Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study
Abstract
:1. Introduction
2. Methods
2.1. RAND/UCLA Appropriateness Method
2.2. Recruitment of Panelists
2.3. Generation of Scenarios
2.4. Two-Round Consensus Process
3. Results
3.1. Screening and Bacterial Colonization
3.1.1. When to Perform Nasal Swab for S. aureus
- SCENARIO #1. Screening for MSSA and MRSA in a pediatric patient undergoing surgery
3.1.2. When to Search for MDR Bacteria Other Than S. aureus
- SCENARIO #2. Screening for MDR other than MRSA in a pediatric patient undergoing surgery
3.1.3. Prophylaxis in Case of Colonization by MRSA or MDR
- SCENARIO #3. Perioperative prophylaxis in the patient colonized by MRSA
- SCENARIO #4. Perioperative prophylaxis in the patient colonized by MDRs other than MRSA
3.1.4. Decolonization
- SCENARIO #5. MRSA decolonization in the patient undergoing elective surgery
- SCENARIO #6. Decolonization for MDR bacteria other than MRSA in the patient undergoing elective surgery
3.2. Allergy to First-Line Antibiotics
- SCENARIO # 7. Perioperative prophylaxis in patients allergic to first-line antibiotics
3.3. Immunodepression
- SCENARIO #8. Surgical prophylaxis in immunocompromised patients
3.4. Splenectomy
- SCENARIO #9. Splenectomy
3.5. Comorbidity
- SCENARIO #10. Perioperative antibiotic prophylaxis in patients with obesity or malnutrition
- SCENARIO #11. Perioperative antibiotic prophylaxis in patients with comorbidities other than obesity or malnutrition
3.6. Patients on Antibiotic Prophylaxis or Antibiotic Therapy or with Infection in Other Sites
- SCENARIO #12. Perioperative antibiotic prophylaxis in patient already undergoing antibiotic therapy or prophylaxis
3.7. Previous Intervention or Prolonged Hospitalization
- SCENARIO #13. Perioperative antibiotic prophylaxis in patients undergoing previous surgery or with prolonged hospitalization
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Healthcare Infection Control Practices Advisory Committee. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- Anderson, D.J.; Podgorny, K.; Berríos-Torres, S.I.; Bratzler, D.W.; Dellinger, E.P.; Greene, L.; Nyquist, A.C.; Saiman, L.; Yokoe, D.S.; Maragakis, L.L.; et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect. Control Hosp. Epidemiol. 2014, 35, 605–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, G.S.; Christensen, R.E.; Wagner, D.S.; Pearce, B.K.; Sweeney, J.; Tait, A.R. Retrospective evaluation of antimicrobial prophylaxis in prevention of surgical site infection in the pediatric population. Paediatr. Anaesth. 2014, 24, 994–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshbin, A.; So, J.P.; Aleem, I.S.; Stephens, D.; Matlow, A.G.; Wright, J.G. SickKids Surgical Site Infection Task Force. Antibiotic Prophylaxis to Prevent Surgical Site Infections in Children: A Prospective Cohort Study. Ann. Surg. 2015, 262, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Bratzler, D.W.; Dellinger, E.P.; Olsen, K.M.; Perl, T.M.; Auwaerter, P.G.; Bolon, M.K.; Fish, D.N.; Napolitano, L.M.; Sawyer, R.G.; Slain, D.; et al. American Society of Health-System Pharmacists (ASHP); Infectious Diseases Society of America (IDSA); Surgical Infection Society (SIS); Society for Healthcare Epidemiology of America (SHEA). Clinical practice guidelines for antimicrobial prophylaxis in surgery. Surg. Infect. 2013, 14, 73–156. [Google Scholar]
- Fitch, K.; Bernstein, S.J.; Aguilar, M.D. The RAND/UCLA Adeguateness Method User’s Manual; The RAND Corporation: Santa Monica, CA, USA, 2001. [Google Scholar]
- Hicks, N.R. Some observations on attempts to measure appropriateness of care. BMJ 1994, 309, 730. [Google Scholar] [CrossRef] [Green Version]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health 2017, 10, 369–378. [Google Scholar] [CrossRef] [Green Version]
- Lee, A.S.; de Lencastre, H.; Garau, J.; Kluytmans, J.; Malhotra-Kumar, S.; Peschel, A.; Harbarth, S. Methicillin-resistant Staphylococcus aureus. Nat. Rev. Dis. Primers 2018, 4, 18033. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 6 December 2021).
