Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Antibiotic Resistance-Related Features of Xoo-S and Xoo-ZSM
2.2. Profile of the Metabolomic Analysis
2.3. Pathways Enrichment of the DAMs
2.4. Reduced P Cycle in Xoo-ZSM
2.5. Elevated Sensitivity to ZSM and Upregulated P Cycle in the Presence of Exogenous Alanine
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Culture Manipulation
4.2. Determination of Minimum Inhibitory Concentration (MIC)
4.3. Measurement of Growth Curve
4.4. Sample Preparation of Metabonomics Based on GC-MS
4.5. Data Deposition and Statistical Analysis
4.6. Antibiotic Bactericidal Experiments
4.7. Real-Time Quantitative PCR
4.8. Measurement of the Activity of Enzymes in the P Cycle
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nino-Liu, D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 2006, 7, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Yan, M.Q.; Li, R.; Li, M.K.; Gao, M.L. First report of a new and highly virulent race of Xanthomonas oryzae pv. Oryzae, the causal agent of bacterial leaf blight of rice in Guangxi province, China. Plant Dis. 2016, 100, 1492. [Google Scholar] [CrossRef]
- Ke, Y.; Wu, M.; Zhang, Q.; Li, X.; Xiao, J.; Wang, S. Hd3a and osfd1 negatively regulate rice resistance to Xanthomonas oryzae pv. Oryzae and Xanthomonas oryzae pv. Oryzicola. Biochem. Biophys. Res. Commun. 2019, 513, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, H.; Inoue, Y.; Takeya, M.; Sasaki, A.; Kaku, H. Genome sequence of Xanthomonas oryzae pv. Oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity. Jpn. Agric. Res. Q. JARQ 2005, 39, 275–287. [Google Scholar] [CrossRef] [Green Version]
- Kusaka, T. The mechanism of aristeromycin. I. Growth inhibition of Xanthomonas oryzae by aristeromycin. J. Antibiot. 1971, 24, 756–760. [Google Scholar] [CrossRef] [Green Version]
- Hori, M.; Wakshiro, T.; Ito, E.; Sawa, T.; Takeuchi, T. Biochemical effects of formycin b on Xanthomonas oryzae. J. Antibiot. 1968, 21, 264–271. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Jiang, H.X.; Sun, S.; Yang, D.D.; Jin, K.M.; Zhang, W.; He, Y.W. Biotechnological potential of a rhizosphere Pseudomonas aeruginosa strain producing phenazine-1-carboxylic acid and phenazine-1-carboxamide. World J. Microbiol. Biotechnol. 2016, 32, 50. [Google Scholar] [CrossRef]
- Sundin, G.W.; Wang, N. Antibiotic resistance in plant-pathogenic bacteria. Annu. Rev. Phytopathol. 2018, 56, 161–180. [Google Scholar] [CrossRef]
- Pan, X.; Shu, X.; Jian, W.; Luo, J.; Zhou, M. Screening and characterization of Xanthomonas oryzae pv. Oryzae strains with resistance to pheazine-1-carboxylic acid. Pestic. Biochem. Physiol. 2018, 145, 8–14. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, X.F.; Zhou, M.G.; Kuang, J.; Zhang, Y.; Shang, Y.; Wang, J.X. Status of streptomycin resistance development in Xanthomonas oryzae pv. Oryzae and Xanthomonas oryzae pv. Oryzicola in china and their resistance characters. J. Phytopathol. 2010, 158, 601–608. [Google Scholar]
- Zhu, C. Zhongshengmycin, a new agro-antibiotics. Fine Spec. Chem. 2002, 16, 14–17. [Google Scholar]
