (23.7%) | 39 (13.4%) | 0.003 |
COPD | 24 (12.1%) | 17 (5.8%) | 0.013 |
Asthma | 19 (9.6%) | 16 (5.5%) | 0.084 |
Pulmonary hypertension | 2 (1.0%) | 1 (0.3%) | 0.354 |
Lung cancer | 2 (1.0%) | 4 (1.4%) | 0.719 |
Other comorbidities | |||
Cardiac | 64 (32.3%) | 98 (33.6%) | 0.754 |
Metabolic | 37 (18.7%) | 46 (15.8%) | 0.405 |
Cerebrovascular | 12 (6.1%) | 17 (5.8%) | 0.919 |
Digestive & liver | 16 (8.1%) | 20 (10.1%) | 0.615 |
Kidney disease | 13 (6.6%) | 19 (6.5%) | 0.987 |
Malignancy ** | 4 (2.0%) | 4 (1.4%) | 0.580 |
Variables * | Antibiotic Takers (n = 198) | Non-Antibiotic Takers (n = 291) | p-Value |
---|---|---|---|
Days from symptom onset until hospitalization, (mean ± SD) | 4.2 ± 1.5 | 4.0 ± 1.4 | 0.132 t |
Complications | |||
ARDS | 16 (8.1%) | 19 (6.5%) | 0.513 |
Ventilator-associated pneumonia | 12 (6.1%) | 7 (2.4%) | 0.040 |
Community-acquired pneumonia | 29 (14.6%) | 32 (10.9%) | 0.230 |
Asthma exacerbation | 9 (4.5%) | 8 (2.7%) | 0.292 |
COPD exacerbation | 7 (3.5%) | 11 (3.7%) | 0.887 |
Secondary bacterial infection | 0.015 | ||
Bacterial coinfection (<48 h) | 72 (36.4%) | 138 (47.4%) | |
Bacterial superinfection (>48 h) | 126 (63.6%) | 153 (52.6%) | |
Performed tests | 0.310 | ||
Culture | 79 (39.9%) | 110 (37.8%) | |
PCR | 47 (23.7%) | 87 (29.9%) | |
Culture and PCR | 72 (36.4%) | 94 (32.3%) | |
Ground glass opacities | 0.022 | ||
<30% | 63 (31.8%) | 123 (42.3%) | |
30–60% | 113 (57.1%) | 150 (51.5%) | |
>60% | 22 (11.1%) | 18 (6.2%) | 0.047 |
COVID-19 severity | |||
Mild | 68 (34.3%) | 127 (43.6%) | |
Moderate | 106 (53.5%) | 143 (49.1%) | |
Severe | 24 (12.1%) | 21 (7.2%) | |
Oxygen supplementation | |||
AIRVO | 86 (43.4%) | 108 (37.1%) | 0.160 |
CPAP | 24 (12.1%) | 31 (10.7%) | 0.613 |
Ventilator | 21 (10.6%) | 15 (5.6%) | 0.023 |
Outcomes | |||
ICU admission | 19 (9.6%) | 14 (4.8%) | 0.038 |
Days in the ICU (mean ± SD) | 12.9 ± 6.5 | 11.6 ± 5.2 | 0.014 t |
Days between symptom onset until death (mean ± SD) | 15.2 ± 6.6 | 13.7 ± 6.0 | 0.009 t |
Mortality | 14 (7.1%) | 13 (4.5%) | 0.215 |
Days until discharge (mean ± SD) | 12.8 ± 4.6 | 12.0 ± 5.1 | 0.077 t |
Variables * | Normal Range | Antibiotic Takers (n = 198) | Non-Antibiotic Takers (n = 291) | p-Value |
---|---|---|---|---|
Complete blood count | ||||
RBC (millions/mm3) | 4.35–5.65 | 4.38 ± 1.1 | 4.41 ± 1.3 | 0.790 |
PLT (thousands/mm3) | 150–450 | 186 ± 53 | 195 ± 61 | 0.092 |