- World Health Organization (WHO). Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; 2018; Available online: https://apps.who.int/iris/handle/10665/277399 (accessed on 6 December 2021).
- Saraswat, M.K.; Magruder, J.T.; Crawford, T.C.; Gardner, J.M.; Duquaine, D.; Sussman, M.S.; Maragakis, L.L.; Whitman, G.J. Preoperative Staphylococcus Aureus Screening and Targeted Decolonization in Cardiac Surgery. Ann. Thorac. Surg. 2017, 104, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Kato, Y.; Shime, N.; Hashimoto, S.; Nomura, M.; Okayama, Y.; Yamagishi, M.; Fujita, N. Effects of controlled perioperative antimicrobial prophylaxis on infectious outcomes in pediatric cardiac surgery. Crit. Care Med. 2007, 35, 1763–1768. [Google Scholar] [CrossRef]
- Rao, N.; Cannella, B.; Crossett, L.S.; Yates, A.J., Jr.; McGough, R., 3rd. A preoperative decolonization protocol for staphylococcus aureus prevents orthopaedic infections. Clin. Orthop. Relat. Res. 2008, 466, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Elward, A.M.; McAndrews, J.M.; Young, V.L. Methicillin-sensitive and methicillin-resistant Staphylococcus aureus: Preventing surgical site infections following plastic surgery. Aesthet. Surg. J. 2009, 29, 232–244. [Google Scholar] [CrossRef] [PubMed]
- ECDC Technical Report. Systematic Review of the Effectiveness of Infection Control Measures to Prevent the Transmission of Extended-Spectrum Betalactamase-Producing Enterobacteriaceae through Cross-Border Transfer of Patients. Available online: https://www.ecdc.europa.eu/en/publications-data/systematic-review-effectiveness-infection-control-measures-prevent-transmission-0 (accessed on 12 December 2021).
- Sharara, S.L.; Maragakis, L.L.; Cosgrove, S.E. Decolonization of Staphylococcus aureus. Infect. Dis. Clin. N. Am. 2021, 35, 107–133. [Google Scholar] [CrossRef] [PubMed]
- Van Rijen, M.; Bonten, M.; Wenzel, R.; Kluytmans, J. Mupirocin ointment for preventing Staphylococcus aureus infections in nasal carriers. Cochrane Database Syst. Rev. 2008, 4, CD006216. [Google Scholar] [CrossRef] [PubMed]
- McDanel, D.L.; Azar, A.E.; Dowden, A.M.; Murray-Bainer, S.; Noiseux, N.O.; Willenborg, M.; Clark, C.R.; Callaghan, J.J.; Haleem, A. Screening for Beta-Lactam Allergy in Joint Arthroplasty Patients to Improve Surgical Prophylaxis Practice. J. Arthroplast. 2017, 32, S101–S108. [Google Scholar] [CrossRef]
- Blumenthal, K.G.; Ryan, E.E.; Li, Y.; Lee, H.; Kuhlen, J.L.; Shenoy, E.S. The Impact of a Reported Penicillin Allergy on Surgical Site Infection Risk. Clin. Infect. Dis. 2018, 66, 329–336. [Google Scholar] [CrossRef]
- Beltran, R.J.; Kako, H.; Chovanec, T.; Ramesh, A.; Bissonnette, B.; Tobias, J.D. Penicillin allergy and surgical prophylaxis: Cephalosporin cross-reactivity risk in a pediatric tertiary care center. J. Pediatr. Surg. 2015, 50, 856–859. [Google Scholar] [CrossRef]