- Ren, Y.; Li, D.; Jiang, S.; Wang, Y.; Tang, Q.; Huang, H.; Wang, D.; Song, B.; Chen, Z. Integration of transcriptomic and proteomic data reveals the possible action mechanism of the antimicrobial zhongshengmycin against Didymella segeticola, the causal agent of tea leaf spot. Phytopathology 2021, 111, 2238–2249. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, C.; Long, Y.; Wu, X.; Su, Y.; Lei, Y.; Ai, Q. Bioactivity and control efficacy of the novel antibiotic tetramycin against various kiwifruit diseases. Antibiotics 2021, 10, 289. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.F.; Lei, Y.Y.; Gan, Y.E.; Ding, T.; Zeng, D.G.; Liu, Q.G. Screening of fungicides and drug resistance analysis for Xanthomonas axonopodis pv. Citri. J. South China Agric. Univ. 2012, 33, 460–464. [Google Scholar]
- Su, Y.B.; Kuang, S.F.; Ye, J.Z.; Tao, J.J.; Li, H.; Peng, X.X.; Peng, B. Enhanced biosynthesis of fatty acids is associated with the acquisition of ciprofloxacin resistance in Edwardsiella tarda. mSystems 2021, 31, e0069421. [Google Scholar] [CrossRef]
- Cheng, Z.X.; Yang, M.J.; Peng, B.; Peng, X.X.; Lin, X.M.; Li, H. The depressed central carbon and energy metabolisms is associated to the acquisition of levofloxacin resistance in Vibrio alginolyticus. J. Proteom. 2018, 181, 83–91. [Google Scholar] [CrossRef]
- Su, Y.B.; Peng, B.; Li, H.; Cheng, Z.X.; Zhang, T.T.; Zhu, J.X.; Li, D.; Li, M.Y.; Ye, J.Z.; Du, C.C.; et al. Pyruvate cycle increases aminoglycoside efficacy and provides respiratory energy in bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, E1578–E1587. [Google Scholar] [CrossRef] [Green Version]
- Kuang, S.F.; Chen, Y.T.; Chen, J.J.; Peng, X.X.; Chen, Z.G.; Li, H. Synergy of alanine and gentamicin to reduce nitric oxide for elevating killing efficacy to antibiotic-resistant Vibrio alginolyticus. Virulence 2021, 12, 1737–1753. [Google Scholar] [CrossRef]
- Ye, J.; Su, Y.; Peng, X.; Li, H. Reactive oxygen species-related ceftazidime resistance is caused by the pyruvate cycle perturbation and reverted by fe(3 +) in Edwardsiella tarda. Front. Microbiol. 2021, 12, 654783. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, M.; Shen, P.; Guan, Y. Elevation of fatty acid biosynthesis metabolism contributes to zhongshengmycin resistance in Xanthomonas oryzae. Antibiotics 2021, 10, 1166. [Google Scholar] [CrossRef]
- Kuang, S.F.; Feng, D.Y.; Chen, Z.G.; Liang, Z.Z.; Xiang, J.J.; Li, H.; Peng, X.X.; Zhang, T.T. Inactivation of nitrite-dependent nitric oxide biosynthesis is responsible for overlapped antibiotic resistance between naturally and artificially evolved Pseudomonas aeruginosa. mSystems 2021, 6, e0073221. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Z.; Lin, X.M.; Cheng, Z.X.; Su, Y.B.; Li, W.X.; Ali, F.M.; Zheng, J.; Peng, B. Identification and efficacy of glycine, serine and threonine metabolism in potentiating kanamycin-mediated killing of Edwardsiella piscicida. J. Proteom. 2018, 183, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.B.; Peng, B.; Han, Y.; Li, H.; Peng, X.X. Fructose restores susceptibility of multidrug-resistant Edwardsiella tarda to kanamycin. J. Proteome Res. 2015, 14, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zeng, Z.H.; Yang, M.J.; Cheng, Z.X.; Peng, X.X.; Li, H. Nacl promotes antibiotic resistance by reducing redox states in Vibrio alginolyticus. Environ. Microbiol. 2018, 20, 4022–4036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, J.; Jiang, M.; Xu, D.; Peng, B.; Peng, X.X.; Li, H. Reduced redox-dependent mechanism and glucose-mediated reversal in gentamicin-resistant Vibrio alginolyticus. Environ. Microbiol. 2019, 21, 4724–4739. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, M.J.; Peng, B.; Peng, X.X.; Li, H. Reduced ros-mediated antibiotic resistance and its reverting by glucose in Vibrio alginolyticus. Environ. Microbiol. 2020, 22, 4367–4380. [Google Scholar] [CrossRef]