WBC (thousands/mm3) | 4.5–11.0 | 15.2 ± 6.0 | 14.7 ± 5.6 | 0.347 |
Hb (g/dL) | 13.0–17.0 | 13.6 ± 2.2 | 14.0 ± 2.4 | 0.062 |
Hematocrit (%) | 36–48 | 37 ± 7 | 38 ± 8 | 0.154 |
Kidney function tests | ||||
Creatinine (µmol/L) | 0.74–1.35 | 1.36 ± 0.33 | 1.28 ± 0.29 | 0.004 |
BUN (mmol/L) | 2.1–8.5 | 9.1 ± 3.4 | 8.6 ± 2.2 | 0.048 |
GFR | >60 | 74 ± 12 | 76 ± 13 | 0.085 |
Liver function tests | ||||
ALT (U/L) | 7–35 | 53 ± 16 | 49 ± 18 | 0.012 |
AST (U/L) | 10–40 | 44 ± 9 | 42 ± 9 | 0.016 |
GGT (U/L) | 0–30 | 14.6 ± 4 | 15.1 ± 4 | 0175 |
PT (seconds) | 11.0–13.5 | 11.8 ± 1.5 | 11.9 ± 1.7 | 0.503 |
Inflammatory markers ** | ||||
Procalcitonin (ug/L) | 0–0.25 ug/L | 0.7 [0.2–1.0] | 0.6 [0.1–0.9] | 0.264 |
CRP (mg/L) | 0–10 mg/L | 34 [12–49] | 32 [13–47] | 0.139 |
IL-6 (pg/mL) | 0–16 pg/mL | 42 [28–49] | 37 [24–45] | 0.016 |
ESR (mm/h) | 0–22 mm/hr | 43 [36–54] | 41 [35–52] | 0.088 |
Fibrinogen (g/L) | 2–4 g/L | 5.1 [3.8–6.6] | 4.5 [3.4–5.7] | 0.003 |
D-dimer (ng/mL) | <250 | 361 [308–442] | 372 [311–436] | 0.063 |
Variables * | Antibiotic Takers | p-Value ** | Non-Antibiotic Takers | p-Value ** | ||
---|---|---|---|---|---|---|
PCR (n = 72) | Culture (n = 72) | PCR (n = 94) | Culture (n = 94) | |||
Positive specimens | ||||||
Sputum/Aspirate | 66/72 (91.7%) | 37/72 (51.4%) | <0.001 | 88/94 (93.6%) | 81/94 (86.2%) | 0.090 |
Blood | 62/72 (86.1%) | 41/72 (56.9%) | <0.001 | 83/94 (88.3%) | 74/94 (78.7%) | 0.076 |
Urine | 18/24 (75.0%) | 10/24 (41.7%) | 0.019 | 49/60 (71.7%) | 53/60 (65.0%) | 0.297 |
Fecal | 5/7 (71.4%) | 3/7 (42.9%) | 0.280 | 6/9 (66.7%) | 5/9 (55.6%) | 0.550 |
False negative result | 24/175 (13.7%) | 84/175 (48.0%) | <0.001 | 31/257 (12.1%) | 44/257 (17.1%) | 0.104 |
Pathogens involved | ||||||
Staphylococcus aureus | 16 (22.2%) | 7 (9.7%) | 0.040 | 21 (22.3%) | 16 (17.0%) | 0.359 |
Streptococcus pneumoniae | 6 (8.3%) | 4 (5.6%) | 0.512 | 15 (16.0%) | 7 (7.4%) | 0.069 |
Streptococcus pyogenes | 10 (13.9%) | 5 (6.9%) | 0.172 | 8 (8.5%) | 5 (5.3%) | 0.388 |
Enterococcus faecalis | 5 (6.9%) | 2 (2.8%) | 0.245 | 7 (7.4%) | 3 (3.2%) | 0.193 |
Escherichia coli | 14 (19.4%) | 8 (11.1%) | 0.164 | 19 (20.2%) | 9 (9.6%) | 0.040 |
Klebsiella spp | 18 (25.0%) | 9 (12.5%) | 0.054 | 26 (27.7%) | 14 (14.9%) | 0.032 |
Pseudomonas aeruginosa | 20 (27.8%) | 9 (12.5%) | 0.022 | 17 (18.1%) | 10 (10.6%) | 0.145 |