- Butler, D.F.; Lee, B.R.; Suppes, S.; Sandritter, T.; Newland, J.G.; Harte, L.; Goldman, J.L. Variability of surgical prophylaxis in penicillin-allergic children. Infect. Control Hosp. Epidemiol. 2018, 39, 1480–1483. [Google Scholar] [CrossRef] [Green Version]
- Osei, D.A.; Boyer, M.I. Preoperative antibiotic prophylaxis in the penicillin-allergic patient. J. Hand Surg. Am. 2012, 37, 2623–2625. [Google Scholar] [CrossRef]
- Haas, H.; Schneider, G.; Moulin, F. Antibiotic prophylaxis in visceral and urologic pædiatric surgery. Arch. Pediatr. 2013, 20, S67–S73. [Google Scholar] [CrossRef]
- Tiri, A.; Masetti, R.; Conti, F.; Tignanelli, A.; Turrini, E.; Bertolini, P.; Esposito, S.; Pession, A. Inborn Errors of Immunity and Cancer. Biology 2021, 10, 313. [Google Scholar] [CrossRef] [PubMed]
- Nesković, V. Preoperative assesment of the immunocompromised patient. Acta Chir Iugosl. 2011, 58, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.P.; Song, A.T.W.; Oshiro, I.C.V.; Andraus, W.; D’Albuquerque, L.A.C.; Abdala, E. Surgical site infection after liver transplantation in the era of multidrug-resistant bacteria: What new risks should be considered? Diagn. Microbiol. Infect. Dis. 2021, 99, 115220. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, B.-C.; Zhang, X.-Y.; Li, L.; Xia, X.-J.; Guo, R.-Z. Prevention and treatment of surgical site infection in HIV-infected patients. BMC Infect. Dis. 2012, 12, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muneer, A.; Pearce, I.; Ralph, D. Prosthetic Surgery in Urology; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Drapeau, C.M.; Pan, A.; Bellacosa, C.; Cassola, G.; Crisalli, M.P.; De Gennaro, M.; Di Cesare, S.; Dodi, F.; Gattuso, G.; Irato, L.; et al. Surgical site infections in HIV-infected patients: Results from an Italian prospective multicenter observational study. Infection 2009, 37, 455–460. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, S.; Yazaki, H.; Ito, H.; Oka, S.-I.; Kuwata, H.; Seike, A.; Kitazawa, S.; Fukuda, S.; Hosaka, S. Effect of CD4+ T-lymphocyte count on hospital outcome of elective general thoracic surgery patients with human immunodeficiency virus. Gen. Thorac Cardiovasc. Surg. 2011, 59, 743–747. [Google Scholar] [CrossRef]
- Lima, M.; Dòmini, M.; Tursini, S.; Gargano, T.; Mazzero, G. Splenectomia totale/splenectomia parziale. In Videochirurgia Pediatrica: Principi di Tecnica in Laparoscopia, Toracoscopia e Retroperitoneoscopia Pediatrica; Esposito, C., Hollands, C., Lima, M., Settimi, A., Valla, J.-S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 321–329. [Google Scholar]
- Russello, D.; La Greca, G. CINECA IRIS, Institutional Research Information Sysetem. Splenectomia Laparoscopica: Quali Evidenze? 2011. Available online: https://www.iris.unict.it/handle/20.500.11769/91194 (accessed on 6 December 2021).