- Liu, S.R.; Peng, X.X.; Li, H. Metabolic mechanism of ceftazidime resistance in Vibrio alginolyticus. Infect. Drug Resist. 2019, 12, 417–429. [Google Scholar] [CrossRef]
- Li, L.; Su, Y.B.; Peng, B.; Peng, X.X.; Li, H. Metabolic mechanism of colistin resistance and its reverting in Vibrio alginolyticus. Environ. Microbiol. 2020, 22, 4295–4313. [Google Scholar] [CrossRef]
- Su, Y.B.; Kuang, S.F.; Peng, X.X.; Li, H. The depressed p cycle contributes to the acquisition of ampicillin resistance in Edwardsiella piscicida. J. Proteom. 2020, 212, 103562. [Google Scholar] [CrossRef]
- Jiang, M.; Kuang, S.-F.; Lai, S.-S.; Zhang, S.; Yang, J.; Peng, B.; Peng, X.-X.; Chen, Z.-G.; Li, H. Na+-nqr confers aminoglycoside resistance via the regulation of l-alanine metabolism. mBio 2020, 11, e02086-20. [Google Scholar] [CrossRef]
- Ye, J.Z.; Su, Y.B.; Lin, X.M.; Lai, S.S.; Li, W.X.; Ali, F.; Zheng, J.; Peng, B. Alanine enhances aminoglycosides-induced ros production as revealed by proteomic analysis. Front. Microbiol. 2018, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.L.; Chen, Z.G.; Yang, T.C.; Jiang, M.; Wang, J.; Cheng, Z.X.; Yang, M.J.; Zhu, J.X.; Zhang, T.T.; Li, H.; et al. Glutamine promotes antibiotic uptake to kill multidrug-resistant uropathogenic bacteria. Sci. Transl. Med. 2021, 13, eabj0716. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Su, Y.B.; Li, H.; Han, Y.; Guo, C.; Tian, Y.M.; Peng, X.X. Exogenous alanine and/or glucose plus kanamycin kills antibiotic-resistant bacteria. Cell Metab. 2015, 21, 249–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, Z.X.; Guo, C.; Chen, Z.G.; Yang, T.C.; Zhang, J.Y.; Wang, J.; Zhu, J.X.; Li, D.; Zhang, T.T.; Li, H.; et al. Glycine, serine and threonine metabolism confounds efficacy of complement-mediated killing. Nat. Commun. 2019, 10, 3325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, M.Y.; Peng, B.; Cheng, Z.X.; Li, H.; Peng, X.X. Gc-ms-based metabolome and metabolite regulation in serum-resistant Streptococcus agalactiae. J. Proteome Res. 2016, 15, 2246–2253. [Google Scholar] [CrossRef]
- Guo, C.; Huang, X.Y.; Yang, M.J.; Wang, S.; Ren, S.T.; Li, H.; Peng, X.X. GC/MS-based metabolomics approach to identify biomarkers differentiating survivals from death in crucian carps infected by Edwardsiella tarda. Fish Shellfish Immunol. 2014, 39, 215–222. [Google Scholar] [CrossRef]
- Guan, Y.; Yin, D.; Du, X.; Ye, X. Metabolomics approach used for understanding temperature-related pectinase activity in Bacillus licheniformis dy2. FEMS Microbiol. Lett. 2018, 365, fny255. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guan, Y.; Shen, P.; Lin, M.; Ye, X. Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae. Antibiotics 2022, 11, 245. https://doi.org/10.3390/antibiotics11020245
Guan Y, Shen P, Lin M, Ye X. Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae. Antibiotics. 2022; 11(2):245. https://doi.org/10.3390/antibiotics11020245
Chicago/Turabian StyleGuan, Yi, Peihua Shen, Meiyun Lin, and Xiuyun Ye. 2022. "Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae" Antibiotics 11, no. 2: 245. https://doi.org/10.3390/antibiotics11020245
APA StyleGuan, Y., Shen, P., Lin, M., & Ye, X. (2022). Exogenous Alanine Reverses the Bacterial Resistance to Zhongshengmycin with the Promotion of the P Cycle in Xanthomonas oryzae. Antibiotics, 11(2), 245. https://doi.org/10.3390/antibiotics11020245