Clostridium difficile | 5 (6.9%) | 3 (4.2%) | 0.466 | 9 (9.6%) | 6 (6.4%) | 0.419 |
Others | 7 (9.7%) | 2 (2.8%) | 0.085 | 6 (6.4%) | 2 (2.1%) | 0.148 |
Antibiotic resistance percentage | ||||||
Cephalosporin | 31 (43.1%) | 19 (26.4%) | 0.035 | 29 (30.9%) | 20 (21.3%) | 0.134 |
Macrolide | 28 (38.9%) | 12 (16.7%) | 0.002 | 26 (27.7%) | 21 (22.3%) | 0.399 |
Penicillin | 55 (76.4%) | 48 (66.7%) | 0.196 | 53 (56.4%) | 41 (43.6%) | 0.080 |
Aminoglycoside | 23 (31.9%) | 19 (26.4%) | 0.463 | 20 (21.3%) | 17 (18.1%) | 0.582 |
Tetracycline | 19 (26.4%) | 14 (19.4%) | 0.321 | 21 (22.3%) | 14 (14.9%) | 0.189 |
Quinolones | 18 (25.0%) | 10 (13.9%) | 0.092 | 15 (16.0%) | 11 (11.7%) | 0.389 |
Carbapenems | 8 (11.1%) | 7 (9.7%) | 0.785 | 13 (13.8%) | 10 (10.6%) | 0.504 |
Glycopeptides | 19 (26.4%) | 10 (13.9%) | 0.061 | 11 (11.7%) | 6 (6.4%) | 0.203 |
Nitroimidazole | 9 (12.5%) | 7 (9.7%) | 0.595 | 9 (9.6%) | 4 (4.3%) | 0.150 |
Other | 7 (9.7%) | 6 (8.3%) | 0.771 | 9 (9.6%) | 3 (3.2%) | 0.073 |
Multidrug resistance | 0.033 | 0.091 | ||||
Yes | (91.7%) | (79.2%) | 85 (90.4%) | 77 (81.9%) | ||
No | (8.3%) | (20.8%) | 9 (9.6%) | 17 (18.1%) | ||
Number of pathogens identified | ||||||
Monoinfection | 43 (59.7%) | 30 (41.7%) | 0.030 | 60 (63.8%) | 52 (55.3%) | 0.235 |
Two pathogens | 21 (29.2%) | 7 (9.7%) | 0.003 | 26 (27.7%) | 17 (18.1%) | 0.118 |
More than two pathogens | 8 (11.1%) | 2 (2.8%) | 0.049 | 8 (8.5%) | 3 (3.2%) | 0.120 |
Variables * | Antibiotic Takers | p-Value | Non-Antibiotic Takers | p-Value ** | ||
---|---|---|---|---|---|---|
PCR (n = 47) | Culture (n = 79) | PCR (n = 87) | Culture (n = 110) | |||
Time of sampling | 0.097 | 0.272 | ||||
Within 48 h from admission | 28 (59.6%) | 35 (44.3%) | 43 (49.4%) | 63 (57.3%) | ||
After 48 h from admission | 19 (40.4%) | 44 (55.7%) | 44 (50.6%) | 47 (42.7%) | ||
Specimens taken | ||||||
Sputum/Aspirate | 41 (87.2%) | 73 (92.4%) | 0.338 | 82 (94.3%) | 104 (94.5%) | 0.929 |
Blood | 38 (80.9%) | 66 (83.5%) | 0.700 | 74 (85.1%) | 95 (86.4%) | 0.794 |
Urine | 15 (31.9%) | 19 (24.1%) | 0.336 | 25 (28.7%) | 22 (20.0%) | 0.153 |
Fecal | 7 (14.9%) | 22 (27.8%) | 0.094 | 13 (14.9%) | 15 (13.6%) | 0.794 |
Timeline | ||||||
Time to results, hours (mean ± SD) | 13.4 ± 3.5 | 25.1 ± 4.9 | <0.001 t | 12.9 ± 4.2 | 24.7 ± 4.7 | <0.001 t |
Time from admission to therapeutic antibiotic initiation, hours (mean ± SD) | 26.8 ± 7.5 | 40.4 ± 11.4 | <0.001 t | 25.3 ± 7.0 | 41.6 ± 7.2 | <0.001 t |