- Samuk, I.; Seguier-Lipszyc, E.; Baazov, A.; Tamary, H.; Nahum, E.; Steinberg, R.; Freud, E. Emergency or urgent splenectomy in children for non-traumatic reasons. Eur. J. Pediatr. 2019, 178, 1363–1367. [Google Scholar] [CrossRef]
- Gallagher, S.F.; Carey, L.C.; Murr, M.M. Open Splenectomy. In Atlas of Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery; Clavien, P.A., Sarr, M.G., Fong, Y., Georgiev, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 953–959. [Google Scholar]
- Hourigan, J.S. Impact of obesity on surgical site infection in colon and rectal surgery. Clin. Colon Rectal Surg. 2011, 24, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Skeie, E.; Koch, A.M.; Harthug, S.; Fosse, U.; Sygnestveit, K.; Nilsen, R.M.; Tangvik, R.J. A positive association between nutritional risk and the incidence of surgical site infections: A hospital-based register study. PLoS ONE 2018, 13, e0197344. [Google Scholar] [CrossRef] [Green Version]
- Tsantes, A.G.; Papadopoulos, D.V.; Lytras, T.; Tsantes, A.E.; Mavrogenis, A.F.; Korompilias, A.V.; Gelalis, I.D.; Tsantes, C.G.; Bonovas, S. Association of malnutrition with periprosthetic joint and surgical site infections after total joint arthroplasty: A systematic review and meta-analysis. J. Hosp. Infect. 2019, 103, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.M.; Neches, W.H.; Wald, E.R. Infective endocarditis: 35 years of experience at a children’s hospital. Clin. Infect. Dis. 1997, 24, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Baltimore, R.S.; Gewitz, M.; Baddour, L.M.; Beerman, L.B.; Jackson, M.A.; Lockhart, P.B.; Pahl, E.; Schutze, G.E.; Shulman, S.T.; Willoughby, R., Jr. American Heart Association Rheumatic Fever, Endocarditis, and Kawasaki Disease Committee of the Council on Cardiovascular Disease in the Young and the Council on Cardiovascular and Stroke Nursing. Infective Endocarditis in Childhood: 2015 Update: A Scientific Statement from the American Heart Association. Circulation 2015, 132, 1487–1515. [Google Scholar] [PubMed] [Green Version]
- Martin, J.; Lindgren, C. Infectious Endocarditis Prophylaxis in Children. Pediatr. Emerg. Care 2018, 34, 743–746. [Google Scholar] [CrossRef] [PubMed]
- Hogan, B.V.; Peter, M.B.; Shenoy, H.G.; Horgan, K.; Hughes, T.A. Surgery induced immunosuppression. Surgeon 2011, 9, 38–43. [Google Scholar] [CrossRef]
- Wakefield, C.H.; Carey, P.D.; Foulds, S.; Monson, J.R.; Guillou, P.J. Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery. Br. J. Surg. 1993, 80, 205–209. [Google Scholar] [CrossRef]
- Kohl, B.A.; Deutschman, C.S. The inflammatory response to surgery and trauma. Curr. Opin. Crit. Care 2006, 12, 325–332. [Google Scholar] [CrossRef]
- McHoney, M.; Eaton, S.; Pierro, A. Metabolic response to surgery in infants and children. Eur. J. Pediatr. Surg. 2009, 19, 275–285. [Google Scholar] [CrossRef]
- Lizán-García, M.; García-Caballero, J.; Asensio-Vegas, A. Risk factors for surgical-wound infection in general surgery: A prospective study. Infect. Control Hosp. Epidemiol. 1997, 18, 310–315. [Google Scholar] [CrossRef]
- Isik, O.; Kaya, E.; Dundar, H.Z.; Sarkut, P. Surgical Site Infection: Re-assessment of the Risk Factors. Chirurgia 2015, 110, 457–461. [Google Scholar]
- Hameed, T.; Robinson, J.L. Review of the use of cephalosporins in children with anaphylactic reactions from penicillins. Can. J. Infect. Dis. 2002, 13, 253–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güngör, N.K. Overweight and obesity in children and adolescents. J. Clin. Res. Pediatr. Endocrinol. 2014, 6, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Strobel, R.M.; Leonhardt, M.; Förster, F.; Neumann, K.; Lobbes, L.A.; Seifarth, C.; Lee, L.D.; Schineis, C.H.W.; Kamphues, C.; Weixler, B.; et al. The impact of surgical site infection-a cost analysis. Langenbecks. Arch. Surg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, R.H.; Yassine, O.G.; Bedwani, R.N.; Abu-Sheasha, G.A. Evaluation of the costing methodology of published studies estimating costs of surgical site infections: A systematic review. Infect. Control Hosp. Epidemiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Piednoir, E.; Robert-Yap, J.; Baillet, P.; Lermite, E.; Christou, N. The Socioeconomic Impact of Surgical Site Infections. Front. Public Health 2021, 9, 712461. [Google Scholar] [CrossRef] [PubMed]
- Otieku, E.; Fenny, A.P.; Asante, F.A.; Bediako-Bowan, A.; Enemark, U. Cost-effectiveness analysis of an active 30-day surgical site infection surveillance at a tertiary hospital in Ghana: Evidence from HAI-Ghana study. BMJ Open 2022, 12, e057468. [Google Scholar] [CrossRef] [PubMed]
- Nuckchady, D.C. Incidence, Risk Factors, and Mortality from Hospital-Acquired Infections at a Hospital in Mauritius. Cureus 2021, 13, e19962. [Google Scholar] [CrossRef]
Clinical Scenario | Recommendation |
---|---|
Screening for MSSA and MRSA | In neonatal or pediatric patients who is uundergoing ENT, ophthalmology, abdominal, nephro-urological, or plastic surgery, in an emergency or elective regimen, nasal routine screening for MSSA and MRSA detection is not recommended. In the patient undergoing neurosurgery or transnasal-sphenoid endoscopic surgery, in an emergency or elective regimen, although routine screening for S. aureus nasal colonization is not recommended, this may be strongly suggested in cases at high risk of MRSA infection (i.e., those with MRSA preoperative colonization, those with a history of MRSA infection, neonates, and infants less than three months of age who have been hospitalized since birth or have a complex heart disorder). In patients who undergo orthopedic or cardiothoracic surgery in emergency or elective regimen, performing nasal screening for colonization by Staphylococcus aureus is recommended. |
Screening for MDR other than MRSA | In the pediatric patient undergoing any type of surgery, in an emergency or elective regimen, routine screening is not recommended for the detection of colonization by MDR bacteria other than MRSA. In the neonatal patient admitted to NICU, rectal screening for ESBL producing Enterobacteriaceae detection is recommended. |
Patient colonized by MRSA | In the neonatal or pediatric patients colonized by MRSA who undergo any type of surgery, cefazolin at a dose of 30 mg/kg (maximum dose 2 g) IV combined with vancomycin at a dose of 15 mg/Kg (maximum dose 2 g) IV, both to be administered 30 min before surgery, is recommended. |
Patient colonized by MDR bacteria other than MRSA | In neonatal or pediatric patients colonized by MDR bacteria other than MRSA who undergo any type of surgery, the application of isolation and other measures to avoid the spread of the pathogen is recommended, but the routine execution of specific perioperative antibiotic prophylaxis is not recommended. |
MRSA decolonization | In the neonatal or pediatric patient colonized by MRSA who must undergo surgery, it is recommended to perform decolonization in the preoperative phase, using mupirocin nasal ointment one application in each nostril 3 times a day and also a shower a day with soapy chlorhexidine (or povidone iodine for patients in which chlorhexidine is contraindicated) for 5 days before surgery. |
Decolonization for MDR bacteria other than MRSA | In neonatal or pediatric patients colonized by MDR bacteria other than MRSA who undergo surgery, the routine execution of specific decolonization procedures in the preoperative phase is not recommended. |
Patients allergic to first-line antibiotics | In the neonatal or pediatric patient with strongly supposed or documented allergy to β-lactams undergoing surgery for which the perioperative administration of a cephalosporin is foreseen, the administration of vancomycin 15 mg/kg (dose maximum 2 g) IV or clindamycin 10 mg/kg (maximum dose 3 g) IV to be administered 30 min prior to surgery is recommended. In the event that intervention involves the administration of a cephalosporin in association with other drugs, the latter will be used without any changes whatsoever in association. |