Decision | 0.743 | 0.574 | ||||
Discontinued antibiotics | 6 (12.8%) | 11 (13.9%) | 13 (14.9%) | 12 (10.9%) | ||
Changed antibiotic | 38 (80.9%) | 60 (75.9%) | 65 (74.7%) | 89 (80.9%) | ||
Continued antibiotic | 3 (6.4%) | 8 (10.1%) | 9 (10.3%) | 9 (8.2%) | ||
Days until discharge (mean ± SD) | 12.4 ± 4.3 | 14.9 ± 4.8 | 0.004 t | 12.0 ± 4.1 | 14.5 ± 4.3 | <0.001 t |
Factors * | Adjusted OR | 95% CI | p-Value |
---|---|---|---|
Antibiotic consumption behavior | |||
By prescription ^ | 1.04 | 0.87–1.21 | 0.296 |
Over-the-counter | 1.21 | 1.02–1.34 | 0.042 |
Smoking status | |||
No | 0.93 | 0.71–1.05 | 0.137 |
Yes ^ | 1.44 | 1.12–1.69 | <0.001 |
Secondary bacterial infection | |||
Bacterial coinfection (<48 h) ^ | 1.09 | 0.94–1.15 | 0.058 |
Bacterial superinfection (>48 h) | 1.52 | 1.38–1.93 | <0.001 |
Performed tests | |||
Culture | 1.17 | 1.01–1.49 | 0.009 |
PCR | 0.98 | 0.82–1.14 | 0.221 |
Culture and PCR ^ | 0.92 | 0.77–1.09 | 0.375 |
Time of sampling | |||
Within 48 h from admission ^ | 1.02 | 0.93–1.22 | 0.072 |
After 48 h from admission | 1.36 | 1.04–1.78 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogdan, I.; Citu, C.; Bratosin, F.; Malita, D.; Romosan, I.; Gurban, C.V.; Bota, A.V.; Turaiche, M.; Bratu, M.L.; Pilut, C.N.; et al. The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics 2022, 11, 437. https://doi.org/10.3390/antibiotics11040437
Bogdan I, Citu C, Bratosin F, Malita D, Romosan I, Gurban CV, Bota AV, Turaiche M, Bratu ML, Pilut CN, et al. The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics. 2022; 11(4):437. https://doi.org/10.3390/antibiotics11040437
Chicago/Turabian StyleBogdan, Iulia, Cosmin Citu, Felix Bratosin, Daniel Malita, Ioan Romosan, Camelia Vidita Gurban, Adrian Vasile Bota, Mirela Turaiche, Melania Lavinia Bratu, Ciprian Nicolae Pilut, and et al. 2022. "The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics" Antibiotics 11, no. 4: 437. https://doi.org/10.3390/antibiotics11040437
APA StyleBogdan, I., Citu, C., Bratosin, F., Malita, D., Romosan, I., Gurban, C. V., Bota, A. V., Turaiche, M., Bratu, M. L., Pilut, C. N., & Marincu, I. (2022). The Impact of Multiplex PCR in Diagnosing and Managing Bacterial Infections in COVID-19 Patients Self-Medicated with Antibiotics. Antibiotics, 11(4), 437. https://doi.org/10.3390/antibiotics11040437