Immunocompromised patients | In the neonatal or pediatric patient with humoral or cell-mediated immune deficiency undergoing surgery, both in an emergency and elective regimen, perioperative antibiotic prophylaxis is recommended according to the indications provided for each single intervention for immunocompetent patients. |
Splenectomy | In neonatal or pediatric patients, perioperative antibiotic prophylaxis with cefazolin at a dose of 30 mg/kg (maximum dose 2 g) IV within 30 min before surgery is recommended for splenectomy. |
Patients with obesity or malnutrition | For neonatal or pediatric patients suffering from obesity or malnutrition who undergo emergency or elective surgery, it is recommended to carry out perioperative antibiotic prophylaxis using the drug (s) required for each specific intervention. |
Patients with comorbidities other than obesity or malnutrition | Perioperative antibiotic prophylaxis in neonatal or pediatric patient with comorbidities other than obesity or malnutrition follows the same rules as for patients without comorbidities. Exceptions are neonates or children with high-risk heart disease (i.e., those with valve prostheses or prosthetic material, those who have already suffered from bacterial endocarditis, those with cyanogenic congenital heart disease, and those undergoing heart transplantation who have developed valvulopathy) undergoing invasive oral, dental, or pharyngeal surgery. For these patients, the use of specific prophylaxis may be recommended. This may be based on the use of oral amoxicillin 50 mg/kg (maximum dose 2 g) or cefazolin 30 mg/kg (maximum dose 2 g) IV to be administered 30 min before surgery. |
Perioperative antibiotic prophylaxis in patients already undergoing antibiotic therapy or prophylaxis | In neonatal or pediatric patient already on antibiotic prophylaxis or already on antibiotic therapy for various reasons, or with coexisting infection in other sites (other than that in which surgery will take place) who undergo surgery, it is recommended to follow the indications provided for the single operation and to add prophylaxis with cefazolin at a dose of 30 mg/kg (maximum dose 2 g) IV to be administered 30 min before surgery if this is not already planned. |
Patients undergoing previous surgery or with prolonged hospitalization | In the neonatal or pediatric patient undergoing previous surgery in the last month and/or hospitalized for >2 weeks who is undergoing any type of surgery, it is recommended to carry out screening by nasal swab for the search for colonization by S. aureus (both MSSA and MRSA), and it is recommended to follow the indications for prophylaxis relating to the specific intervention. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, S.; Rigotti, E.; Nicoletti, L.; Monaco, S.; Auriti, C.; Castagnola, E.; Castelli Gattinara, G.; De Luca, M.; Galli, L.; Garazzino, S.; et al. Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics 2022, 11, 246. https://doi.org/10.3390/antibiotics11020246
Bianchini S, Rigotti E, Nicoletti L, Monaco S, Auriti C, Castagnola E, Castelli Gattinara G, De Luca M, Galli L, Garazzino S, et al. Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics. 2022; 11(2):246. https://doi.org/10.3390/antibiotics11020246
Chicago/Turabian StyleBianchini, Sonia, Erika Rigotti, Laura Nicoletti, Sara Monaco, Cinzia Auriti, Elio Castagnola, Guido Castelli Gattinara, Maia De Luca, Luisa Galli, Silvia Garazzino, and et al. 2022. "Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study" Antibiotics 11, no. 2: 246. https://doi.org/10.3390/antibiotics11020246
APA StyleBianchini, S., Rigotti, E., Nicoletti, L., Monaco, S., Auriti, C., Castagnola, E., Castelli Gattinara, G., De Luca, M., Galli, L., Garazzino, S., La Grutta, S., Lancella, L., Lo Vecchio, A., Maglietta, G., Montagnani, C., Petrosillo, N., Pietrasanta, C., Principi, N., Simonini, A., ... on behalf of the Peri-Operative Prophylaxis in Neonatal and Paediatric Age (POP-NeoPed) Study Group. (2022). Surgical Antimicrobial Prophylaxis in Neonates and Children with Special High-Risk Conditions: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics, 11(2), 246. https://doi.org/10.3390/antibiotics11020246